A VORONOVSKAYA-TYPE THEOREM

MIRCEA IVAN and IOAN RAŞA

Dedicated to the memory of Acad. Tiberiu Popoviciu

Abstract

We give an asymptotic estimation for some sequences of divided differences. We use this estimation to obtain a Voronovskaya-type formula involving linear positive operators.

MSC 2000. 41A36.
Keywords. Divided difference, linear operator, approximation, Voronovskayatype theorem.

1. INTRODUCTION AND NOTATIONS

Consider the points $x_{0}<x_{1}<\ldots<x_{n}$ on the real axis and let $f:\left[x_{0}, x_{n}\right] \rightarrow$ \mathbb{R} be an arbitrary function. Denote by $\left[x_{0}, \ldots, x_{n} ; f\right]$ the divided difference of the function f on the knots x_{0}, \ldots, x_{n}, usually defined by

$$
\left[x_{0}, \ldots, x_{n} ; f\right]:=\sum_{i=0}^{n} \frac{f\left(x_{i}\right)}{\left(x_{i}-x_{0}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)} .
$$

Consider the polynomial functions $e_{i}: \mathbb{R} \rightarrow \mathbb{R}, \quad e_{i}(x)=x^{i}, \quad i=0,1, \ldots$. It is known that $\left[x_{0}, \ldots, x_{n} ; e_{i}\right]=0, i=0, \ldots, n-1,\left[x_{0}, \ldots, x_{n} ; e_{n}\right]=1$. The problem was to calculate $A_{k}:=\left[x_{0}, \ldots, x_{n} ; e_{n+k}\right], k=1,2, \ldots$ In [6] Tiberiu Popoviciu uses the identity

$$
\left[x_{0}, \ldots, x_{n} ; \frac{1}{x-*}\right]=\frac{1}{\left(x-x_{0}\right) \ldots\left(x-x_{n}\right)}
$$

to prove the following formula

[^0]$$
A_{k}=\sum_{\substack{0 \leq i_{0}, \ldots, i_{n} \leq k \\ i_{0}+\cdots+i_{n}=k}} x_{0}^{i_{0}} \cdots x_{n}^{i_{n}} .
$$

This formula was rediscovered in 1981 by E. Neuman [3]. It does not look much "friendlier" than the initial one,

$$
A_{k}=\sum_{i=0}^{n} \frac{x_{i}^{n+k}}{\left(x_{i}-x_{0}\right) \ldots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \ldots\left(x_{i}-x_{n}\right)}
$$

Therefore, in [7, it is suggested that a recurrence formula might be more useful. We shall use such a formula in order to give an asymptotic estimation for A_{k} under some supplementary assumptions on the knots (see Theorem 1).

Consider now a triangular matrix of nodes $\left(x_{n, k}\right), n=0,1, \ldots ; k=0, \ldots, n$,

$$
\begin{equation*}
-1 \leq x_{n, 0}<x_{n, 1}<\ldots<x_{n, n} \leq 1, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

satisfying the conditions:

$$
\begin{equation*}
x_{n, n-i}=-x_{n, i}, \quad i=0, \ldots, n, n=0,1, \ldots \tag{2}
\end{equation*}
$$

Let $a>0$. For $n \geq 1$ consider the operator $L_{n}: C[-a-1, a+1] \rightarrow C[-a, a]$,

$$
L_{n} f(x):=n!\left[x+x_{n, 0}, \ldots, x+x_{n, n} ; F_{n}\right],
$$

where $f \in C[-a-1, a+1], x \in[-a, a], F_{n} \in C^{n}[-a-1, a+1], F_{n}^{(n)}=f$.
The L_{n} are positive linear operators of probabilistic type and BernsteinSchnabl type operators.

