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BILEVEL TRANSPORTATION PROBLEMS
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Abstract. In this paper we formulate the bilevel transportation problem of the
cost-time type and of the cost-cost type, we propose a general algorithm for
solving this problems and we also give two examples.
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1. INTRODUCTION

The bilevel (or two level) mathematical programming problem is an opti-
mization problem with special constraints determined by, all or in part, an-
other optimization problem. The bilevel mathematical programming problem
is defined conventionally as follows:

Find x∗ ∈ Rn such that x∗ solves
min F (x, y(x))
subject to G(x, y(x)) ≤ 0,

where y(x) solves, for fixed x,

min f(x, y)
subject to g(x, y) ≤ 0,

where G : Rq × Rp → Rr, F : Rq × Rp → R, g : Rq × Rp → Rs, and
f : Rq × Rp → R, are functions.
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2. BILEVEL TRANSPORTATION PROBLEM OF THE COST-TIME TYPE

Let a1, . . . , am , b1, . . . , bn be positive integers so that a1 + . . . + am =
b1 + . . .+ bn. Let M = {1, . . . ,m}, P = {1, . . . , p}, S = {p+ 1, . . . , n},

Λ =

{
X = [xij ] ∈ Nm×p |

∑
i∈M

xij = bj , ∀j ∈ P and
∑
j∈P

xij ≤ ai, ∀i ∈M
}
.

If X ∈ Λ, then we put

U(X) =

{
Y (X) ∈ Nm×(n−p) |

∑
i∈M

yij(X) = bj , ∀ j ∈ S,

∑
j∈S

yij(X) = ai −
∑
j∈P

xij , ∀ i ∈M
}
.

The bilevel transportation problem of the cost-time type is defined as fol-
lows:

Find X∗ ∈ Nm×p such that X∗ solves
min g(X) =

∑
i∈M

∑
j∈P cijxij +

∑
i∈M

∑
j∈S cijy

∗
ij(X)

subject to∑
i∈M xij = bj , j ∈ P,∑
j∈P xij ≤ ai, i ∈M,∑
j∈P xij +

∑
j∈S y

∗
ij(X) = ai, i ∈M

xij ∈ N, i ∈M, j ∈ P,

where Y ∗(X) = [y∗ij(x)] ∈ U(X) solves, for fixed X ∈ Λ,

min max {tij · sgn yij(X) | (i, j) ∈ {1, ...,m} × {p+ 1, ..., n}}
subject to∑

j∈S yij = ai −
∑

j∈P xij , i ∈M∑
i∈M yij = bj , j ∈ S

yij ∈ N, i ∈M, j ∈ S.

In the following we denote by C the matrix of costs and by T the matrix
of times:



3 BILEVEL TRANSPORTATION PROBLEMS 27

C =

 c11 ... c1n

... ... ...
cm1 ... cmn

 and T =

 t1,p+1 ... t1n
... ... ...

tm,p+1 ... tmn

 .

If we denote by αi =
∑
j∈P

xij , i ∈M, we have

0 ≤ αi ≤ ai, i ∈M, and
∑
i∈M

αi =
∑
j∈S

bj .

Let be

H =

{
α = (α1, ..., αm) ∈ Nm | 0 ≤ αi ≤ ai, ∀ i ∈M,

∑
i∈M

αi =
∑
j∈S

bj

}
.

Let the parametric transportation problem of the time type be

(PTP ) t∗(α) = min max{tij · sgn yij : i ∈M, j ∈ S }

subject to ∑
j∈S

yij = αi, i ∈M

∑
i∈M

yij = bj , j ∈ S

yij ∈ N, i ∈M, j ∈ S

where α = (α1, ..., αm) ∈ H. If α0 ∈ H , then by (PTP (α0)) we denote the
transportation problem of the time type which is obtained from (PTP) for
α = α0.

Solving the problem (PTP ) , we obtain a split of the set H into a finite
number of subsets H1, . . . ,Hq ⊆ Nm, such that H1 ∪ · · · ∪Hq = H, and for
each k ∈ {1, . . . , q}, there are a real number Tk, with the property

t∗(α) = Tk for all α ∈ Hk,

and a matrix, which we denote by Y k(α),

Y k(α) =

 yk1,p+1(α) ... yk1n(α)
... ...

ykm,p+1(α) ... ykmn(α)


such that Y k(α) is an optimal solution for the problem (PTP (α)) for each
α ∈ Hk. Then a solution of the problem (PTP ) is a function h : H →
Nm×(n−p), given by
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h(α) = Y k(α), ∀ α ∈ Hk,

for each k ∈ {1, ..., q}.
For each k ∈ {1, . . . , q}, we solve the parametric transportation problem of

the cost type

(TPk) min

(
F (X,Y k(α)) =

∑
i∈M

∑
j∈P

cijxij +
∑
i∈M

∑
j∈S

cijy
k
ij(α)

)

subject to ∑
i∈M

xij = bj , ∀ j ∈ P

∑
j∈P

xij ≤ ai, ∀ i ∈M

∑
j∈P

xij +
∑
j∈S

ykij(α) = ai, ∀ i ∈M

xij ∈ N, ∀i ∈M, ∀j ∈ P,

where α ∈ Hk.
For each α ∈ Hk we denote by Xk(α) an optimal solution of the problem

(TPk(α)), obtained from (TPk) when α is fixed.
Let α∗ ∈ Hk, such that

F (Xk(α∗), Y k(α∗)) = min
{
F (Xk(α), Y k(α)) |α ∈ Hk

}
.

