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Abstract. The aim of this note is to prove an extension theorem for semi-
Lipschitz real functions defined on quasi-metric spaces, similar to McShane ex-
tension theorem for real-valued Lipschitz functions defined on a metric space
([2], [4]).
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1. INTRODUCTION

Let X be a nonvoid set. A quasi-metric on X is a function d : X × X →
[0,∞) satisfying the conditions

d (x, y) = d (y, x) = 0⇐⇒ x = y; x, y ∈ X,(i)

d (x, y) ≤ d (x, z) + d (z, y) , x, y, z ∈ X.(ii)

If d is a quasi-metric on X, then the pair (X, d) is called a quasi-metric
space.

The conjugate of quasi-metric d, denoted by d−1 is defined by d−1 (x, y) =
d (y, x) , x, y ∈ X.

Obviously the function ds : X ×X → [0,∞) defined by

ds (x, y) = max
{
d (x, y) , d−1 (x, y)

}
; x, y ∈ X

is a metric on X.
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If the quasi-metric d can take the value +∞, then it is called an extended
quasi-metric.

Let (X, d) be a quasi-metric space. A function f : X → R is called semi-
Lipschitz if there exists a constant K ≥ 0 so that

(1) f (x)− f (y) ≤ K · d (x, y) ,

for all x, y ∈ X. The number K ≥ 0 in (1) is called a semi-Lipschitz constant
for f.

For a quasi-metric space (X, d) the real-valued function f : X → R is said
to be ≤d-increasing if

(2) d (x, y) = 0 implies f (x)− f (y) ≤ 0, x, y ∈ X

or equivalently,

(3) f (x)− f (y) > 0 implies d (x, y) > 0, x, y ∈ X.

Note that every semi-Lipschitz function on quasi-metric space (X, d) is ≤d-
increasing (see (1)).

For a semi-Lipschitz function f : X → R, where (X, d) is a quasi-metric
space, denote by ‖f‖d the constant:

(4) ‖f‖d = sup

{
(f (x)− f (y)) ∨ 0

d (x, y)
: d (x, y) > 0, x, y ∈ X

}
.

Theorem 1. Let (X, d) a quasi-metric space and f : X → R a semi-
Lipschitz function. Then ‖f‖d defined by (4) is the smallest semi-Lipschitz
constant for f.

Proof. If f : X → R is semi-Lipschitz, then f is ≤d-increasing, and then
f (x)− f (y) > 0 implies d (x, y) > 0. It follows that

(f (x)− f (y)) ∨ 0

d (x, y)
=

f (x)− f (y)

d (x, y)
> 0.

The inequalities f (x)− f (y) ≤ 0 and d (x, y) > 0 imply

(f (x)− f (y)) ∨ 0

d (x, y)
= 0.

Consequently ‖f‖d ≥ 0.
For f (x)− f (y) < 0 it follows (f(x)− f(y))/d(x, y) ≤ ‖f‖d and obviously

for f (x)− f (y) ≤ 0 we have f (x)− f (y) ≤ 0 ≤ ‖f‖d · d (x, y) .
Consequently
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f (x)− f (y) ≤ ‖f‖d · d (x, y)

for all x, y ∈ X.
Now let K ≥ 0 such that

f (x)− f (y) ≤ K · d (x, y) , for all x, y ∈ X.

The function f is ≤d-increasing, and then

(f (x)− f (y)) ∨ 0

d (x, y)
=

{
f(x)−f(y)

d(x,y) ≤ K, if f (x)− f (y) > 0,

0 ≤ K, if f (x)− f (y) ≤ 0,

Consequently ‖f‖d ≤ K. �

For a quasi-metric (X, d) let us consider the set:
(5)

S LipX =

{
f : X → R | f is ≤d -increasing, sup

d(x,y) 6=0

(f(x)−f(y))∨0
d(x,y) <∞

}
.

It is straightforward to see that S LipX is exactly the set of all semi-
Lipschitz functions on (X, d) (see [6]).

2. EXTENSIONS OF SEMI-LIPSCHITZ FUNCTIONS

Let Y ⊂ X where (X, d) is a quasi-metric space. Then (Y, d) is a quasi-
metric space with the quasi-metric induced by d (denoted by d too). Let us
denote by S Lip Y the set of all semi-Lipschitz functions defined on Y and let

(6) ‖f‖d = sup

{
(f (x)− f (y)) ∨ 0

d (x, y)
: x, y ∈ Y, d (x, y) 6= 0

}
be the smallest semi-Lipschitz constant for f ∈ S Lip Y.

If f ∈ S Lip Y, a function F ∈ S LipX is called an extension (preserving
the smallest semi-Lipschitz constant) of f if:

(7) F |Y = f and ‖F‖d = ‖f‖d .

Denote by EY (f) the set of all extensions of the function f ∈ S Lip Y, i.e.

