REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 1, pp. 61-67 ictp.acad.ro/jnaat

EXTENSIONS OF SEMI-LIPSCHITZ FUNCTIONS ON QUASI-METRIC SPACES

COSTICĂ MUSTĂŢA

Dedicated to the memory of Acad. Tiberiu Popoviciu

Abstract. The aim of this note is to prove an extension theorem for semi-Lipschitz real functions defined on quasi-metric spaces, similar to McShane extension theorem for real-valued Lipschitz functions defined on a metric space ([2], [4]).

MSC 2000. 46A22, 26A16, 26A48.

1. INTRODUCTION

Let X be a nonvoid set. A quasi-metric on X is a function $d: X \times X \rightarrow [0, \infty)$ satisfying the conditions

(i)
$$d(x,y) = d(y,x) = 0 \iff x = y; \quad x,y \in X,$$

(ii) $d(x,y) \le d(x,z) + d(z,y), \quad x,y,z \in X.$

If d is a quasi-metric on X, then the pair (X, d) is called a *quasi-metric* space.

The conjugate of quasi-metric d, denoted by d^{-1} is defined by $d^{-1}(x,y) = d(y,x)$, $x, y \in X$.

Obviously the function $d^s: X \times X \to [0, \infty)$ defined by

$$d^{s}(x,y) = \max \left\{ d(x,y), d^{-1}(x,y) \right\}; \quad x, y \in X$$

is a metric on X.

[&]quot;T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: cmustata@ictp-acad.math.ubbcluj.ro.

If the quasi-metric d can take the value $+\infty$, then it is called an *extended* quasi-metric.

Let (X, d) be a quasi-metric space. A function $f : X \to \mathbb{R}$ is called *semi-Lipschitz* if there exists a constant $K \ge 0$ so that

(1)
$$f(x) - f(y) \le K \cdot d(x, y),$$

for all $x, y \in X$. The number $K \ge 0$ in (1) is called a semi-Lipschitz constant for f.

For a quasi-metric space (X,d) the real-valued function $f:X\to\mathbb{R}$ is said to be $\leq_d\text{-}increasing \ if$

(2)
$$d(x,y) = 0 \quad \text{implies} \quad f(x) - f(y) \le 0, \quad x, y \in X$$

or equivalently,

(3)
$$f(x) - f(y) > 0 \quad \text{implies} \quad d(x, y) > 0, \quad x, y \in X.$$

Note that every semi-Lipschitz function on quasi-metric space (X, d) is \leq_{d} -increasing (see (1)).

For a semi-Lipschitz function $f : X \to \mathbb{R}$, where (X, d) is a quasi-metric space, denote by $||f||_d$ the constant:

(4)
$$||f||_d = \sup\left\{\frac{(f(x) - f(y)) \lor 0}{d(x, y)} : d(x, y) > 0, \quad x, y \in X\right\}.$$

THEOREM 1. Let (X, d) a quasi-metric space and $f : X \to \mathbb{R}$ a semi-Lipschitz function. Then $||f||_d$ defined by (4) is the smallest semi-Lipschitz constant for f.

Proof. If $f : X \to \mathbb{R}$ is semi-Lipschitz, then f is \leq_d -increasing, and then f(x) - f(y) > 0 implies d(x, y) > 0. It follows that

$$\frac{(f(x) - f(y)) \vee 0}{d(x, y)} = \frac{f(x) - f(y)}{d(x, y)} > 0.$$

The inequalities $f(x) - f(y) \le 0$ and d(x, y) > 0 imply

$$\frac{\left(f\left(x\right)-f\left(y\right)\right)\vee0}{d\left(x,y\right)}=0.$$

Consequently $||f||_d \ge 0.$

For f(x) - f(y) < 0 it follows $(f(x) - f(y))/d(x, y) \le ||f||_d$ and obviously for $f(x) - f(y) \le 0$ we have $f(x) - f(y) \le 0 \le ||f||_d \cdot d(x, y)$. Consequently

$$f(x) - f(y) \le \|f\|_d \cdot d(x, y)$$

for all $x, y \in X$.

Now let $K \ge 0$ such that

$$f(x) - f(y) \le K \cdot d(x, y)$$
, for all $x, y \in X$.

The function f is \leq_d -increasing, and then

$$\frac{(f(x) - f(y)) \lor 0}{d(x, y)} = \begin{cases} \frac{f(x) - f(y)}{d(x, y)} \le K, & \text{if } f(x) - f(y) > 0, \\ 0 \le K, & \text{if } f(x) - f(y) \le 0, \end{cases}$$

Consequently $||f||_d \leq K$.

