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BILEVEL TRANSPORTATION PROBLEMS
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Abstract. In this paper we formulate the bilevel transportation problem of the
cost-time type and of the cost-cost type, we propose a general algorithm for
solving this problems and we also give two examples.
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1. INTRODUCTION

The bilevel (or two level) mathematical programming problem is an opti-
mization problem with special constraints determined by, all or in part, an-
other optimization problem. The bilevel mathematical programming problem
is defined conventionally as follows:

Find 2* € R" such that z* solves
min F(z,y(z))
subject to G(x,y(x)) < 0,

where y(x) solves, for fixed z,

min f(z,y)
subject to g(z,y) < 0,

where G : RTxRP — R", F:RIxRP - R, g:R?xRP — R* and
f:R?IxRP — R, are functions.
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2. BILEVEL TRANSPORTATION PROBLEM OF THE COST-TIME TYPE

Let ai,...,am, b1,...,b, be positive integers so that a; + ... + am =
by +...+by. Let M ={1,....m}, P={1,...,p}, S={p+1,...,n},

A:{X:[l‘ij] ENmXp| Z l’ij:bj, VjePand El’ijﬁai, VZEM}
€M JjeEP

If X € A, then we put

UX) = {Y(X) e Nmx(n=p) | 'ZMyij(X) =0b;, VjES,
1€

> yij(X) =a; — Y, Tij, ViEM}.
Jj€S jepP

The bilevel transportation problem of the cost-time type is defined as fol-
lows:

Find X* € N™*P guch that X* solves
min 9(X) = Yien Zjep CijTij + D icm ZjeS cijyi;(X)
subject to

Yienij = bj, JEP,

djepTij < a;, i€ M,

djepTij + 2jes¥i(X) = ai, i€M

zi; €N, 1€ M, jeP,

where Y*(X) = [y;;(z)] € U(X) solves, for fixed X € A,

minmax {t;; - sgny;;(X) | (4,7) € {1,....,m} x {p+1,...,n}}
subject to

djesVij = @i — Y jepTij, (€M

diemViig =bj, JES

yij €N, i€ M, jeb.

In the following we denote by C' the matrix of costs and by T the matrix
of times:



3 BILEVEL TRANSPORTATION PROBLEMS 27

C11 ... Cin t17p+1 tln
C = and T =

Cml -+ Cmn tm,erl tmn

If we denote by «; = > w45, 9 € M, we have
jeP

0<a; <a,i€e M, and ZO&Z‘:ij.

Let be
H = {a = (a1, ) EN"|0 < o < a5, VieM, Y o = ij}.
ieM jes
Let the parametric transportation problem of the time type be
(PTP) t*(o) = minmax{t;; - sgny;;: i€ M, j€ S}

subject to

doyij =0y, €M
j€s

Yyij=0b;, j€ES
ieM

yijGN, ieM, j€S5

where a = (aq,...,a,) € H. If o € H | then by (PTP(a)) we denote the
transportation problem of the time type which is obtained from (PTP) for
_ .0
a = a’.
Solving the problem (PTP), we obtain a split of the set H into a finite
number of subsets Hy,...,H; € N™, such that Hy U---UH,; = H, and for
each k € {1,...,q}, there are a real number T}, with the property

t*(a) = Ty, for all o € Hy,
and a matrix, which we denote by Y*(a),

ylf,p+1(a) ylfn(a)
YE(a) =
k k
ym,p+1(a) ymn(a)
such that Y*(a) is an optimal solution for the problem (PTP(«)) for each

a € Hi. Then a solution of the problem (PTP) is a function h : H —
Nm*(n=p) given by
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h(a) = Y*(), YaeH,

for each k € {1,...,q}.
For each k € {1,...,q}, we solve the parametric transportation problem of
the cost type

(T'Py) min (F(X, YH) = X ¥ ajmg + X Y Cijyfj(a)>

i€M jEP i€M jES
subject to

inj:bj, VjEP
€M

injgai, Vie M
JjEP

> owij + nyj(a) =a;, VieM
jeEP JES

zij €N, Vie M, Vj € P,

where o € Hy,.

