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ON THE FLOW OF A VISCOUS THIN LAYER
ON AN INCLINED PLANE DRIVEN BY

A CONSTANT SURFACE TENSION GRADIENT

EMILIA BORŞA∗ and CǍLIN IOAN GHEORGHIU†

Abstract. Steady flow of a thin layer (trickle, rivulet) of viscous fluid down an
inclined surface is considered, via a thin-film approximation. The work extends
the study by Duffy and Moffatt [7] of gravity-driven thin trickle of viscous fluid
to include the effects of a surface tension gradient. It acts on the free surface of
the layer. At the same time the work tries an alternative analysis to our tradi-
tional approaches exposed in [6] and the papers quoted there. Asymptotic and
numerical results for several values of volume flux and surface tension gradients
are carried out.
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1. INTRODUCTION

Many viscous flow problems of practical importance involve small scale flows
with free surface whose effects contribute significantly to the dynamics through
superficial forces. One prototype problem that has received much attention is
that of the draining of viscous layers down an inclined plane driven simulta-
neously by a surface tension gradient.

We consider the steady behavior of such a trickle of viscous liquid (which
we take to be supplied at a prescribed volume flux) when the surface tension
gradient is constant. We are particularly interested in the study of Marangoni
effect. More specific, we take into account a non-zero tangential (shear) stress
and use a lubrication (thin-film) approximation. This approximation linearizes
the Navier-Stokes system and enables us to obtain the velocity field, the free-
surface velocity, the pressure and the free-surface profile in closed form.

∗ University Oradea, Department of Mathematics, Armatei Române 3–5, 3700 Oradea,
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2. PROBLEM FORMULATION AND THE FLOW SOLUTION

Consider the flow of a uniform thin liquid layer (rivulet) down an inclined
solid plane driven simultaneously by a surface tension gradient. This gradient
acts on the free surface (the upper of the rivulet) and due to viscous forces
can drag the fluid up or down on the incline. Suppose a Newtonian fluid, of
constant density ρ and viscosity µ, which undergoes a steady rectilinear flow
in the form of a filament, down a plane inclined at an angle α to the horizontal.

With respect to the Cartesian coordinates system Oxyz as indicated in
Fig.1, the velocity of this locally unidirectional flow will be of the form −→u =
u (y, z)−→i and the Navier-Stokes equations reduce to

(1)


0 = −px + ρ · g · sinα+ µ · (uyy + uzz)
0 = −py
0 = −pz − p · g · cosα

where the subscripts denote partial differentiation.

a) A longitudinal view with a positive surface tension gradient.

b) A transversal view (the transverse profile) of the flow.

Fig. 1: A trickle (rivulet) of viscous fluid, of width 2a and maximum depth
hm := h(0) flowing down an inclined plane at an angle α to the horizontal.
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In the thin-film (lubrication) theory, (see, for example, Acheson [1], Ock-
endon and Ockendon [11], or Gheorghiu [9]) these equations reduce to

(2)


0 = −px + ρ · g · sinα+ µ · uzz
0 = −py
0 = −pz − ρ · g · cosα

and are to be integrated subject to the boundary conditions

(3) −→u = 0, on z = 0

(4) p− pa = −γ · (H + h)′′
µ · uz = τ (Levich–Aris boundary condition)

}
on z = (H + h) (y) .

Here z = H (y) is the known equation of the transverse profile of the substrate
(the bottom line) and z = h (y) is the unknown equation of the transverse
profile of the free surface. When the substrate is an inclined plane H (y)
becomes identically zero.

We impose the following contact conditions:

(5)
{
h = 0
h′ = ± tan β , at y ± a.

Here again z = h (y) is the free-surface profile, p is the pressure in the liquid,
pa is the atmospheric pressure, −→g is the gravitational acceleration, γ is the
reference value of surface tension, β is the contact angle at the three-phase
contact line, 2a is the width of the layer (trickle), hm is the maximum depth
of the liquid, and τ is the constant shear stress acting on z = h (y).

We consider β to be a prescribed constant such that β < π/2. A constant
value of β means that any contact angle ”hysteresis” is ignored. We appreciate
this hypothesis as reasonable for these rivulets. On the physical nature of the
shear stress τ we have to make the following important remark. The origin
of τ could be very diverse. We are mainly interested when this stress comes
from a local variation of surface tension, such that τ = ∂γ

∂x . Actually, γ may
vary somewhat along x-axis and then the flow will not be truly unidirectional.
However, the above approach may still be approximately correct if γ varies only
slowly. A more sophisticated model that takes into account reactions, fluxes
of surfactants on the free surface, surface diffusion and convection, change
of metrics, etc., is available for example in [14]. To consider such models is
beyond our computational capabilities. Consequently, we simply solve the
differential system (2)-(5), using the strategy from Wilson and Duffy [15] and
finally plug in ∂γ

∂x for the shear stress τ .
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About the boundary condition (4) we observe that we have taken the surface
curbature to be h′′. The boundary condition (4) makes the difference between
our study and those of Allen and Biggin [2], Duffy and Moffatt [7], Towel and
Rothfeld[13], or Wilson and Duffy [15]. It means that the Marangoni effect is
taken into account. Some mathematical aspects (existence, uniqueness, etc.)
of this effect are addressed in Amick [3], Amick and Fraenkel [4] and Wagner
[14].

With respect to the angle to the horizontal, we consider the following three
cases:

i). 0 < α <
π

2 , ii) α = π

2 , iii) π2 < α < π.

