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Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 2, pp. 219–227

ictp.acad.ro/jnaat

ON THE ARCLENGTH OF TRIGONOMETRIC INTERPOLANTS∗
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Abstract. As pointed out recently by Strichartz [5], the arclength of the graph
Γ(SN (f)) of the partial sums SN (f) of the Fourier series of a jump function f
grows with the order of logN . In this paper we discuss the behaviour of the
arclengths of the graphs of trigonometric interpolants to a jump function. Here
the boundedness of the arclengths depends essentially on the fact whether the
jump discontinuity is at an interpolation point or not. In addition convergence
results for the arclengths of interpolants to smoother functions are presented.

MSC 2000. 41A15.

1. INTRODUCTION

The famous Gibbs phenomenon of overshooting is one of the well-known
disadvantages of the Fourier series approach. It is closely related to the log-
arithmic growth of the L1

2π-norm of the Dirichlet kernel, i.e. the Lebesgue
constant for the Fourier partial sum operator. It can also be seen as one of
the motivations for introducing different means of Fourier sums.

In the very recent paper [5], Strichartz investigated the behaviour of the
arclengths of the graphs Γ(SN (f)) of the partial sums SN (f) of the Fourier
series of a piecewise smooth function f . It turns out that in the case of jump
discontinuities, the arclengths of the graphs Γ(SN (f)) tend to infinity with
logarithmic order, while for continuous piecewise C1 functions the arclength
of Γ(SN (f)) converges to the arclength of Γ(f).
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It is the aim of this paper to investigate analogous questions for trigono-
metric Lagrange interpolation.

Therefore we define for each positive integer N the trigonometric interpolant
LNf to a given 2π-periodic function f by

LNf(t) =
2N−1∑
s=0

f
(
sπ
N

)
ϕN

(
t− sπ

N

)
,

where

ϕN (t) = 1
2N

(
1 + 2

N−1∑
k=1

cos kt + cosNt
)

is a modified Dirichlet kernel.
Then LNf(kπN ) = f(kπN ) holds for all integer k. As in the case of the Fourier

sum we can restrict our attention to the 2π-periodic jump function

f0(t) =


(π − t)/2, if 0 < t ≤ π,
0, if t = 0,
(−π − t)/2, if −π ≤ t < 0.

With its Fourier expansion given as

f0(t) =
∞∑
`=1

sin `t
`

,

this piecewise linear function is a standard example for the Gibbs phenomenon.
The underlying idea is then to consider functions with finitely many jumps in
the period interval as the sum of translates of f0 and a smooth function.

Different from the case of Fourier sums, for the interpolation process it is
important, however, to know whether the jump discontinuity is at an interpo-
lation point or not. Therefore we distinguish between our jump test function
f0 and and its translates fε(t) = f0(t− ε), where 0 < ε < π

N .
It turns out that the behaviour of the arclengths of the graphs Γ(LN (fε))

depends essentially on the choice of ε. Namely, for ε = 0 we have bounded
arclength and for 0 < ε < π

N the arclength behaves like logN . Some overshoot,
however, is always present also in the case of bounded arclengths, see Figures
1 and 2. Notice that the nice behaviour of the interpolant of f0 not only stems
from the fact that the jump discontinuity is at an interpolation point, but also
from

(1) f0(0) = f0(0−) + f0(0+)
2 .
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If an arbitrary jump function does not satisfy (1), we have to add to the
interpolation polynomial a multiple of ϕN , which results also in an unbounded
arclength (cf. the proof of Theorem 3.1).

Finally we mention that the use of modified interpolation processes can
improve the behaviour of the graphs of the interpolants essentially. In this
note we restrict ourselves to certain de la Vallée Poussin kernels, which possess
interesting features for generating corresponding wavelets (cf. [2], [3]).

2. THE INTERPOLANT OF THE JUMP FUNCTION fε

We start by stating some basic identities for discrete inner products of
trigonometric functions.

Lemma 2.1. The following discrete orthogonality relations hold for all in-
tegers k, `

2N−1∑
s=0

sin `sπ
N cos ksπN = 0,

2N−1∑
s=0

cos `sπN cos ksπN = N · (δ̃`,k + δ̃`,−k)

and
2N−1∑
s=0

sin `sπ
N sin ksπ

N = N · (δ̃`,k − δ̃`,−k),

where

δ̃`,k =
{

1, ` ≡ k mod 2N,
0, otherwise.

Proof. These identities follow directly from the identities for integer r
2N−1∑
s=0

cos rsπN = δ̃r,0 · 2N and
2N−1∑
s=0

sin rsπ
N = 0.