For a quasi-metric (X, d) let us consider the set: (5)

$$S Lip X = \left\{ f : X \to \mathbb{R} \mid f \text{ is } \leq_d \text{-increasing, } \sup_{d(x,y) \neq 0} \frac{(f(x) - f(y)) \lor 0}{d(x,y)} < \infty \right\}.$$

It is straightforward to see that $S \operatorname{Lip} X$ is exactly the set of all semi-Lipschitz functions on (X, d) (see [6]).

2. EXTENSIONS OF SEMI-LIPSCHITZ FUNCTIONS

Let $Y \subset X$ where (X, d) is a quasi-metric space. Then (Y, d) is a quasimetric space with the quasi-metric induced by d (denoted by d too). Let us denote by $S \operatorname{Lip} Y$ the set of all semi-Lipschitz functions defined on Y and let

(6)
$$||f||_{d} = \sup\left\{\frac{(f(x) - f(y)) \lor 0}{d(x, y)} : x, y \in Y, \ d(x, y) \neq 0\right\}$$

be the smallest semi-Lipschitz constant for $f \in S \operatorname{Lip} Y$.

If $f \in S \operatorname{Lip} Y$, a function $F \in S \operatorname{Lip} X$ is called an *extension* (preserving the smallest semi-Lipschitz constant) of f if:

(7)
$$F|_{Y} = f \text{ and } \|F\|_{d} = \|f\|_{d}$$

Denote by $E_Y(f)$ the set of all extensions of the function $f \in S \operatorname{Lip} Y$, i.e.

(8)
$$E_Y(f) = \{F \in S \operatorname{Lip} X : F|_Y = f \text{ and } \|F\|_d = \|f\|_d \}$$

THEOREM 2. Let (X, d) be a quasi-metric space and Y a nonvoid subset of X. Then for every $f \in S \operatorname{Lip} Y$ the set $E_Y(f)$ is nonvoid.

3

$$\Box$$

Proof. Let $f \in S \operatorname{Lip} Y$ and the constant $||f||_d$ defined by (6). Consider the function

(9)
$$F(x) = \inf_{y \in Y} \left\{ f(y) + \|f\|_d d(x, y) \right\}, \ x \in X.$$

a) First we show that F is well defined.

Let $z \in Y$ and $x \in X$. For any $y \in Y$ we have

$$f(y) + \|f\|_{d} d(x, y) = f(z) + \|f\|_{d} d(x, y) - (f(z) - f(y))$$

$$\geq f(z) + \|f\|_{d} d(x, y) - \|f\|_{d} d(z, y)$$

$$= f(z) - \|f\|_{d} (d(z, y) - d(x, y)).$$

The inequality $d(z, y) - d(x, y) \le d(z, x) = d^{-1}(x, z)$ implies

(10)
$$f(y) + \|f\|_d d(x,y) \ge f(z) - \|f\|_d \cdot d^{-1}(x,z)$$

showing that for every $x \in X$ the set $\{f(y) + \|f\|_d d(x, y) : y \in Y\}$ is bounded from above by $f(z) - \|f\|_d d^{-1}(x, z)$, and the infimum (9) is finite. b) We show now that F(y) = f(y) for all $y \in Y$.

Let $y \in Y$. Then

$$F(y) \le f(y) + ||f||_d d(y,y) = f(y).$$

For any $v \in Y$ we have

$$f(y) - f(v) \le \|f\|_d \cdot d(y, v)$$

so that

$$f(v) + ||f||_d \cdot d(y, v) \ge f(y)$$

and

$$F(y) = \inf \{ f(v) + \|f\|_d d(y, v) : v \in Y \} \ge f(y).$$

It follows F(y) = f(y).

c) We prove that $||F||_d = ||f||_d$. Since $F|_Y = f$, the definitions of $||F||_d$ and $||f||_d$ yield $||F||_d \ge ||f||_d$. Let $x_1, x_2 \in X$ and $\varepsilon > 0$. Choosing $y \in Y$ such that

$$F(x_1) \ge f(y) + \left\| f \right\|_d d(x_1, y) - \varepsilon$$

we obtain

$$F(x_{2}) - F(x_{1}) \leq f(y) + \|f\|_{d} d(x_{2}, y) - (f(y) + \|f\|_{d} \cdot d(x_{1}, y) - \varepsilon)$$

= $\|f\|_{d} [d(x_{2}, y) - d(x_{1}, y)] + \varepsilon$
 $\leq \|f\|_{d} \cdot d(x_{2}, x_{1}) + \varepsilon.$

Since $\varepsilon > 0$ is arbitrary, it follows

$$F(x_2) - F(x_1) \le ||f||_d \cdot d(x_2, x_1)$$

for any $x_1, x_2 \in X$ and $||F||_d \le ||f||_d$. d) The function F is \le_d -increasing.