For particular choices of the matrix $\left(x_{n, k}\right)$ various inequalities involving $L_{n} f$ have been studied in [4], [5], [8], [12]. If $x_{n, i}=-1+\frac{2 i}{n}, i=0, \ldots, n$, we have also [10]

$$
\begin{equation*}
L_{n} f(x)=2^{-n} \int_{x-1}^{x+1} \cdots \int_{x-1}^{x+1} f\left(\frac{t_{1}+\cdots+t_{n}}{n}\right) d t_{1} \ldots d t_{n} \tag{3}
\end{equation*}
$$

Using the L_{n} operator notation, [7 gives

$$
\begin{equation*}
\left|L_{n} f(0)-\sum_{i=0}^{k-1} \frac{L_{n} e_{2 i}(0)}{(2 i)!} f^{(2 i)}(0)\right| \leq \frac{L_{n} e_{2 k}(0)}{(2 k)!}\left\|f^{(2 k)}\right\|_{[-1,1]} . \tag{4}
\end{equation*}
$$

for all $f \in C^{2 k}[-a-1, a+1]$, where $\|\cdot\|_{[-1,1]}$ denotes the uniform norm on $C[-1,1]$. As positive operators, L_{n} have been studied in [9, 10.

They verify:

$$
\begin{gathered}
f \text { convex } \Longrightarrow L_{n} f \geq L_{n+1} f \geq f, \\
\left\|L_{n} f-f\right\| \leq 2 \omega\left(f, \frac{1}{\sqrt{3 n}}\right) .
\end{gathered}
$$

We have: $L e_{0}=e_{0}, L e_{1}=e_{1}, L\left(e_{1}-x e_{0}\right)^{2}(x)=\frac{1}{(n+1)(n+2)} \sum_{i=0}^{n} x_{n, i}^{2}$.
For equidistant knots $x_{n, i}=-1+\frac{2 i}{n}, i=0, \ldots, n$, we obtain

$$
L\left(e_{1}-x e_{0}\right)^{2}(x)=\frac{1}{3 n},
$$

hence, using [1. Corollary 4.12], we can prove now that

$$
\left\|L_{n} f-f\right\| \leq 2.25 \omega_{2}\left(f, \frac{1}{\sqrt{3 n}}\right) .
$$

Our aim is to give a more refined analysis of the convergence behaviour of the operators L_{n}. This is accomplished in Theorem 2.

2. MAIN RESULTS

Theorem 1. If the triangular matrix $\left(x_{n, k}\right)$ satisfies the relations (1), (2) and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n} x_{n, i}^{2}=2 \lambda \in \mathbb{R} \tag{5}
\end{equation*}
$$

then, for all $k \in \mathbf{N}$, the following equality is fulfilled

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-k}\left[x_{n, 0}, \ldots, x_{n, n} ; e_{n+2 k}\right]=\frac{\lambda^{k}}{k!} . \tag{6}
\end{equation*}
$$

The previous relation can be written in the form

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k} L_{n} e_{2 k}(0)=\frac{\lambda^{k}}{k!}(2 k)!. \tag{7}
\end{equation*}
$$

Theorem 2. If $f \in C^{2 k}[-a-1, a+1]$, then, for every matrix $\left(x_{n, k}\right)$ satisfying the conditions (1), (2) and (5), the following Voronovskaya-type relation holds true:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left(L_{n} f(x)-\sum_{i=0}^{k-1} \frac{\frac{L_{n}}{} e_{2 i}(0)}{(2 i)!} f^{(2 i)}(x)\right)=\frac{\lambda^{k}}{k!} f^{(2 k)}(x), \tag{8}
\end{equation*}
$$

uniformly for $x \in[-a, a]$.

