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Abstract. The aim of this note is to prove an extension theorem for semi-
Lipschitz real functions defined on quasi-metric spaces, similar to McShane ex-
tension theorem for real-valued Lipschitz functions defined on a metric space

(2], (4]).
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1. INTRODUCTION
Let X be a nonvoid set. A quasi-metric on X is a function d : X x X —
[0, 00) satisfying the conditions
(y,2) =0<—=z=y; =z,y€X,
($7Z)+d(2’y)a x’yszX'

(i) d(z,y) =
(ii) d(z,y) <

If d is a quasi-metric on X, then the pair (X,d) is called a quasi-metric
space.

The conjugate of quasi-metric d, denoted by d~! is defined by d~! (z,y) =
d(y,x), z,y € X.

Obviously the function d* : X x X — [0, 00) defined by

d* (z,y) = max {d (z,y),d " (v,9)}; z,yeX

is a metric on X.
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If the quasi-metric d can take the value 400, then it is called an ezxtended
quasi-metric.

Let (X,d) be a quasi-metric space. A function f : X — R is called semi-
Lipschitz if there exists a constant K > 0 so that

(1) f@)=fly) <K-d(z,y),

for all z,y € X. The number K > 0 in (1) is called a semi-Lipschitz constant
for f.

For a quasi-metric space (X,d) the real-valued function f : X — R is said
to be <g4-increasing if

(2) d(z,y) =0 implies f(z)—f(y)<0, zyeX
or equivalently,
(3) f(x)—f(y) >0 implies d(z,y)>0, z,y€X.

Note that every semi-Lipschitz function on quasi-metric space (X, d) is <4-
increasing (see (1)).

For a semi-Lipschitz function f : X — R, where (X,d) is a quasi-metric
space, denote by || f||; the constant:

{(f(x)—f(y))\/()
d(z,y)

THEOREM 1. Let (X,d) a quasi-metric space and f : X — R a semi-
Lipschitz function. Then | fl|; defined by (4) is the smallest semi-Lipschitz
constant for f.

@) [Ifll,=sup Ld(zy) >0, x,yEX}.

Proof. If f : X — R is semi-Lipschitz, then f is <g-increasing, and then
f(x) — f(y) >0 implies d (x,y) > 0. It follows that

(f@) - fW)VO _ f@)—f)
d(x,y) d(z,y)

The inequalities f (z) — f (y) < 0 and d (z,y) > 0 imply

(f (@) - f)VOo _
d(x,y)

> 0.

0.

Consequently || f[|; > 0.
For f(z) — f (y) <0 it follows (f(x) — f(y))/d(x,y) < ||f|; and obviously

for f(x) = f (y) <0 we have f(z) = f(y) <0< ||fllq-d(z,y).
Consequently
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f@) = f@<flly-d(z,y)

for all z,y € X.
Now let K > 0 such that

fl@)—fly) <K-d(xz,y), forall z,y e X.

The function f is <g-increasing, and then

(f (@)~ f ) VO _{ L=l g)( D<K, i f (@)= f(y) >0,
0<

Consequently | f]|; < K. O
For a quasi-metric (X, d) let us consider the set:
(5)
SLipX = {f : X = R| fis <4-increasing, sup W < oo}.
d(z,y)#0 ’

It is straightforward to see that S Lip X is exactly the set of all semi-
Lipschitz functions on (X, d) (see [6]).

2. EXTENSIONS OF SEMI-LIPSCHITZ FUNCTIONS

Let Y C X where (X,d) is a quasi-metric space. Then (Y,d) is a quasi-
metric space with the quasi-metric induced by d (denoted by d too). Let us
denote by S LipY the set of all semi-Lipschitz functions defined on Y and let

{(f(x)—f( yIVO.
d(z,y)
be the smallest semi-Lipschitz constant for f € S LipY.

