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Abstract. In the present paper we show that the Steffensen method for solving
the scalar equation f (x) = 0, applied to equation

h (x) = f(x)√
f ′(x)

= 0,

leads to bilateral approximations for the solution. Moreover, the convergence
order is at least 3, i.e. as in the case of the Halley method.
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1. INTRODUCTION

Let a, b ∈ R, a < b, and f : [a, b] → R be given. Assume that f ∈ C4 [a, b]
and f ′ (x) > 0, ∀x ∈ [a, b]. Consider the function h : [a, b] → R given by

h (x) = f (x) /
√
f ′ (x). As it is well known (see e.g. [2]), the Halley method

for solving

(1.1) f (x) = 0

consists in constructing the sequence (xn)n≥0 by

(1.2) xn+1 = xn −
h (xn)

h′ (xn)
, n = 0, 1, . . . , x0 ∈ [a, b]

As it can be easily noticed, (1.2) is the Newton method applied to equation
h (x) = 0. The advantage of using the function h instead of f in (1.2) consists
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in the fact that h obeys h′′ (x̄) = 0, where x̄ is a solution of (1.1). It is well
known that h′′ (x̄) = 0 ensures for (1.2) the convergence order 3 (see [2]).

Starting from an algorithm proposed by Heron for approximating 3
√

100, the
authors of [4] establish the following relation:

(1.3)
3
√
N ' Φ (N ;α, β) = α+ βd1

βd1+αd2
(β − α)

where d1 = N − α3, d2 = β3 −N and α3 ≤ N ≤ β3. The Heron algorithm is
obtained from (1.3) for α = 4 and β = 5.

In the paper [5], the authors noticed that the approximation given by (1.3)

for 3
√
N is obtained by applying one step of the chord method to equation

ϕ (x) = 0, where ϕ (x) = x2 −N/x, x > 0.
In [5] it is noticed that if one considers equation f (x) = x3−N , then, apart

of a constant factor, equation ϕ (x) = 0 is equivalent to

h (x) =
f (x)√
f ′ (x)

= 0, x > 0,

i.e., 1/
√

3
(
x2 −N/x

)
= 0. Therefore there exists a connection between the

Halley method (1.2) and the Heron algorithm concerning the function h. In
the case of the Halley method there is applied the Newton method to h (x) = 0
whereas in the Heron method there is applied the chord method to h (x) = 0.
The both methods benefit from the advantages implied by h′′ (x̄) = 0. These
remarks have led in [5] to generalizations of the results from [4]. A brief
analysis of the convergence order of the chord method applied to h (x) = 0 in
the general case (quasi-Halley method) is given in [1].

In this note we shall study the convergence of an iterative method obtained
by applying the Steffensen algorithm to equation h (x) = 0, where h (x) =

f (x) /
√
f ′ (x). As we shall see, this method has some advantages over the

Halley and chord methods applied to h. The most important one is the fact
that the method we propose allows the control of the absolute error at each
iteration step. Its convergence order is the same as for the Halley method,
being higher than the order of the chord method.

For solving (1.1) we shall consider the sequence

(1.4) xn+1 = xn −
h (xn)

[xn, ϕ (xn) ;h]
, n = 0, 1, . . . , x0 ∈ [a, b]

where ϕ will be suitably chosen, and [x, y; f ] = (f (y)− f (x)) / (y − x) denotes
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the first order divided difference of f on x and y. We shall call this method
the Halley-Steffensen method.

2. LOCAL CONVERGENCE AND ERROR BOUNDS

Concerning the function f we shall assume the following conditions:

i. f ∈ C4 [a, b] ;
ii. f ′ (x) > 0 for all x ∈ [a, b] ;
iii. equation (1.1) has a solution x̄ ∈ ]a, b[ ;
iv. the function ϕ from (1.4) is given by

(2.1) ϕ (x) = x− f (x)

λ

where 0 < λ < f ′d (a) , and f ′d (a) is the right derivative of f at a;
v. f ′ (x) < 2λ, ∀x ∈ [a, b] ;
vi. f ′′ (x) > 0, ∀x ∈ [a, b] .