3. PROOF OF THEOREM 1.

Consider the polynomial function $\left(e_{1}-x_{n, 0}\right) \ldots\left(e_{1}-x_{n, n}\right)$, which we write as $e_{n+1}-C_{n, 1} e_{n}-\cdots-C_{n, n} e_{1}-C_{n, n+1} e_{0}$. Consider also the sums $S_{n, p}:=\sum_{i=0}^{n} x_{n, i}^{p}$, $p=1,2, \ldots$ Using (2) it is obvious that

$$
\begin{equation*}
S_{n, p}=0, \quad \text { for odd } p \tag{9}
\end{equation*}
$$

Using (1) it can be easily shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n, p}}{n^{k}}=0, \quad p=1,2, \ldots ; \quad k>1 \tag{10}
\end{equation*}
$$

We write the relation (5) in the form

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{S_{n, 2}}{n}=2 \lambda \tag{11}
\end{equation*}
$$

The coefficients

$$
C_{n, p}=(-1)^{p+1} \sum_{0 \leq i_{1}<\ldots<i_{p} \leq n} x_{n, i_{1}} \cdots x_{n, i_{p}}
$$

can be computed by using Newton's formulas:

$$
\begin{aligned}
C_{n, 1} & =S_{n, 1} \\
C_{n, p} & =\frac{1}{p}\left(S_{n, p}-\sum_{i=1}^{p-1} S_{n, i} C_{n, p-i}\right), \quad p=2, \ldots, n+1
\end{aligned}
$$

By considering (9) it follows that:

$$
C_{n, p}=0, \quad \text { for odd } p
$$

and

$$
\begin{align*}
C_{n, 2} & =\frac{1}{2} S_{n, 2} \\
C_{n, 2 k} & =\frac{1}{2 k}\left(S_{n, 2 k}-\sum_{i=1}^{k-1} S_{n, 2 i} C_{n, 2(k-i)}\right), \quad k=1, \ldots,\lfloor(n+1) / 2\rfloor \tag{12}
\end{align*}
$$

We define γ_{k} as

$$
\gamma_{k}:=\lim _{n \rightarrow \infty} \frac{C_{n, 2 k}}{n^{k}}, \quad k=1,2, \ldots
$$

We have

$$
\gamma_{1}=\lim _{n \rightarrow \infty} \frac{C_{n, 2}}{n}=\lim _{n \rightarrow \infty} \frac{S_{n, 2}}{2 n}=\lambda
$$

and, from (10) and (12), it follows that

$$
\gamma_{k}=-\frac{\lambda}{k} \gamma_{k-1}, \quad k \geq 2
$$

hence

$$
\begin{equation*}
\gamma_{k}=\frac{(-1)^{k+1} \lambda^{k}}{k!}, \quad k \geq 1 \tag{13}
\end{equation*}
$$

Using the divided difference functional, define the numbers:

$$
A_{n, j}:=\left[x_{n, 0}, \ldots, x_{n, n} ; e_{n+j}\right], \quad j=-n,-n+1, \ldots
$$

It is well known that

$$
A_{n, j}= \begin{cases}0, & \text { if } j=-n, \ldots,-1, \tag{14}\\ 1, & \text { if } j=0 .\end{cases}
$$

In order to calculate $A_{n, j}$ for $j \geq 1$, observe that

$$
\left[x_{n, 0}, \ldots, x_{n, n} ; e_{j-1}\left(e_{1}-x_{n, 0}\right) \ldots\left(e_{1}-x_{n, n}\right)\right]=0
$$

that is

$$
\left[x_{n, 0}, \ldots, x_{n, n} ; e_{n+j}-C_{n, 1} e_{n+j-1}-\cdots-C_{n, n+1} e_{j-1}\right]=0
$$

As a consequence we have

$$
A_{n, j}=\sum_{i=1}^{n+1} C_{n, i} A_{n, j-i}, \quad j=1,2, \ldots
$$

and using (14), we find that

$$
\begin{equation*}
A_{n, j}=\sum_{i=1}^{j} C_{n, i} A_{n, j-i}, \quad j=1, \ldots, n+1 \tag{15}
\end{equation*}
$$

Using

$$
\begin{aligned}
& A_{n, 0}=1 \\
& A_{n, 1}=C_{n, 1} A_{n, 0}=0
\end{aligned}
$$

in (15), it can be deduced that

$$
\begin{equation*}
A_{n, p}=0, \quad \text { for odd } p \tag{16}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A_{n, 2 k}=\sum_{i=1}^{k} C_{n, 2 i} A_{n, 2(k-i)}, \quad 1 \leq k \leq \frac{n+1}{2} \tag{17}
\end{equation*}
$$