Then, we call the matrix Xk = Xk(α∗), the best solution of the problem
(TPk).

The solution of the bilevel transportation problem (BTP) is that Xk for
which we have

g(Xk) = min{g(X l) : l ∈ {1, . . . , q}}.

In order to illustrate the above algorithm we conclude with the following
numerical example.
Example Let us consider the bilevel cost-time transportation problem which
has: m = 3, p = 3, n = 4, a1 = 80, a2 = 25, a3 = 45, b1 = 75, b2 =

40, b3 = 15, b4 = 20, the times matrix : T =

 3
2
4

 , and the costs matrix :
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C =

 3 2 5 1
1 3 2 4
5 2 4 3


The set H is

H =
{

(α1, α2, α3) ∈ N3 | 0 ≤ α1 ≤ 80, 0 ≤ α2 ≤ 25, 0 ≤ α3 ≤ 45,

α1 + α2 + α3 = 20} .

We have

H = H1

⋃
H2

⋃
H3,

where

H1 = {(0, 20, 0)},
H2 = {(α1, α2, 0) ∈ N3 | 1 ≤ α1, α1 + α2 = 20},
H3 = {(α1, α2, α3) ∈ N3 |α3 ≥ 1, α1 + α2 + α3 = 20},

Then

Y 1(α) =

 0
20
2

 , Y 2(α) =

 α1

α2

0

 , Y 3(α) =

 α1

α2

α3


X1(α) =

 70 10 0
5 0 0
0 30 15

 , for α ∈ H1,

X2(α) =

 70− α1 10 0
25− α2 0 0

0 30 15

 , for α ∈ H2,

X3(α) =

 70− α1 − α3 α3 + 10 0
5 + α1 + α3 0 0

0 30− α3 15

 , for α ∈ H3,

min
{
F (X1(α), Y 1(α)) |α ∈ H1

}
= 435 = F (X1(0, 20, 0), Y 1(0, 20, 0)),

min
{
F (X2(α), Y 2(α)) |α ∈ H2

}
= 335 = F (X2(20, 0, 0), Y 2(20, 0, 0)),

min
{
F (X3(α), Y 3(α)) |α ∈ H3

}
= 337 = F (X3(19, 0, 1), Y 3(19, 0, 1)).

Hence
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X1 =

 70 10 0
5 0 0
0 30 15

 , and Y 1(X1) =

 0
20
0

 ,

X2 =

 50 10 0
25 0 0
0 30 15

 , and Y 2(X2) =

 20
0
0

 ,

X3 =

 50 11 0
25 0 0
0 29 15

 , and Y 3(X3) =

 19
0
1

 .

It follows that

min
{
g(X1), g(X2), g(X3)

}
= 335 = g(X2).

Hence the optimal solution for the bilevel transportation problem of the
cost-time type is

X∗ = X2 =

 50 10 0
25 0 0
0 30 15

 , and Y ∗(X∗) =

 20
0
0

 .

3. BILEVEL TRANSPORTATION PROBLEM OF THE COST-COST TYPE

Let a1, ..., am , b1, ..., bn be positive integers so that a1 + ... + am = b1 +
...+ bn. Let M = {1, ...,m}, P = {1, ..., p}, S = {p+ 1, ..., n},

Λ =

{
X ∈ Nm×p |

∑
i∈M

xij = bj , ∀ j ∈ P and
∑
j∈P

xij ≤ ai, ∀ i ∈M
}
.

If X ∈ Λ, then we put

U(X) =

{
Y (X) ∈ Nm×(n−p) |

∑
i∈M

yij(X) = bj , ∀ j ∈ S,

∑
j∈S

yij(X) = ai −
∑
j∈P

xij , ∀ i ∈M
}
.

The bilevel transportation problem of the cost-cost type is defined as follows:
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Find X∗ ∈ Nm×p such that X∗ solves
min g(X) =

∑
i∈M

∑
j∈P

cijxij +
∑
i∈M

∑
j∈S

cijy
∗
ij(X)

subject to∑
i∈M

xij = bj , j ∈ P,∑
j∈P

xij ≤ ai, i ∈M,∑
j∈P

xij +
∑
j∈S

y∗ij(X) = ai, i ∈M

xij ∈ N, i ∈M, j ∈ P,

where Y ∗(X) ∈ U(X) solves, for fixed X ∈ Λ

min
m∑
i=1

n∑
j=p+1

dijyij(X)

subject to∑
j∈S

yij = ai −
∑
j∈P

xij , i ∈M∑
i∈M

yij = bj , j ∈ S

yij ∈ N, i ∈M, j ∈ S.

