REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 1, pp. 47-54 ictp.acad.ro/jnaat

A VORONOVSKAYA-TYPE THEOREM

MIRCEA IVAN and IOAN RAŞA

Dedicated to the memory of Acad. Tiberiu Popoviciu

Abstract. We give an asymptotic estimation for some sequences of divided differences. We use this estimation to obtain a Voronovskaya–type formula involving linear positive operators.

MSC 2000. 41A36.

Keywords. Divided difference, linear operator, approximation, Voronovskaya-type theorem.

1. INTRODUCTION AND NOTATIONS

Consider the points $x_0 < x_1 < \ldots < x_n$ on the real axis and let $f: [x_0, x_n] \rightarrow \mathbb{R}$ be an arbitrary function. Denote by $[x_0, \ldots, x_n; f]$ the divided difference of the function f on the knots x_0, \ldots, x_n , usually defined by

$$[x_0, \dots, x_n; f] := \sum_{i=0}^n \frac{f(x_i)}{(x_i - x_0) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}$$

Consider the polynomial functions $e_i \colon \mathbb{R} \to \mathbb{R}$, $e_i(x) = x^i$, i = 0, 1, ... It is known that $[x_0, \ldots, x_n; e_i] = 0$, $i = 0, \ldots, n-1$, $[x_0, \ldots, x_n; e_n] = 1$. The problem was to calculate $A_k := [x_0, \ldots, x_n; e_{n+k}]$, $k = 1, 2, \ldots$ In [6] Tiberiu Popoviciu uses the identity

$$\left[x_0,\ldots,x_n;\frac{1}{x-\cdot}\right] = \frac{1}{(x-x_0)\ldots(x-x_n)},$$

to prove the following formula

Technical University of Cluj-Napoca, Dept. of Mathematics, Str. C. Daicoviciu 15, RO-3400, Cluj-Napoca, ROMANIA, e-mail: mircea.ivan@math.utcluj.ro, ioan.rasa@math.utcluj.ro.

$$A_k = \sum_{\substack{0 \le i_0, \dots, i_n \le k \\ i_0 + \dots + i_n = k}} x_0^{i_0} \cdots x_n^{i_n}$$

This formula was rediscovered in 1981 by E. Neuman [3]. It does not look much "friendlier" than the initial one,

$$A_k = \sum_{i=0}^n \frac{x_i^{n+k}}{(x_i - x_0) \dots (x_i - x_{i-1})(x_i - x_{i+1}) \dots (x_i - x_n)}.$$

Therefore, in [7], it is suggested that a recurrence formula might be more useful. We shall use such a formula in order to give an asymptotic estimation for A_k under some supplementary assumptions on the knots (see Theorem 1).

Consider now a triangular matrix of nodes $(x_{n,k})$, n = 0, 1, ...; k = 0, ..., n,

(1)
$$-1 \le x_{n,0} < x_{n,1} < \ldots < x_{n,n} \le 1, \quad n = 0, 1, \ldots$$

satisfying the conditions:

(2)
$$x_{n,n-i} = -x_{n,i}, \quad i = 0, \dots, n, \ n = 0, 1, \dots$$

Let a > 0. For $n \ge 1$ consider the operator $L_n : C[-a-1, a+1] \to C[-a, a]$,

$$L_n f(x) := n! [x + x_{n,0}, \dots, x + x_{n,n}; F_n],$$

where $f \in C[-a-1, a+1], x \in [-a, a], F_n \in C^n[-a-1, a+1], F_n^{(n)} = f.$

The L_n are positive linear operators of probabilistic type and Bernstein–Schnabl type operators.

For particular choices of the matrix $(x_{n,k})$ various inequalities involving $L_n f$ have been studied in [4], [5], [8], [12]. If $x_{n,i} = -1 + \frac{2i}{n}$, $i = 0, \ldots, n$, we have also [10]

(3)
$$L_n f(x) = 2^{-n} \int_{x-1}^{x+1} \cdots \int_{x-1}^{x+1} f\left(\frac{t_1 + \dots + t_n}{n}\right) dt_1 \dots dt_n.$$

Using the L_n operator notation, [7] gives

(4)
$$\left| L_n f(0) - \sum_{i=0}^{k-1} \frac{L_n e_{2i}(0)}{(2i)!} f^{(2i)}(0) \right| \le \frac{L_n e_{2k}(0)}{(2k)!} \| f^{(2k)} \|_{[-1,1]}.$$

for all $f \in C^{2k}[-a-1, a+1]$, where $\|\cdot\|_{[-1,1]}$ denotes the uniform norm on C[-1, 1]. As positive operators, L_n have been studied in [9], [10].

