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Abstract. We give an asymptotic estimation for some sequences of divided
differences. We use this estimation to obtain a Voronovskaya–type formula in-
volving linear positive operators.
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1. INTRODUCTION AND NOTATIONS

Consider the points x0 < x1 < . . . < xn on the real axis and let f : [x0, xn]→
R be an arbitrary function. Denote by [x0, . . . , xn; f ] the divided difference of
the function f on the knots x0, . . . , xn, usually defined by

[x0, . . . , xn; f ] :=
n∑
i=0

f(xi)
(xi−x0)...(xi−xi−1)(xi−xi+1)...(xi−xn) .

Consider the polynomial functions ei : R → R, ei(x) = xi, i = 0, 1, . . . . It
is known that [x0, . . . , xn; ei] = 0, i = 0, . . . , n − 1, [x0, . . . , xn; en] = 1. The
problem was to calculate Ak := [x0, . . . , xn; en+k], k = 1, 2, . . . . In [6] Tiberiu
Popoviciu uses the identity[

x0, . . . , xn; 1
x−·

]
= 1

(x−x0)...(x−xn) ,

to prove the following formula
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Ak =
∑

0≤i0,...,in≤k
i0+···+in=k

xi00 · · ·xinn .

This formula was rediscovered in 1981 by E. Neuman [3]. It does not look
much “friendlier” than the initial one,

Ak =
n∑
i=0

xn+k
i

(xi−x0)...(xi−xi−1)(xi−xi+1)...(xi−xn) .

Therefore, in [7], it is suggested that a recurrence formula might be more
useful. We shall use such a formula in order to give an asymptotic estimation
for Ak under some supplementary assumptions on the knots (see Theorem 1).

Consider now a triangular matrix of nodes (xn,k), n = 0, 1, . . . ; k = 0, . . . , n,

(1) −1 ≤ xn,0 < xn,1 < . . . < xn,n ≤ 1, n = 0, 1, . . .

satisfying the conditions:

(2) xn,n−i = −xn,i, i = 0, . . . , n, n = 0, 1, . . . .

Let a > 0. For n ≥ 1 consider the operator Ln : C[−a−1, a+1]→ C[−a, a],

Lnf(x) := n![x+ xn,0, . . . , x+ xn,n;Fn],

where f ∈ C[−a− 1, a+ 1], x ∈ [−a, a], Fn ∈ Cn[−a− 1, a+ 1], F
(n)
n = f.

The Ln are positive linear operators of probabilistic type and Bernstein–
Schnabl type operators.

For particular choices of the matrix (xn,k) various inequalities involving Lnf

have been studied in [4], [5], [8], [12]. If xn,i = −1 + 2i
n , i = 0, . . . , n, we have

also [10]

(3) Lnf(x) = 2−n
∫ x+1

x−1
· · ·
∫ x+1

x−1
f
(
t1+···+tn

n

)
dt1 . . . dtn.

Using the Ln operator notation, [7] gives

(4)

∣∣∣∣Lnf(0)−
k−1∑
i=0

Lne2i(0)
(2i)! f (2i)(0)

∣∣∣∣ ≤ Lne2k(0)

(2k)!
‖f (2k)‖[−1,1].

for all f ∈ C2k[−a − 1, a + 1], where ‖ · ‖[−1,1] denotes the uniform norm on
C[−1, 1]. As positive operators, Ln have been studied in [9], [10].
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They verify:

f convex =⇒ Lnf ≥ Ln+1f ≥ f,

‖Lnf − f‖ ≤ 2ω
(
f, 1√

3n

)
.

We have: Le0 = e0, Le1 = e1, L(e1 − x e0)2(x) = 1
(n+1)(n+2)

∑n
i=0 x

2
n,i.