By defining

$$
B_{k}:=\lim _{n \rightarrow \infty} \frac{A_{n, 2 k}}{n^{k}}, \quad k \geq 0
$$

we have $B_{0}=1$, and using (17) we find

$$
B_{k}=\sum_{i=1}^{k} \gamma_{i} B_{k-i}, \quad k \geq 1
$$

i.e.,

$$
\begin{equation*}
B_{k}=\sum_{i=1}^{k} \frac{(-1)^{i+1} \lambda^{i}}{i!} B_{k-i}, \quad k \geq 1 \tag{18}
\end{equation*}
$$

Using (18) we can prove by mathematical induction that

$$
\begin{equation*}
B_{k}=\frac{\lambda^{k}}{k!}, \quad k \geq 0 \tag{19}
\end{equation*}
$$

which completes the proof.

4. PROOF OF THEOREM 2

For arbitrary $x \in[-a, a]$ consider the function $g_{x}:[-a-1, a+1] \rightarrow \mathbb{R}$,

$$
g_{x}:=f-\sum_{i=0}^{2 k} \frac{\left(e_{1}-x e_{0}\right)^{i}}{i!} f^{(i)}(x)
$$

Taylor's formula implies the existence of a point $\xi \in(-a-1, a+1),|x-\xi| \leq$ $|x-t|$, such that

$$
g_{x}(t)=\frac{(t-x)^{2 k}}{(2 k)!}\left(f^{(2 k)}(\xi)-f^{(2 k)}(x)\right)
$$

For any $\varepsilon>0$ there exists a number $\delta>0$ such that

$$
\left|g_{x}(t)\right| \leq(t-x)^{2 k} \varepsilon
$$

for all $t \in[-a-1, a+1],|t-x|<\delta$.
Let C be a constant such that $\left|g_{x}(t)\right| \leq C \delta^{2 k+2}$, for all $x \in[-a, a], t \in$ $[-a-1, a+1]$. Consequently, we obtain

$$
\left|g_{x}(t)\right| \leq \varepsilon(t-x)^{2 k}+C(t-x)^{2 k+2}
$$

for all $x \in[-a, a], t \in[-a-1, a+1]$, that is,

$$
\left|g_{x}\right| \leq \varepsilon\left(e_{1}-x e_{0}\right)^{2 k}+C\left(e_{1}-x e_{0}\right)^{2 k+2},
$$

and so,

$$
\left|L_{n} g_{x}(x)\right| \leq \varepsilon L_{n}\left(e_{1}-x e_{0}\right)^{2 k}(x)+C L_{n}\left(e_{1}-x e_{0}\right)^{2 k+2}(x) .
$$

Using the equality

$$
L_{n}(f)(x)=L_{n}\left(f \circ\left(e_{1}+x e_{0}\right)\right)(0),
$$

we obtain

$$
\left|L_{n} g_{x}(x)\right| \leq \varepsilon L_{n} e_{2 k}(0)+C L_{n} e_{2 k+2}(0) .
$$

Taking into account the fact that

$$
\begin{equation*}
L_{n} e_{i}(0)=\frac{n!i!}{(n+i)!} A_{n, i}, \quad i=1,2, \ldots \tag{20}
\end{equation*}
$$

it follows

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{i} L_{n} e_{2 i}(0)=\frac{\lambda^{i}}{i!}(2 i)!\quad i=1,2, \ldots \tag{21}
\end{equation*}
$$

Consequently, we obtain

$$
\lim _{n \rightarrow \infty} n^{k} L_{n} g_{x}(x)=0
$$

uniformly for $x \in[-a, a]$, that is

$$
\lim _{n \rightarrow \infty} n^{k}\left(L_{n} f(x)-\sum_{i=0}^{2 k} \frac{L_{n} e_{i}(0)}{i!} f^{(i)}(x)\right)=0 .
$$

Finally, using (16) the relation (8) is proved.