They verify:

$$f \text{ convex } \Longrightarrow L_n f \ge L_{n+1} f \ge f,$$

 $\|L_n f - f\| \le 2\omega \left(f, \frac{1}{\sqrt{3n}}\right).$

We have: $Le_0 = e_0$, $Le_1 = e_1$, $L(e_1 - x e_0)^2(x) = \frac{1}{(n+1)(n+2)} \sum_{i=0}^n x_{n,i}^2$. For equidistant knots $x_{n,i} = -1 + \frac{2i}{n}$, $i = 0, \dots, n$, we obtain

$$L(e_1 - x e_0)^2(x) = \frac{1}{3n},$$

hence, using [1, Corollary 4.12], we can prove now that

$$||L_n f - f|| \le 2.25 \,\omega_2 \,\left(f, \frac{1}{\sqrt{3n}}\right)$$

Our aim is to give a more refined analysis of the convergence behaviour of the operators L_n . This is accomplished in Theorem 2.

2. MAIN RESULTS

THEOREM 1. If the triangular matrix $(x_{n,k})$ satisfies the relations (1), (2) and

(5)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} x_{n,i}^2 = 2\lambda \in \mathbb{R}$$

then, for all $k \in \mathbf{N}$, the following equality is fulfilled

(6)
$$\lim_{n \to \infty} n^{-k} [x_{n,0}, \dots, x_{n,n}; e_{n+2k}] = \frac{\lambda^k}{k!}.$$

The previous relation can be written in the form

(7)
$$\lim_{n \to \infty} n^k L_n e_{2k}(0) = \frac{\lambda^k}{k!} (2k)!.$$

THEOREM 2. If $f \in C^{2k}[-a-1, a+1]$, then, for every matrix $(x_{n,k})$ satisfying the conditions (1), (2) and (5), the following Voronovskaya-type relation holds true:

(8)
$$\lim_{n \to \infty} n^k \left(L_n f(x) - \sum_{i=0}^{k-1} \frac{L_n e_{2i}(0)}{(2i)!} f^{(2i)}(x) \right) = \frac{\lambda^k}{k!} f^{(2k)}(x),$$

uniformly for $x \in [-a, a]$.

Consider the polynomial function $(e_1 - x_{n,0}) \dots (e_1 - x_{n,n})$, which we write as $e_{n+1} - C_{n,1}e_n - \dots - C_{n,n}e_1 - C_{n,n+1}e_0$. Consider also the sums $S_{n,p} := \sum_{i=0}^n x_{n,i}^p$, $p = 1, 2, \dots$ Using (2) it is obvious that

(9)
$$S_{n,p} = 0$$
, for odd p .

Using (1) it can be easily shown that

(10)
$$\lim_{n \to \infty} \frac{S_{n,p}}{n^k} = 0, \quad p = 1, 2, \dots; \quad k > 1.$$

We write the relation (5) in the form

(11)
$$\lim_{n \to \infty} \frac{S_{n,2}}{n} = 2\lambda.$$

The coefficients

$$C_{n,p} = (-1)^{p+1} \sum_{0 \le i_1 < \dots < i_p \le n} x_{n,i_1} \cdots x_{n,i_p},$$

can be computed by using Newton's formulas:

$$C_{n,1} = S_{n,1}$$

$$C_{n,p} = \frac{1}{p} \left(S_{n,p} - \sum_{i=1}^{p-1} S_{n,i} C_{n,p-i} \right), \quad p = 2, \dots, n+1.$$

By considering (9) it follows that:

$$C_{n,p} = 0$$
, for odd p ,

and

(12)
$$C_{n,2} = \frac{1}{2}S_{n,2}$$
$$C_{n,2k} = \frac{1}{2k}\left(S_{n,2k} - \sum_{i=1}^{k-1}S_{n,2i}C_{n,2(k-i)}\right), \quad k = 1, \dots, \lfloor (n+1)/2 \rfloor.$$