In the following we denote by C and D the matrices of costs:

C =

 c11 ... c1n

... ... ...
cm1 ... cmn

 and D =

 d1,p+1 ... d1n

... ... ...
dm,p+1 ... dmn

 .

Let be

H =

{
α = (α1, ..., αm) ∈ Nm | 0 ≤ αi ≤ ai, ∀ i ∈M,

∑
i∈M

αi =
∑
j∈S

bj

}
.

Let the parametric transportation problem of the cost type be

(PCP ) g∗(α) = min
∑
i∈M

∑
j∈S

dijyij

subject to ∑
j∈S

yij = αi, i ∈M

∑
i∈M

yij = bj , j ∈ S

yij ∈ N, i ∈M, j ∈ S

where α = (α1, ..., αm) ∈ H. If α0 ∈ H , then by (PCP (α0)) we denote
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the transportation problem of the cost type which is obtained from (PCP) for
α = α0.

Solving the problem (PCP ) , we obtain a split of the set H into a finite
number of subsets H1, . . . ,Hq ⊆ Nm, such that H1 ∪ · · · ∪Hq = H, and for
each k ∈ {1, . . . , q}, there are a real number dk, with the property

g∗(α) = dk for all α ∈ Hk,

and a matrix, which we denote by Y k(α),

Y k(α) =

 yk1,p+1(α) ... yk1n(α)
... ...

ykm,p+1(α) ... ykmn(α)


such that Y k(α) is an optimal solution for the problem (PCP (α)) for each
α ∈ Hk. Then a solution of the problem (PCP ) is a function h : H →
Nm×(n−p), given by

h(α) = Y k(α), ∀ α ∈ Hk,

for each k ∈ {1, ..., q}.
For each k ∈ {1, . . . , q}, we solve the parametric transportation problem of

the cost type

(CPk) min

(
F (X,Y k(α)) =

∑
i∈M

∑
j∈P

cijxij +
∑
i∈M

∑
j∈S

cijy
k
ij(α)

)
subject to ∑

i∈M
xij = bj , ∀ j ∈ P

∑
j∈P

xij ≤ ai, ∀ i ∈M

∑
j∈P

xij +
∑

j∈S y
k
ij(α) = ai, ∀ i ∈M

xij ∈ N, ∀i ∈M, ∀j ∈ P,

where α ∈ Hk.
For each α ∈ Hk we denote by Xk(α) an optimal solution of the problem

(CPk(α)), obtained from (CPk) when α is fixed.
Let α∗ ∈ Hk, such that
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F (Xk(α∗), Y k(α∗)) = min
{
F (Xk(α), Y k(α)) |α ∈ Hk

}
.

Then, we call the matrix Xk = Xk(α∗), the best solution of the problem
(CPk).

The solution of the bilevel transportation problem (BCP) is that Xk for
which we have

g(Xk) = min{g(X l) : l ∈ {1, . . . , q}}.

In order to illustrate the above algorithm we conclude with the following
numerical example.
Example Let us consider the bilevel cost-cost transportation problem which
has: m = 2, p = 2, n = 4, a1 = 80, a2 = 70, b1 = 20, b2 = 10, b3 =

90, b4 = 30, the first costs matrix : D =

(
2 3
1 2

)
, and the second costs

matrix :

C =

(
3 2 5 3
1 3 2 2

)
The set H is

H =
{

(α1, α2) ∈ N2 | 0 ≤ α1 ≤ 80, 0 ≤ α2 ≤ 70, α1 + α2 = 120
}
.

It is easy to see that

H =
{

(α1, 120− α1) ∈ N2 |50 ≤ α1 ≤ 80
}
.

For each α = (α1, 120 − α1) ∈ H the transportation problem (PCP (α))
has the optimal solution

Y ∗(α) =

(
α1 − 30 30

120− α1 0

)
Then, if α1 ∈ H1 = {(α1, 120− α1) |α1 ∈ [50, 70]} we get

X1(α) =

(
70− α1 10
α1 − 50 0

)
,

and if α1 ∈ H2 = {(α1, 120− α1) |α1 ∈ [70, 80]}, we get

X2(α) =

(
0 80− α1

20 α1 − 70

)
.

Then

min
{
F (X1(α), Y ∗(α)) |α1 ∈ [50, 70]

}
= 430 = F (X1(70, 50), Y ∗(70, 50)),

and
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min
{
F (X2(α), Y ∗(α)) |α ∈ [70, 80]

}
= 430 = F (X2(70, 50), Y ∗(70, 50)).

Hence the optimal solution for the bilevel transportation problem of the
cost-cost type is

X∗ =

(
0 10

20 0

)
, and Y ∗(X∗) =

(
40 30
50 0

)
.
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