For each a € Hj, we denote by X*(a) an optimal solution of the problem
(T'Px(cx)), obtained from (T'P;) when « is fixed.

Let o* € Hy, such that

F(X*(a*),Y*(a*)) = min {F(Xk(a),Yk(a)) la e Hk} .

Then, we call the matrix X* = X¥(a*), the best solution of the problem
(T Py).

The solution of the bilevel transportation problem (BTP) is that X* for
which we have

g(XF) =min{g(X"): 1€ {1,...,¢}}.

In order to illustrate the above algorithm we conclude with the following
numerical example.
Ezxample  Let us consider the bilevel cost-time transportation problem which
has: m = 3, p = 3, n = 4, a; = 80, a0 = 25, a3 = 45, by = 75, by =
3
40, bg = 15, by = 20, the times matrix : T = 2 |, and the costs matrix :
4
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3 2 5 1
C = 1 3 2 4
5 2 4 3

The set H is

H = {(a1,a2,03) EN’|0 < a; < 80,0 < ap < 25,0 < az < 45,
a1 + oy + az = 20}.

We have
H = H | JH | Hs,
where
= {(0,20,0)},
= {(a1,02,0) e N’ |1 < @1, a1 + ay = 20},
= {(a1,00,03) e N*|ag > 1,01 + ay + a3z = 20},
Then
0 o1 a1
Yia)=1[ 20 |, Y*a)=| a2 |, Y3)=| a
2 0 (65}
70 10 0
XYa) = 5 0 0], for aeH,
0 30 15
M0—a; 10 O
X*(a)=| 25—a2 O 0 |, for acH,,
0 30 15
70—&1—0[3 a3+10 0
X3(a) = 54+ a1 + ag 0 0|, for aec Hs,

0 30—as 15

min { F(X'(a),Y'(a))|a € Hi } = 435 = F(X'(0,20,0),Y"(0,20,0)),
()€ Hy} = 335 = F(X?(20,0,0),Y?(20,0,0)),
J(a))|a€ Hy} = 337 = F(X?(19,0,1),Y3(19,0,1)).

Y
Y
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70 10 0 0
Xt = 5 0 0], and Y'&XxYH =1 20 ],
0 30 15 0
50 10 0 20
X2=|(25 0 0|, and Y?*X? = 0|,
0 30 15 0
50 11 0 f 19
X3=1|(25 0 0|, and Y3X3) = 0
0 29 15 1

It follows that
min {g(X"'), g(X?), g(X?) } = 335 = g(X?).

Hence the optimal solution for the bilevel transportation problem of the
cost-time type is

50 10 0 20
X*=X?=|(25 0 0|, and Y*X*) = 0
0 30 15 0

3. BILEVEL TRANSPORTATION PROBLEM OF THE COST-COST TYPE

Let ay,...,am, b1,...,b, be positive integers so that a; + ... + a;, = b1 +
we by Let M = {1,...m}, P={1,..,p}, S={p+1,..,n},

A:{XGNmXp‘ZIEi]’:bj,VjEP and injgai,ViEM}.
ieM JEP

If X € A, then we put

U(x) = {mc) N | T yy(X) = by V€S,
1€

> vii(X) = a; — ijw,Vier}.

jeSs jepr

The bilevel transportation problem of the cost-cost type is defined as follows:
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Find X* € N™*P guch that X* solves
min  g(X) = > > ez + D Y0 ciy(X)

i€M jeP ieM jes

subject to

Z Tij = bj, jG P,

€M

Yoz < a, €M,

jeP

> T+ > y(X) =ai, €M

jEP jes

ri; €N, ie€M, jeP,

where Y*(X) € U(X) solves, for fixed X € A

min )3 > dijyi(X)

i=1j=p+1
subject to

DY = ai — Y wj, €M

JES jEP

Z Yij = bj VES S

ieM

Yij eEN, 1eM, jeSs.