If f e SLipY, a function F € S Lip X is called an extension (preserving
the smallest semi-Lipschitz constant) of f if:

(6) 1 Flla = sup ry e, d(zy) %o}

(7) Fly =f and |[Fllg=fla-
Denote by Ey (f) the set of all extensions of the function f € S LipV, i.e.
(8) By (f)={FeSLipX : Fly = fand |[Fll;=|fll,}

THEOREM 2. Let (X, d) be a quasi-metric space and'Y a nonvoid subset of
X. Then for every f € S LipY the set Ey (f) is nonvoid.
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Proof. Let f € S LipY and the constant | f||; defined by (6).
Consider the function

(9) Fo)=mf {f @) +fllad(zy)}, =X

a) First we show that F is well defined.
Let z € Yand z € X.For any y € Y we have

F@) +fllgd(@y) =)+ fllad@y) = (f(z) = f ()
= [+ 1 fllad(@y) =1 fllad(zy)
= f(2) = Iflla(d(z,y) —d(z,y)).
The inequality d (z,y) — d (x,y) < d(z,7) = d~! (x,2) implies

(10) F@) + 1 llad@y) > f(2) =1 fllg-d" (x,2)

showing that for every x € X the set {f (y) + || f|l;d (z,y) : y € Y} is bounded
from above by f (2) — || fll;d7! (z,2), and the infimum (9) is finite.

b) We show now that F (y) = f (y) for all y € Y.

Let y € Y. Then

Fy) < f)+1fllady,y)=f(y).

For any v € Y we have

fly)=f@) <|fllg-dy,v)
so that
F@)+1flla-dy,v) = f(y)
and
F(y) =mf{f () +fllgd(y,v) :veY}=>f(y).
It follows F (y) = f (y) .
c) We prove that |[F| ;= |Ifll;-

Since F'|y = f, the definitions of ||F||; and || f||; yield | F|l; > [|fll,-
Let 1,292 € X and € > 0. Choosing y € Y such that

Fz) = f) + 1fllgd(z1,y) — €

we obtain

F(x2) = F (1) < f(y) + [1fllgd (@2, 9) = (F ) + 1 fllg - d(21,9) =€)
= fllqld(z2,y) — d(z1,9)] + ¢
< fllg - d (w2, 1) + e
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Since € > 0 is arbitrary, it follows

F(x2) = F (1) < |[|fllg - d (22, 21)

for any 1,29 € X and ||F||; < || fll,-

d) The function F is <g-increasing.

Indeed, let be u,v € X and d (u,v) = 0. We have d (u,y) < d (u,v)+d (v,y).
Consequently

d(u,y) <d(v,y).
Then

F@) + I llgduy) < f)+I1fllqgdv,y).
It follows that
F(u) < F(v),

and consequently d (u,v) = 0 implies F (u) < F (v).
It follows that F € B (f) so that EL (t) # 0.

REMARKS 1. 1° Similarly, the function

(11) G () =sup {f (y) = | fllad™" (z.9)}
yey
is <g-increasing, and G belongs to E< (f) too.
20 The inequality
(12) G(x) < F(x),
holds for every = € X.

Indeed, taking the infimum with respect to z € Y and then the supremum
with respect to y € Y in (10) we find

G (x) =sup {f (1) = [Iflqd™" (x,9)} < inf {f (2) + [ fllad (@, 2)} = F (x).
yey ze

In fact, the following theorem holds:

THEOREM 3. Let (X,d) be a quasi-metric space, Y a nonvoid subset of X
and f € SLipY.
Then for any H € E{‘lf (f) we have

(13) G(r)<H(z)<F(z), z€X.
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Proof. Let H € E)d/ (f). For arbitrary € X and y € Y we have
H(z) = H(y) < [Ifllad(z,y)
implying
H(x) < H (y) + 1 fllad (@) = f @) + 14 (,9)
Taking the imfimum with respect to y € Y we get

H () < yig{f(y) + I fllgd(z,y) } = F(x).

The inequality H (z) > G (z), z € X can be proved similarly. O

COROLLARY 4. A function f € S LipY has a unique extension in S Lip X
if and only if the following relation

(14) nf {f @)+ llad (z. )} = sup {f () = Ifl1d(y, 2)},

holds for every x € X.

Ezample.
Let R be the real axis and d : R x R — [0, 00) the quasi-metric defined by

_Jz—y, it x>y
d(x,y)—{ 1, if z<uy.

Let Y be given by Y = [0,1] C Rand f:Y — R, f(y) = 2y. Then f is
semi-Lipschitz on Y and || f||; = 2. The extension F' defined by (9) is

2, if x<0
F(x)_{Q:U, if 2>0

and the extension G defined by (11) is

22, <1
G(w) = { 0, z=z>1
Obviously, G (z) < F (z), z € R.
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