5. REMARKS

(a) Suppose that (1), (2) and (5) are satisfied and let $f \in C[-a-1, a+1]$ be $2 k$-times differentiable at $x \in[-a, a]$. By using the Lemma and [11, Corollary 2] we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left(L_{n} f(x)-\sum_{i=0}^{k-1} \frac{L_{n} e_{2 i}(0)}{(2 i)!} f^{(2 i)}(x)\right)=\frac{\lambda^{k}}{k!} f^{(2 k)}(x) . \tag{22}
\end{equation*}
$$

(b) If $x_{n, i}=-1+2 i / n, i=0, \ldots, n$, then $\lambda=1 / 6$; in this special case the formula (22) can be found in [2]. In particular, for $k=1$ and $k=3$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(L_{n} f(x)-f(x)\right)=\frac{1}{6} f^{\prime \prime}(x), \tag{23}
\end{equation*}
$$

respectively

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left(n\left(n\left(L_{n} f(x)-f(x)\right)-\frac{f^{\prime \prime}(x)}{6}\right)-\frac{f^{I V}(x)}{72}\right)=\frac{f^{V I}(x)}{1296}-\frac{f^{I V}(x)}{180} . \tag{24}
\end{equation*}
$$

(c) In the case of Chebyshev's knots

$$
x_{n, k}=\cos ^{2} \frac{2 k+1}{2(n+1)} \pi, \quad k=0, \ldots, n,
$$

we obtain

$$
\frac{1}{n+1} \sum_{k=0}^{n} \cos ^{2} \frac{2 k+1}{2(n+1)} \pi=\frac{1}{2}, \quad \forall n \geq 1,
$$

hence $\lambda=1$.
Acknowledgement. The authors gratefully acknowledge Heinz H. Gonska for his critical remarks on an earlier version.

REFERENCES

[1] H. H. Gonska and R. K. Kovacheva, The second order modulus revisited: remarks, applications, problems, Conf. Sem. Mat. Univ. Bari, 257, 1994.
[2] M. Ivan and I. RAŞA, A sequence of positive linear operators, Rev. Anal. Numér. Théor. Approx., 24 (1995), 159-164. 지
[3] E. Neuman, Problem E 2900, Amer. Math. Month., 88 (1981), 538.
[4] E. Neuman and J. Pečarić, Inequalities involving multivariate convex functions, J. Math. Anal. Appl., 137 (1989), 541-549.
[5] J. Pečarić, An inequality for 3-convex functions, J. Math. Anal. Appl., 90 (1982), 213-218.
[6] T. Popoviciu, Introduction à la théorie des différences divisées, Bull. Math. de la Soc. Roumaine des Sci., 42 (1940), 65-78.
[7] T. Popoviciu, Remarques sur le reste de certaines formules d'approximation d'une différence divisée par les dérivées, Buletinul Institutului Politehnic din Iaşi, Serie nouă, 13 (17) (1967), 103-109.
[8] J. Pečarić and I. Raşa, Inequalities for divided differences of n-convex functions, Studia Univ. Babeş-Bolyai, Math., 33 (1990), 7-10.
[9] J. PečARIĆ and I. RaŞA, A linear operator preserving k-convex functions, Bul. Şt. IPCN, 33 (1990), 23-26.
[10] I. RAŞA, Korovkin approximation and parabolic functions, Conf. Sem. Mat. Univ. Bari, 236 (1991).
[11] P. C. Sikkema, On some linear positive operators, Indag. Math., 32 (1970), 327-337.
[12] D. Zwick, A divided difference inequality for n-convex functions, J. Math. Anal. Appl., 104 (1984), 435-436.

Received April 11, 2000.

[^0]: Technical University of Cluj-Napoca, Dept. of Mathematics, Str. C. Daicoviciu 15, RO-3400, Cluj-Napoca, ROMANIA, e-mail: mircea.ivan@math.utcluj.ro, ioan.rasa@math.utcluj.ro.