For equidistant knots xn,i = −1 + 2i
n , i = 0, . . . , n, we obtain

L(e1 − x e0)2(x) = 1
3n ,

hence, using [1, Corollary 4.12], we can prove now that

‖Lnf − f‖ ≤ 2.25ω2

(
f, 1√

3n

)
.

Our aim is to give a more refined analysis of the convergence behaviour of
the operators Ln. This is accomplished in Theorem 2.

2. MAIN RESULTS

Theorem 1. If the triangular matrix (xn,k) satisfies the relations (1), (2)
and

(5) lim
n→∞

1
n

n∑
i=0

x2
n,i = 2λ ∈ R

then, for all k ∈ N, the following equality is fulfilled

(6) lim
n→∞

n−k[xn,0, . . . , xn,n; en+2k] = λk

k! .

The previous relation can be written in the form

(7) lim
n→∞

nkLne2k(0) = λk

k! (2k)!.

Theorem 2. If f ∈ C2k[−a− 1, a+ 1], then, for every matrix (xn,k) satis-
fying the conditions (1), (2) and (5), the following Voronovskaya–type relation
holds true:

(8) lim
n→∞

nk
(
Lnf(x)−

k−1∑
i=0

Lne2i(0)
(2i)! f (2i)(x)

)
= λk

k! f
(2k)(x),

uniformly for x ∈ [−a, a].
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3. PROOF OF THEOREM 1.

Consider the polynomial function (e1−xn,0) . . . (e1−xn,n), which we write as

en+1−Cn,1en−· · ·−Cn,ne1−Cn,n+1e0. Consider also the sums Sn,p :=
n∑
i=0

xpn,i,

p = 1, 2, . . . . Using (2) it is obvious that

(9) Sn,p = 0, for odd p.

Using (1) it can be easily shown that

(10) lim
n→∞

Sn,p
nk

= 0, p = 1, 2, . . . ; k > 1.

We write the relation (5) in the form

(11) lim
n→∞

Sn,2
n

= 2λ.

The coefficients

Cn,p = (−1)p+1 ∑
0≤i1<...<ip≤n

xn,i1 · · ·xn,ip ,

can be computed by using Newton’s formulas:

Cn,1 = Sn,1

Cn,p = 1
p

(
Sn,p −

p−1∑
i=1

Sn,iCn,p−i

)
, p = 2, . . . , n+ 1.

By considering (9) it follows that:

Cn,p = 0, for odd p,

and

(12)

Cn,2 = 1
2Sn,2

Cn,2k = 1
2k

(
Sn,2k −

k−1∑
i=1

Sn,2iCn,2(k−i)

)
, k = 1, . . . , b(n+ 1)/2c.

We define γk as

γk := lim
n→∞

Cn,2k
nk

, k = 1, 2, . . . .

We have

γ1 = lim
n→∞

Cn,2
n

= lim
n→∞

Sn,2
2n

= λ,

and, from (10) and (12), it follows that
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γk = −λ
kγk−1, k ≥ 2

hence

(13) γk =
(−1)k+1λk

k!
, k ≥ 1.

Using the divided difference functional, define the numbers:

An,j := [xn,0, . . . , xn,n; en+j ], j = −n,−n+ 1, . . . .

It is well known that

(14) An,j =

{
0, if j = −n, . . . ,−1,
1, if j = 0.

In order to calculate An,j for j ≥ 1, observe that

[xn,0, . . . , xn,n; ej−1(e1 − xn,0) . . . (e1 − xn,n)] = 0,

that is

[xn,0, . . . , xn,n; en+j − Cn,1en+j−1 − · · · − Cn,n+1ej−1] = 0.

As a consequence we have

An,j =
n+1∑
i=1

Cn,iAn,j−i, j = 1, 2, . . .

and using (14), we find that

(15) An,j =
j∑
i=1

Cn,iAn,j−i, j = 1, . . . , n+ 1.