We define γ_k as

$$\gamma_k := \lim_{n \to \infty} \frac{C_{n,2k}}{n^k}, \quad k = 1, 2, \dots$$

We have

$$\gamma_1 = \lim_{n \to \infty} \frac{C_{n,2}}{n} = \lim_{n \to \infty} \frac{S_{n,2}}{2n} = \lambda,$$

and, from (10) and (12), it follows that

$$\gamma_k = -\frac{\lambda}{k}\gamma_{k-1}, \quad k \ge 2$$

hence

(13)
$$\gamma_k = \frac{(-1)^{k+1}\lambda^k}{k!}, \quad k \ge 1.$$

Using the divided difference functional, define the numbers:

$$A_{n,j} := [x_{n,0}, \dots, x_{n,n}; e_{n+j}], \quad j = -n, -n+1, \dots$$

It is well known that

(14)
$$A_{n,j} = \begin{cases} 0, & \text{if } j = -n, \dots, -1, \\ 1, & \text{if } j = 0. \end{cases}$$

In order to calculate $A_{n,j}$ for $j \ge 1$, observe that

$$[x_{n,0},\ldots,x_{n,n};e_{j-1}(e_1-x_{n,0})\ldots(e_1-x_{n,n})]=0,$$

that is

$$[x_{n,0},\ldots,x_{n,n};e_{n+j}-C_{n,1}e_{n+j-1}-\cdots-C_{n,n+1}e_{j-1}]=0.$$

As a consequence we have

$$A_{n,j} = \sum_{i=1}^{n+1} C_{n,i} A_{n,j-i}, \quad j = 1, 2, \dots$$

and using (14), we find that

(15)
$$A_{n,j} = \sum_{i=1}^{j} C_{n,i} A_{n,j-i}, \quad j = 1, \dots, n+1.$$

Using

$$\begin{array}{rcl} A_{n,0} & = & 1 \\ A_{n,1} & = & C_{n,1}A_{n,0} = 0 \end{array}$$

in (15), it can be deduced that

(16)
$$A_{n,p} = 0, \quad \text{for odd } p,$$

and hence

(17)
$$A_{n,2k} = \sum_{i=1}^{k} C_{n,2i} A_{n,2(k-i)}, \quad 1 \le k \le \frac{n+1}{2}.$$

By defining

$$B_k := \lim_{n \to \infty} \frac{A_{n,2k}}{n^k}, \quad k \ge 0,$$

we have $B_0 = 1$, and using (17) we find

$$B_k = \sum_{i=1}^k \gamma_i B_{k-i}, \quad k \ge 1$$

i.e.,

(18)
$$B_k = \sum_{i=1}^k \frac{(-1)^{i+1}\lambda^i}{i!} B_{k-i}, \quad k \ge 1.$$

Using (18) we can prove by mathematical induction that

(19)
$$B_k = \frac{\lambda^k}{k!}, \quad k \ge 0$$

which completes the proof.

4. PROOF OF THEOREM 2

For arbitrary $x \in [-a, a]$ consider the function $g_x : [-a - 1, a + 1] \to \mathbb{R}$,

$$g_x := f - \sum_{i=0}^{2k} \frac{(e_1 - xe_0)^i}{i!} f^{(i)}(x).$$

Taylor's formula implies the existence of a point $\xi \in (-a-1, a+1), |x-\xi| \leq |x-t|$, such that

$$g_x(t) = \frac{(t-x)^{2k}}{(2k)!} \left(f^{(2k)}(\xi) - f^{(2k)}(x) \right).$$

For any $\varepsilon > 0$ there exists a number $\delta > 0$ such that

$$|g_x(t)| \le (t-x)^{2k} \varepsilon$$

for all $t \in [-a - 1, a + 1], |t - x| < \delta$.

Let C be a constant such that $|g_x(t)| \leq C \delta^{2k+2}$, for all $x \in [-a, a], t \in [-a - 1, a + 1]$. Consequently, we obtain

$$|g_x(t)| \le \varepsilon (t-x)^{2k} + C (t-x)^{2k+2}$$

for all $x \in [-a, a], t \in [-a - 1, a + 1]$, that is,

$$|g_x| \le \varepsilon (e_1 - xe_0)^{2k} + C (e_1 - xe_0)^{2k+2},$$

and so,

$$L_n g_x(x) \leq \varepsilon L_n (e_1 - xe_0)^{2k} (x) + C L_n (e_1 - xe_0)^{2k+2} (x).$$