We notice in the beginning that

xn −
h (xn)

[xn, ϕ (xn) ;h]
= ϕ (xn)− h (ϕ (xn))

[xn, ϕ (xn) ;h]
, n = 0, 1, . . .

which shows that the Halley-Steffensen sequence obeys

(2.2) xn+1 = ϕ (xn)− h (ϕ (xn))

[xn, ϕ (xn) ;h]
, n = 0, 1, . . . ,

while for the first and second order derivatives we obtain

h′ (x) =2(f ′(x))2−f ′′(x)f(x)

2(f ′(x))3/2
;(2.3)

h′′ (x) =3(f ′′(x))2−2f ′′′(x)f ′(x)

4(f ′(x))5/2
f (x) .(2.4)

Relation (2.4) implies h′′ (x̄) = 0, while (2.3) implies h′ (x̄) = (f ′ (x̄))1/2 > 0.
Since h′ is continuous and h′ (x̄) > 0 it follows the existence of α, β ∈ R,
a ≤ α < x̄ < β ≤ b, such that h′ (x) > 0, ∀x ∈ [α, β] .

We obtain the following result:

Theorem 1. Assume that the function f and the initial approximation x0

satisfy:
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i1. the number x0 is sufficiently close to x̄ and ϕ (x0) ∈ [α, β], with α and
β determined above;

ii2. the function f obeys (i)–(vi);

Then the Halley-Steffensen sequence (1.4) converges to the solution x̄ and,
moreover,

|xn+1 − x̄| ≤max
{
|xn+1 − xn| , |xn+1 − ϕ (xn)|

}
, n = 0, 1, . . . ,(2.5)

|xn+1 − x̄| ≤K |xn − x̄|3 , n = 0, 1, . . . ,(2.6)

where K is a constant which does not depend on n.

Proof. Since f ′′ (x) > 0, ∀x ∈ [a, b] , it follows that f ′ is increasing on [a, b]
and hence ϕ′ (x) = 1 − f ′ (x) /λ obeys ϕ′ (x) < 0, ∀x ∈ [a, b] . The existence
of the interval [α, β] ⊆ [a, b] such that h′ (x) > 0, ∀x ∈ [α, β] , has been
proved above. Assumption iv) implies x̄ = ϕ (x̄) and so, if x0 < x̄, we get
ϕ (x0) > x̄. Analogously, x0 > x̄ ⇒ ϕ (x0) < x̄, i.e., x̄ ∈ I0, I0 being the
interval determined by x0 and ϕ (x0). From h′ (x) > 0, ∀x ∈ [α, β] , it follows
h (x0) < 0 for x0 < x̄ resp. h (x0) > 0 for x0 > x̄. Relation (1.4) implies
x1 > x0 when x0 < x̄ resp. x1 < x0 when x0 > x̄. By (2.2) we get x1 < ϕ (x0)
when x0 < x̄ resp. x1 > ϕ (x0) when x0 > x̄, i.e. x1 ∈ I0. We shall show
that ϕ (x1) ∈ I0. For this we prove that x0 < ϕ (ϕ (x0)) when x0 < x̄ resp.
x0 > ϕ (ϕ (x0)) when x0 > x̄. For ϕ (ϕ (x0)) we easily obtain the following
expression:

ϕ (ϕ (x0)) = x0 − 2
λf (x0) + 1

λ2
f ′ (ξ0) f (x0) , ξ0 ∈ I0,

whence, taking into account (v) and f (x0) < 0 for x0 < x̄, we obtain ϕ (ϕ (x0))
−x0 > 0. Analogously, if x0 > x̄ then ϕ (ϕ (x0))− x0 < 0. So, ϕ (ϕ (x0)) ∈ I0.
Let x0 < x̄, and so ϕ (x0) > x̄ and x0 < x1 < ϕ (x0) . Since ϕ is decreasing we
get ϕ (x1) > ϕ (ϕ (x0)) > x0, and, on the other hand, from x0 < x1 ⇒ ϕ (x0) >
ϕ (x1) , i.e. ϕ (x1) ∈ I0. Analogously, if x0 > x̄⇒ ϕ (x1) ∈ I0. Denoting by I1

the closed interval determined by x1 and ϕ (x1) then

(2.7) x̄ ∈ I1 and I0 ⊃ I1.