�

Next, we compute explicitly the interpolants for the jump functions fε. It
turns out that the interpolant to fε is equal to the interpolant to f0, shifted
vertically by ε/2, plus a perturbation term that is completely independent of
ε 6= 0.

Lemma 2.2. The trigonometric interpolants LNfε possess the following rep-
resentations

LNf0(t) = π
2N

N−1∑
k=1

cot kπ
2N sin kt,
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and for 0 < ε < π
N

LNfε(t) = LNf0(t)− π
2ϕN (t) + ε

2

= ε
2 −

π
4N

(
1 +

N∑
|k|=1

′ (1 + i cot kπ
2N

)
eikt

)
.

Here
∑′ means that the terms for |k| = N have to be multiplied by 1/2.

Proof. For arbitrary 0 ≤ ε < π
N we obtain

LNfε(t) = 1
2N

2N−1∑
s=0

∞∑
`=1

sin `( sπ
N
−ε)

`

(
1 + 2

N∑
k=1

′ cos k(t− sπ
N )
)
.

Now we simplify for 0 < k ≤ N using Lemma 2.1

2N−1∑
s=0

∞∑
`=1

sin `( sπ
N
−ε)

` cos k(t− sπ
N ) =

=
∞∑
`=1

1
`

2N−1∑
s=0

(
sin `sπ

N cos `ε cos kt cos ksπN + sin `sπ
N cos `ε sin kt sin ksπ

N

− cos `sπN sin `ε cos kt cos ksπN − cos `sπN sin `εö sin kt sin ksπ
N

)
= sin kt

∞∑
`=1

cos `ε
` N(δ̃`,k − δ̃`,−k)− cos kt

∞∑
`=1

sin `ε
` N(δ̃`,k + δ̃`,−k)

= N sin kt
(

cos kε
k +

∞∑
L=1

( cos(k+2NL)ε
k+2NL − cos(−k+2NL)ε

−k+2NL
))

−N cos kt
(

sin kε
k +

∞∑
L=1

( sin(k+2NL)ε
k+2NL + sin(−k+2NL)ε

−k+2NL
))

= 1
2 sin kt

∞∑
L=−∞

cos
(
( k

2N +L)(2Nε)
)

k
2N +L − 1

2 cos kt
∞∑

L=−∞

sin
(
( k

2N +L)(2Nε)
)

k
2N +L

= π
2 sin kt · cot kπ

2N −
{

0, if ε = 0,
π
2 cos kt, if 0 < 2Nε < 2π.

For the series representation yielding the last equality, compare [6, pp. 71,73].
In the case k = 0 we write
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2N−1∑
s=0

∞∑
`=1

sin `( sπ
N
−ε)

` =
∞∑
`=1

1
`

2N−1∑
s=0

(
sin `sπ

N cos `ε− cos `sπN · sin `ε
)

= −2N
∞∑
`=1

sin `ε
l δ̃`,0

= −2N
∞∑
L=1

sin 2NLε
2NL

= −
∞∑
L=1

sin 2NLε
L

=
{

0, if ε = 0,
2Nε−π

2 , if 0 < ε < π
N .

Summing up k from 0 to N we obtain the assertions of Lemma 2.2. �

The different behaviour of the Lagrange interpolants is illustrated by the
following figures.
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Fig. 1. Left: L16f0, Right: L32f0.
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Fig. 2. Left: L16f0.01, Right: L32f0.01.
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3. THE ARCLENGTH OF THE INTERPOLANT

For the arclengths of the jump function interpolants we obtain the following
result.

Theorem 3.1. The length of the graph Γ(LNfε) of the interpolant LNfε
remains bounded iff ε = 0, i.e.,

length
(
Γ(LNf0)

)
= O(1), N →∞,

while for 0 < ε < π
N

length
(
Γ(LNfε)

)
∼ logN, N →∞.

Proof. For ε = 0 we obtain by definition

(2) length
(
Γ(LNf0)

)
=
∫ π

−π

√
1 +

(
(LNf0)′(t)

)2
dt ≤ 2π + ‖(LNf0)′‖1.

Using the function

g0(x) =


1, if x = 0,
0, if |x| > π

2 ,
x cotx, otherwise,

we can write

(LNf0)′(t) =
N−1∑
k=1

g0
(
kπ
2N

)
· cos kt

= 1
2

N∑
k=−N

g0
(
kπ
2N

)
eikt − 1

2 ,

and we can estimate with the help of Poisson’s summation formula (cf. [1,
Lemma 1]) ∥∥∥∥∥∥

N∑
k=−N

g0
(
kπ
2N

)
eik◦

∥∥∥∥∥∥
1

≤ ‖ĝ0‖L1(R),

where ĝ0 is the Fourier transform of g0. Now we can use (cf. [1, Lemma 3])
that
(3) ‖ĝ0‖L1(R) ≤ 4

√
V (g′0) · ‖g0‖L1(R) .