Using the equality

$$L_n(f)(x) = L_n(f \circ (e_1 + xe_0))(0),$$

we obtain

$$|L_n g_x(x)| \le \varepsilon L_n e_{2k}(0) + C L_n e_{2k+2}(0).$$

Taking into account the fact that

(20)
$$L_n e_i(0) = \frac{n!i!}{(n+i)!} A_{n,i}, \quad i = 1, 2, \dots$$

it follows

(21)
$$\lim_{n \to \infty} n^i L_n e_{2i}(0) = \frac{\lambda^i}{i!} (2i)! \quad i = 1, 2, \dots$$

Consequently, we obtain

$$\lim_{n \to \infty} n^k L_n g_x(x) = 0,$$

uniformly for $x \in [-a, a]$, that is

$$\lim_{n \to \infty} n^k \left(L_n f(x) - \sum_{i=0}^{2k} \frac{L_n e_i(0)}{i!} f^{(i)}(x) \right) = 0.$$

Finally, using (16) the relation (8) is proved.

5. REMARKS

(a) Suppose that (1), (2) and (5) are satisfied and let $f \in C[-a-1, a+1]$ be 2k-times differentiable at $x \in [-a, a]$. By using the Lemma and [11, Corollary 2] we obtain

(22)
$$\lim_{n \to \infty} n^k \left(L_n f(x) - \sum_{i=0}^{k-1} \frac{L_n e_{2i}(0)}{(2i)!} f^{(2i)}(x) \right) = \frac{\lambda^k}{k!} f^{(2k)}(x).$$

(b) If $x_{n,i} = -1 + 2i/n$, i = 0, ..., n, then $\lambda = 1/6$; in this special case the formula (22) can be found in [2]. In particular, for k = 1 and k = 3, we have

(23)
$$\lim_{n \to \infty} n(L_n f(x) - f(x)) = \frac{1}{6} f''(x),$$

respectively

(24)
$$\lim_{n \to \infty} n \left(n \left(n \left(L_n f(x) - f(x) \right) - \frac{f''(x)}{6} \right) - \frac{f^{IV}(x)}{72} \right) = \frac{f^{VI}(x)}{1296} - \frac{f^{IV}(x)}{180}.$$

(c) In the case of Chebyshev's knots

$$x_{n,k} = \cos^2 \frac{2k+1}{2(n+1)} \pi, \quad k = 0, \dots, n,$$

we obtain

$$\frac{1}{n+1}\sum_{k=0}^{n}\cos^2\frac{2k+1}{2(n+1)}\pi = \frac{1}{2}, \quad \forall n \ge 1,$$

hence $\lambda = 1$.

Acknowledgement. The authors gratefully acknowledge Heinz H. Gonska for his critical remarks on an earlier version.

REFERENCES

- H. H. GONSKA and R. K. KOVACHEVA, The second order modulus revisited: remarks, applications, problems, Conf. Sem. Mat. Univ. Bari, 257, 1994.
- [2] M. IVAN and I. RAŞA, A sequence of positive linear operators, Rev. Anal. Numér. Théor. Approx., 24 (1995), 159–164.
- [3] E. NEUMAN, Problem E 2900, Amer. Math. Month., 88 (1981), 538.
- [4] E. NEUMAN and J. PEČARIĆ, Inequalities involving multivariate convex functions, J. Math. Anal. Appl., 137 (1989), 541–549.
- [5] J. PEČARIĆ, An inequality for 3-convex functions, J. Math. Anal. Appl., 90 (1982), 213–218.
- [6] T. POPOVICIU, Introduction à la théorie des différences divisées, Bull. Math. de la Soc. Roumaine des Sci., 42 (1940), 65–78.
- [7] T. POPOVICIU, Remarques sur le reste de certaines formules d'approximation d'une différence divisée par les dérivées, Buletinul Institutului Politehnic din Iași, Serie nouă, 13 (17) (1967), 103–109.
- [8] J. PEČARIĆ and I. RAŞA, Inequalities for divided differences of n-convex functions, Studia Univ. Babeş-Bolyai, Math., 33 (1990), 7–10.
- [9] J. PEČARIĆ and I. RAŞA, A linear operator preserving k-convex functions, Bul. Şt. IPCN, 33 (1990), 23-26.
- [10] I. RAŞA, Korovkin approximation and parabolic functions, Conf. Sem. Mat. Univ. Bari, 236 (1991).
- [11] P. C. SIKKEMA, On some linear positive operators, Indag. Math., 32 (1970), 327–337.
- [12] D. ZWICK, A divided difference inequality for n-convex functions, J. Math. Anal. Appl., 104 (1984), 435–436.

Received April 11, 2000.