Using

An,0 = 1
An,1 = Cn,1An,0 = 0

in (15), it can be deduced that

(16) An,p = 0, for odd p,

and hence

(17) An,2k =
k∑
i=1

Cn,2iAn,2(k−i), 1 ≤ k ≤ n+1
2 .

By defining
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Bk := lim
n→∞

An,2k
nk

, k ≥ 0,

we have B0 = 1, and using (17) we find

Bk =
k∑
i=1

γiBk−i, k ≥ 1

i.e.,

(18) Bk =
k∑
i=1

(−1)i+1λi

i! Bk−i, k ≥ 1.

Using (18) we can prove by mathematical induction that

(19) Bk =
λk

k!
, k ≥ 0

which completes the proof.

4. PROOF OF THEOREM 2

For arbitrary x ∈ [−a, a] consider the function gx : [−a− 1, a+ 1]→ R,

gx := f −
2k∑
i=0

(e1−xe0)i

i! f (i)(x).

Taylor’s formula implies the existence of a point ξ ∈ (−a− 1, a+ 1), |x− ξ| ≤
|x− t|, such that

gx(t) =
(t− x)2k

(2k)!
(f (2k)(ξ)− f (2k)(x)).

For any ε > 0 there exists a number δ > 0 such that

|gx(t)| ≤ (t− x)2k ε

for all t ∈ [−a− 1, a+ 1], |t− x| < δ.
Let C be a constant such that |gx(t)| ≤ C δ2k+2, for all x ∈ [−a, a], t ∈

[−a− 1, a+ 1]. Consequently, we obtain

|gx(t)| ≤ ε (t− x)2k + C (t− x)2k+2

for all x ∈ [−a, a], t ∈ [−a− 1, a+ 1], that is,
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|gx| ≤ ε (e1 − xe0)2k + C (e1 − xe0)2k+2,

and so,

|Lngx(x)| ≤ εLn(e1 − xe0)2k(x) + C Ln(e1 − xe0)2k+2(x).

Using the equality

Ln(f)(x) = Ln(f ◦ (e1 + xe0))(0),

we obtain

|Lngx(x)| ≤ εLne2k(0) + C Lne2k+2(0).

Taking into account the fact that

(20) Lnei(0) =
n!i!

(n+ i)!
An,i, i = 1, 2, . . .

it follows

(21) lim
n→∞

niLne2i(0) =
λi

i!
(2i)! i = 1, 2, . . . .

Consequently, we obtain

lim
n→∞

nkLngx(x) = 0,

uniformly for x ∈ [−a, a], that is

lim
n→∞

nk
(
Lnf(x)−

2k∑
i=0

Lnei(0)
i! f (i)(x)

)
= 0.

Finally, using (16) the relation (8) is proved.

5. REMARKS

(a) Suppose that (1), (2) and (5) are satisfied and let f ∈ C[−a− 1, a+ 1]
be 2k–times differentiable at x ∈ [−a, a]. By using the Lemma and [11,
Corollary 2] we obtain

(22) lim
n→∞

nk
(
Lnf(x)−

k−1∑
i=0

Lne2i(0)
(2i)! f (2i)(x)

)
=
λk

k!
f (2k)(x).

(b) If xn,i = −1 + 2i/n, i = 0, . . . , n, then λ = 1/6; in this special case the
formula (22) can be found in [2]. In particular, for k = 1 and k = 3,
we have

(23) lim
n→∞

n(Lnf(x)− f(x)) = 1
6f
′′(x),

respectively
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(24) lim
n→∞

n
(
n
(
n
(
Lnf(x)− f(x)

)
− f ′′(x)

6

)
− fIV (x)

72

)
= fV I(x)

1296 −
fIV (x)

180 .

(c) In the case of Chebyshev’s knots

xn,k = cos2 2k+1
2(n+1) π, k = 0, . . . , n,

we obtain

1
n+1

n∑
k=0

cos2 2k+1
2(n+1) π = 1

2 , ∀n ≥ 1,

hence λ = 1.
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