Let Is denote the closed intervals determined by the points xs and ϕ(xs),
s = 0, k. Suppose that
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(2.8) I0 ⊃ I1 ⊃ . . . ⊃ Ik−1 ⊃ Ik,

and x̄ ∈ Ik. As we have shown for x0, we can prove that the interval Ik+1,
determined by xk+1 and ϕ(xk+1), obeys

Ik ⊃ Ik+1

and x̄ ∈ Ik+1. From the above reasons, it follows that relations (2.5) are true.
It remains to show that (2.6) holds, which implies the convergence of (xn)n≥0

generated by (1.4). For this purpose we shall use the identity

h (x̄) = h (xn) + [xn, ϕ(xn);h](x̄− xn) + [x̄, xn, ϕ(xn);h](x̄− xn)(x̄− ϕ(xn)),

whence, taking into account (1.4) and h (x̄) = 0, it follows (see [9])

(2.9) x̄− xn+1 = − [x̄, xn, ϕ(xn);h]

[xn, ϕ(xn);h]
(x̄− xn)(x̄− ϕ(xn)), n = 0, 1, . . .

By (ii) and (v) we get |ϕ′ (x)| < 1, ∀x ∈ I0, and so

(2.10) |x̄− ϕ(xn)| < |x̄− xn| , n = 0, 1, . . .

On the other hand, from the mean value theorems for divided differences one
obtains

[x̄, xn, ϕ(xn);h] = h′′(ξn)
2! , ξn ∈ In, and(2.11)

[xn, ϕ(xn);h] = h′ (ηn) , ηn ∈ In.(2.12)

From (2.11) and from h′′(x̄) = 0 we get

(2.13)
∣∣[x̄, xn, ϕ(xn);h]

∣∣ = 1
2

∣∣h′′ (ξn)− h′′ (x̄)
∣∣ = 1

2h
′′′ (δn) |ξn − x̄| ,

where δn ∈ In. Further, by (2.10) it follows

(2.14) |ξn − x̄| ≤ max
{
|x̄− xn| , |x̄− ϕ(xn)|

}
≤ |x̄− xn| .

Denote m3 = supx∈I0 |h
′′′ (x)| and m1 = infx∈I0 |h′ (x)| . Relations (2.9)–(2.14)

lead to

|xn+1 − x̄| ≤ m3
2m1
|xn − x̄|3 , n = 0, 1, . . . ,

i.e., (2.6) with K = m3/(2m1). The proof is complete. �
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3. NUMERICAL EXAMPLE

Consider the equation

f (x) = x3 − 20, x > 0,

and the function h (x) = 1√
3
(x2 − 20/x). Obviously, h′ (x) = 2

(
x+ 10/x2

)
>

0, ∀x > 0. It can be easily seen that 2.6 < 3
√

20 < 2.8. We choose ϕ (x) =
x− (x3 − 20)/20.28. Then, for x0 = 2.6, ϕ (x0) < 2.8, and hence our theorem
may be applied. We obtain the following results:

n xn ϕ (xn) h (xn)
0 2,600 000 000 0 · 10+00 2,719 526 627 2 · 10+00 −9,323 076 923 2 · 10−01

1 2,714 420 633 0 · 10+00 2,714 417 345 3 · 10+00 2,456 359 652 6 · 10−05

2 2,714 417 616 6 · 10+00 2,714 417 616 6 · 10+00 −1,455 191 522 8 · 10−11
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clickable → [5] D. Luca and I. Păvăloiu, On the Heron’s method for the approximation of the cubic root

of a real number, Rev. Anal. Numér. Théor. Approx., 28 (1997), 103–108.
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