In the following we denote by C' and D the matrices of costs:

C11 .. Cin d17p+1 dln
C = and D =
Cml -+ Cmn dm7p+1 dmn
Let be
H = {a = (a1, ) EN" |0 < a; < a5, VieM, Y o = ij}.
ieM JES

Let the parametric transportation problem of the cost type be

(PCP) g () =min Y > dijyij
ieM jes
subject to
Yy =, €M
JjeS
Y yij=0b;, jES
ieEM

yijEN, ieM, j€S8

where a = (ay,...,an) € H. If o € H, then by (PCP(a’)) we denote
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the transportation problem of the cost type which is obtained from (PCP) for
0
a = a.
Solving the problem (PCP), we obtain a split of the set H into a finite
number of subsets Hy,...,H, € N™, such that Hy U---UH, = H, and for

each k € {1,...,q}, there are a real number dj, with the property
9" (o) = dy, for all o € Hy,

and a matrix, which we denote by Y*(a),

Yk( ) ylf,p+l(a) ylfn(a)
dh (@) o yh(a)

such that Y*(a) is an optimal solution for the problem (PCP(a)) for each
a € Hji. Then a solution of the problem (PCP) is a function h : H —
Nm*(n=p) " given by

h(a) = Y*(a), Vae Hy,

for each k € {1,...,q}.
For each k € {1,...,q}, we solve the parametric transportation problem of
the cost type

©r) i (FEYH@) = T T om + T T clla)
i€M jEP i€M jES
subject to
Z Tjj = bj, VJ eP

€M

ZCCUSCLZ', VieM
jepP

;xij + Zjesyfj(a) =a;, VieM
j€

zij €N, Vie M, Vj € P,

where o € Hy,.

For each o € Hj, we denote by X¥(a) an optimal solution of the problem
(CPy(w)), obtained from (CP;) when « is fixed.

Let o € Hy, such that
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F(X*(a*),Y*(a*)) = min {F(Xk(a),Yk(a)) lae Hk} .

Then, we call the matrix X* = X¥(a*), the best solution of the problem
(CF).

The solution of the bilevel transportation problem (BCP) is that X* for
which we have

g(X*) =min{g(X"): 1€ {1,...,¢}}.

In order to illustrate the above algorithm we conclude with the following
numerical example.
Ezample  Let us consider the bilevel cost-cost transportation problem which
has: m = 2, p = 2, n = 4, a; = 80, a2 = 70, by = 20, by = 10, b3 =

90, by = 30, the first costs matrix : D = ( ? ; > , and the second costs
matrix :
3 2 5 3
¢ = < 1 3 2 2 )
The set H is

H = {(o1,02) EN?*|0 < a1 < 80,0 < ap <70, g + ap = 120}.
It is easy to see that
H = {(a1,120 — 1) e N*|50 < oy <80} .

For each o = (a1,120 — ;) € H the transportation problem (PCP(«))
has the optimal solution

ey a1 —30 30
Y(a)_<120—a1 0)

Then, if ay € Hy = {(a1,120 — a1) | a1 € [50,70]} we get
1 . 70—011 10
o) = <a1—50 0)’
and if a; € Hy = {(1,120 — o) | g € [70,80]}, we get
o v (0 80—
Xa) = (20 a1—70>'
Then

min { F(X'(a),Y*(a)) | a1 € [50,70] } = 430 = F(X*(70,50), Y*(70,50)),

and
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min { F(X2(a),Y*(a)) | € [70,80] } = 430 = F(X?(70,50),Y*(70,50)).

Hence the optimal solution for the bilevel transportation problem of the
cost-cost type is

. 0 10 wrvey [ 40 30
e (00, v - (8B).
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