Indeed, let be $u, v \in X$ and d(u, v) = 0. We have $d(u, y) \le d(u, v) + d(v, y)$. Consequently

$$d(u, y) \le d(v, y).$$

Then

$$f(y) + \|f\|_{d} d(u, y) \le f(y) + \|f\|_{d} d(v, y)$$

It follows that

$$F\left(u\right) \leq F\left(v\right),$$

and consequently d(u, v) = 0 implies $F(u) \le F(v)$. It follows that $F \in E_Y^d(f)$ so that $E_Y^d(t) \neq \emptyset$.

REMARKS 1. 1^0 Similarly, the function

(11)
$$G(x) = \sup_{y \in Y} \left\{ f(y) - \|f\|_d \, d^{-1}(x, y) \right\}$$

is \leq_{d} -increasing, and G belongs to $E_{Y}^{d}(f)$ too. 2⁰ The inequality

(12)
$$G\left(x\right) \le F\left(x\right),$$

holds for every $x \in X$.

Indeed, taking the infimum with respect to $z \in Y$ and then the supremum with respect to $y \in Y$ in (10) we find

$$G(x) = \sup_{y \in Y} \left\{ f(y) - \|f\|_d \, d^{-1}(x, y) \right\} \le \inf_{z \in Y} \left\{ f(z) + \|f\|_d \, d(x, z) \right\} = F(x) \,.$$

In fact, the following theorem holds:

THEOREM 3. Let (X, d) be a quasi-metric space, Y a nonvoid subset of X and $f \in S Lip Y$.

Then for any $H \in E_Y^d(f)$ we have

(13)
$$G(x) \le H(x) \le F(x), \quad x \in X.$$

5

Proof. Let $H \in E_{Y}^{d}\left(f\right)$. For arbitrary $x \in X$ and $y \in Y$ we have

$$H(x) - H(y) \le \|f\|_d d(x, y)$$

implying

$$H(x) \le H(y) + \|f\|_{d} d(x, y) = f(y) + \|f\|_{d} (x, y).$$

Taking the imfimum with respect to $y \in Y$ we get

$$H(x) \le \inf_{y \in Y} \left\{ f(y) + \|f\|_d \, d(x,y) \right\} = F(x).$$

The inequality $H(x) \ge G(x)$, $x \in X$ can be proved similarly.

COROLLARY 4. A function $f \in S \operatorname{Lip} Y$ has a unique extension in $S \operatorname{Lip} X$ if and only if the following relation

(14)
$$\inf_{y \in Y} \left\{ f(y) + \|f\|_d d(x, y) \right\} = \sup_{y \in Y} \left\{ f(y) - \|f\| d(y, x) \right\},$$

holds for every $x \in X$.

Example.

Let \mathbb{R} be the real axis and $d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$ the quasi-metric defined by

$$d(x,y) = \begin{cases} x-y, & \text{if } x \ge y\\ 1, & \text{if } x < y. \end{cases}$$

Let Y be given by $Y = [0,1] \subset \mathbb{R}$ and $f: Y \to \mathbb{R}$, f(y) = 2y. Then f is semi-Lipschitz on Y and $||f||_d = 2$. The extension F defined by (9) is

$$F(x) = \begin{cases} 2, & \text{if } x < 0\\ 2x, & \text{if } x \ge 0 \end{cases}$$

and the extension G defined by (11) is

$$G\left(x\right) = \left\{ \begin{array}{cc} 2x, & x \leq 1 \\ 0, & x > 1 \end{array} \right.$$

Obviously, $G(x) \leq F(x), x \in \mathbb{R}$.

REFERENCES

 S. COBZAS and C. MUSTĂŢA, Norm preserving extension of convex Lipschitz functions, J. Approx. Theory, 29 (1978), 555–569.

6

- J. CZIPSER and L. GEHÉR, Extension of functions satisfying a Lipschitz condition, Acta Math. Sci. Hungar., 6 (1955), 213–220.
- [3] P. FLETCHER and W. F. LINDGREN, Quasi-Uniform Spaces, Dekker, New York, 1982.
- [4] J. A. MCSHANE, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1939), 837–842.
- [5] C. MUSTĂŢA, Best approximation and unique extension of Lipschitz functions, J. Approx. Theory, 19 (1977), 222–230.
- [6] S. ROMAGUERA and M. SANCHIS, Semi-Lipschitz functions and best approximation in quasi-metric spaces, J. Approx. Theory, 103 (2000), 292–301.
- [7] J. H. WELLS and L. R. WILLIAMS, Embeddings and Extensions in Analysis, Springer-Verlag, Berlin, 1975.

Received: August 8, 2000.