(8) EY (f) =
{
F ∈ S LipX : F |Y = f and ‖F‖d = ‖f‖d

}
Theorem 2. Let (X, d) be a quasi-metric space and Y a nonvoid subset of

X. Then for every f ∈ S Lip Y the set EY (f) is nonvoid.
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Proof. Let f ∈ S Lip Y and the constant ‖f‖d defined by (6).
Consider the function

(9) F (x) = inf
y∈Y
{f (y) + ‖f‖d d (x, y)} , x ∈ X.

a) First we show that F is well defined.
Let z ∈ Y and x ∈ X.For any y ∈ Y we have

f (y) + ‖f‖d d (x, y) = f (z) + ‖f‖d d (x, y)− (f (z)− f (y))

≥ f (z) + ‖f‖d d (x, y)− ‖f‖d d (z, y)

= f (z)− ‖f‖d (d (z, y)− d (x, y)) .

The inequality d (z, y)− d (x, y) ≤ d (z, x) = d−1 (x, z) implies

(10) f (y) + ‖f‖d d (x, y) ≥ f (z)− ‖f‖d · d
−1 (x, z)

showing that for every x ∈ X the set {f (y) + ‖f‖d d (x, y) : y ∈ Y } is bounded
from above by f (z)− ‖f‖d d−1 (x, z) , and the infimum (9) is finite.

b) We show now that F (y) = f (y) for all y ∈ Y.
Let y ∈ Y. Then

F (y) ≤ f (y) + ‖f‖d d (y, y) = f (y) .

For any v ∈ Y we have

f (y)− f (v) ≤ ‖f‖d · d (y, v)

so that

f (v) + ‖f‖d · d (y, v) ≥ f (y)

and

F (y) = inf {f (v) + ‖f‖d d (y, v) : v ∈ Y } ≥ f (y) .

It follows F (y) = f (y) .

c) We prove that ‖F‖d = ‖f‖d .
Since F |Y = f, the definitions of ‖F‖d and ‖f‖d yield ‖F‖d ≥ ‖f‖d .
Let x1, x2 ∈ X and ε > 0. Choosing y ∈ Y such that

F (x1) ≥ f (y) + ‖f‖d d (x1, y)− ε

we obtain

F (x2)− F (x1) ≤ f (y) + ‖f‖d d (x2, y)− (f (y) + ‖f‖d · d (x1, y)− ε)

= ‖f‖d [d (x2, y)− d (x1, y)] + ε

≤ ‖f‖d · d (x2, x1) + ε.
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Since ε > 0 is arbitrary, it follows

F (x2)− F (x1) ≤ ‖f‖d · d (x2, x1)

for any x1, x2 ∈ X and ‖F‖d ≤ ‖f‖d .
d) The function F is ≤d-increasing.
Indeed, let be u, v ∈ X and d (u, v) = 0. We have d (u, y) ≤ d (u, v)+d (v, y) .

Consequently

d (u, y) ≤ d (v, y) .

Then

f (y) + ‖f‖d d (u, y) ≤ f (y) + ‖f‖d d (v, y) .

It follows that

F (u) ≤ F (v) ,

and consequently d (u, v) = 0 implies F (u) ≤ F (v) .
It follows that F ∈ Ed

Y (f) so that Ed
Y (t) 6= ∅. �

Remarks 1. 10 Similarly, the function

(11) G (x) = sup
y∈Y

{
f (y)− ‖f‖d d

−1 (x, y)
}

is ≤d-increasing, and G belongs to Ed
Y (f) too.

20 The inequality

(12) G (x) ≤ F (x) ,

holds for every x ∈ X.

Indeed, taking the infimum with respect to z ∈ Y and then the supremum
with respect to y ∈ Y in (10) we find

G (x) = sup
y∈Y

{
f (y)− ‖f‖d d

−1 (x, y)
}
≤ inf

z∈Y
{f (z) + ‖f‖d d (x, z)} = F (x) .

In fact, the following theorem holds:

Theorem 3. Let (X, d) be a quasi-metric space, Y a nonvoid subset of X
and f ∈ S Lip Y.

Then for any H ∈ Ed
Y (f) we have

(13) G (x) ≤ H (x) ≤ F (x) , x ∈ X.
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Proof. Let H ∈ Ed
Y (f) . For arbitrary x ∈ X and y ∈ Y we have

H (x)−H (y) ≤ ‖f‖d d (x, y)

implying

H (x) ≤ H (y) + ‖f‖d d (x, y) = f (y) + ‖f‖d (x, y) .

Taking the imfimum with respect to y ∈ Y we get

H (x) ≤ inf
y∈Y

{
f (y) + ‖f‖d d (x, y)

}
= F (x).

The inequality H (x) ≥ G (x) , x ∈ X can be proved similarly. �

Corollary 4. A function f ∈ S Lip Y has a unique extension in S LipX
if and only if the following relation

(14) inf
y∈Y
{f (y) + ‖f‖d d (x, y)} = sup

y∈Y
{f (y)− ‖f‖ d (y, x)} ,

holds for every x ∈ X.

Example.
Let R be the real axis and d : R× R→ [0,∞) the quasi-metric defined by

d (x, y) =

{
x− y, if x ≥ y

1, if x < y.

Let Y be given by Y = [0, 1] ⊂ R and f : Y → R, f (y) = 2y. Then f is
semi-Lipschitz on Y and ‖f‖d = 2. The extension F defined by (9) is

F (x) =

{
2, if x < 0

2x, if x ≥ 0

and the extension G defined by (11) is

G (x) =

{
2x, x ≤ 1
0, x > 1

Obviously, G (x) ≤ F (x) , x ∈ R.
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