Here it holds that ‖g0‖L1(R) = π ln 2, while for the total variation of the
derivative one obtains V (g′0) = 2π and hence

‖(LNf0)′‖1 ≤ π + 4π
√

2 ln 2.
This proves the first part of the theorem.

Using (2) and the representation of LNfε from Lemma 2.2, we conclude
length(Γ(LNfε)) ∼ ‖π2 (ϕN )′‖1.
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From Bernstein’s inequality it follows easily that

‖π2 (ϕN )′‖1 ≤
πN
2 ‖ϕN‖1 ≤ 2 lnN + C.

On the other hand the lower bound for ‖(ϕMN )′‖1 is derived analogously to the
standard arguments for the Dirichlet kernel (cf. [6, p. 67]). �

For the convenience of the reader we include plots of g0 and g′0 to illustrate
the smoothness properties of g0.
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Fig. 3. Left: g0 with ‖g0‖L1(R) = π ln 2, Right: g′0 with V (g′0) = 2π.

Moreover, let us mention that for ε > 0

(LNfε)′(t) = 1
2

N∑
k=−N

g
(
kπ
2N

)
eikt − 1

2 ,

where

g(x) =


1, if x = 0,
0, if |x| > π

2 ,
x cotx− ix otherwise.

Then the real part of g is the smooth function g0, whereas the imaginary part
has jumps so that the estimate (3) does not hold.

In the following result we describe the behaviour of the arclength of the
graph of the interpolant for smoother functions f .

Theorem 3.2. Let the 2π-periodic function f be sufficiently smooth in the
sense that

f ′ ∈ Lp2π

for a certain p > 1. Then
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(4) lim
N→∞

length(Γ(LNf)) = length(Γ(f)).

Proof. Following the ideas of Strichartz [5, Proposition 2] we estimate
| length(Γ(f))− length(Γ(LNf))| ≤ ‖(f − LNf)′‖1.

In the next steps we need a mean of the Fourier sum which approximates in
the order of best approximation for all Lp2π-spaces and reproduces polynomials.
For that reason we choose the de la Vallée Poussin mean

σN2Nf(t) = 1
2π

∫ π

−π
f(t− u)

(
1 + 2

N∑
k=1

cos ku+
3N−1∑
k=N+1

3N−k
2N cos ku

)
du.

We obtain by Bernstein’s inequality
‖(f − LNf)′‖1 ≤ ‖(f − σN2Nf)′‖1 + ‖(σN2N (f − LNf))′‖1

≤ cEN (f ′, L1
2π) + 2N‖σN2N (f − LNf)‖1

≤ cEN (f ′, L1
2π) + cN‖f − LNf‖1

≤ cEN (f ′, Lp2π) + cN‖f − LNf‖p
≤ cEN (f ′, Lp2π),(5)

where for the last inequality we have used a result on trigonometric Lagrange
interpolation proved in [4]. As EN (f ′, Lp2π) tends to zero for f ′ ∈ Lp2π, the
theorem is proved. �

Note that specific orders of convergence in (4) can be obtained from (5) for
sufficiently smooth functions by using standard Jackson type arguments for
trigonometric best approximation.

One can also achieve bounded arclength in the case ε > 0 by modifying the
Lagrange interpolation process. If one interpolates in 2N points one can allow
the interpolation polynomial to have a degree bigger than N . Let us write for
1 ≤M ≤ N (cf. [3])

ϕMN (t) = 1
2N

(
1 + 2

N∑
k=1

cos kt+
N+M−1∑

k=N−M+1

N+M−k
2M cos kt

)
and

LMN f(t) =
2N−1∑
s=0

f
(
sπ
N

)
ϕMN

(
t− sπ

N

)
.

Then LMN f(kπN ) = f(kπN ) for all integer k and LMN f is a trigonometric poly-
nomial of degree less than N +M . Note also that ϕN = ϕ1

N and LNf = L1
Nf .

The particular feature of these interpolation polynomials LMN is the bound-
edness of the kernels ϕMN depending on the quotient N/M only. Using the
well-known estimate

‖ϕMN ‖1 ∼
4
πN ln 2N

M
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and the same methods of proof as above, we obtain the following result.

Theorem 3.3. Let N/M be bounded. Then for arbitrary ε and arbitrary
values of fε at the jump it holds that

length
(
Γ(LMN fε)

)
= O(1), N →∞ ,

and for 2π-periodic absolutely continuous functions f , i.e., f ′ ∈ L1
2π, it holds

that
lim
N→∞

length(Γ(LNf)) = length(Γ(f)).
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