Then the solution read as follows:
the velocity

(6) u (y, z) = ρ · g · sinα
2µ

(
−z2 + 2zh

)
+ 1
µ

∂γ

∂x
· z

the free-surface velocity, us := u (y, h),

(7) us = ρ · g · sinα
2µ · h2 + 1

µ

∂γ

∂x
· h,

and the pressure is

(8) p (z) = pa−ρ·g·z ·cosα+tan β
√
ρ · g · γ · |cosα|·


cothB, α ∈

(
0, π2

)
B−1, α = π

2
cotB, α ∈

(
π
2 , π

)
.

The free-surface profile z = h (y) is given by

(9)
(
ρ · g · |cosα|

γ

) 1
2 h

tan β =



coshB−coshBξ
sinhB , α ∈

(
0, π2

)
1
2B

(
1− ξ2) , α = π

2

cosBξ−cosB
sinB , α ∈

(
π
2 , π

)
where B is the Bond number for the flow, B 6= 0 for α 6= π/2,

(10) B = a
(
ρ·g·|cosα|

γ

) 1
2 > 0 and B = 0, for α = π

2 and ξ = y
a , ξ ∈ [−1, 1] .
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The maximum depth hm of the liquid, hm := h (0) satisfies

(11)
(
p · g · |cosα|

γ

) 1
2
· hm

tan β =



tanh 1
2B, α ∈

(
0, π2

)
1
2B, α = π

2

tan 1
2B, α ∈

(
π
2 , π

)
The scales of hm and a in eqs. (10) and (11) differ essentially by the small

factor tan β (and indeed in case ii) hm/a = 1
2 tan β ). This reflects the fact that

the depth of the layer is much less than its width. The solution is physically
sensible only for h (y) ≥ 0.

The volume flux of liquid running down the plane is

(12) Q =
a∫
−a

h(y)∫
a

u dzdy = ρ · g · sinα
3µ

a∫
−a

h3 (y) dy + 1
2µ

∂γ

∂x

a∫
−a

h2 (y) dy.

It is convenient to introduce appropriate nondimensional variables defined
by: x∗ = x

a
, y∗ = y

a
, z∗ = z

a
h∗ = h

a
, γ∗ = γ

γ
, u∗ = u

U , p∗ = p
P (where P = ρga

is the reference pressure), Q∗ = Q

Q
, where Q = Ua2.

The Reynolds number is Re = UL
ν = ULρ

µ and the Weber number is We =
ρ

ρLU2 , where we assume ν = µ
ρ , σ = γ, L = a and U = ρga2 sinα

µ . Consequently,
Re = Lgρ2a2 sinα

µ2 , We = ρµ2

ρ3Lg2a4 sinα and then Re ·We = ρ
ρga2 . With the Bond

number Bo1 = ρgL2

σ ,which relates the gravitational forces g to the cappilarity,
the nondimensional velocity of the fluid is given by

(13) u∗ =
(
2z∗h∗ − z∗2

)
+ 1
Bo1

∂γ∗

∂x∗
z∗.

The nondimensional free surface velocity is

(14) u∗s = 1
2h
∗2 + 1

Bo1 sinα
∂γ∗

∂x∗
h∗.

and the nondimensional pressure becomes
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p∗ =



p∗a − |cosα| · z∗ + tanβ
Bo1
·B cothB, α ∈

(
0, π2

)
p∗a − |cosα| · z∗ + tanβ

Bo1
· 1, α = π

2

p∗a − |cosα| · z∗ + tanβ
Bo1
·B cotB, α ∈

(
π
2 , π

)
.

The nondimensional version for the volume is given by

(15) Q∗ = 1
3

1∫
−1

(h∗)3 dy∗ + 1
2

1
Bo1 sinα

∂γ∗

∂x∗

1∫
−1

(h∗)2 dy∗.

3. ASYMPTOTIC ANALYSIS

A) The limit a→ 0 (B → 0)
We note that for all α ∈ (0, π/2) ∪ (π/2, π) ,

h ∼ 1
2a ·

(
1− ξ2

)
· tan β,

hm ∼ 1
2a · tan β, and

Q ∼ 12B4

35 + ∂γ∗

∂x∗
1

tan β · |tanα|
ρ · g |cosα|

γ

6
5B

2, as B → 0.

B). The limit β → 0
We have respectively

h ∼ β ·
(

γ

ρ · g · |cosα|

)1/2 coshB − coshBξ
sinhB , for α ∈

(
0, π2

)
,

h ∼ β ·
(

γ

ρ · g · |cosα|

)1/2
· 1

2B ·
(
1− ξ2

)
, for α = π

2

h ∼ β ·
(

γ

ρ · g · |cosα|

)1/2
· cosBξ − cosB

sinB , for α ∈
(
π
2 , π

)
,

hm ∼ β ·
(

γ

ρ · g · |cosα|

)1/2
·



tanh 1
2B, α ∈

(
0, π2

)
1
2B, α = π

2

tan 1
2B, α ∈

(
π
2 , π

)
and
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Q ∼
(
15B coth3B − 15 coth2B − 9B cothB + 4

)
+ 9

2
∂γ∗

∂x∗
1

β · |tanα| ·

·B−1
(
3B coth2B − 3 cothB −B

)
for α ∈

(
0, π2

)
as β → 0.

C). The limit B → π−

In case iii) we have

a ∼ π ·
(

γ

ρ · g · |cosα|

)1/2
,

h ∼ tan β ·
(

γ

ρ · g · |cosα|

)1/2
· cosBξ + 1

π −B
,

hm ∼ tan β ·
(

γ

ρ · g · |cosα|

)1/2
· 2
π −B

and

Q ∼ 15π · (π −B)−3 + ∂γ∗

∂x∗
1

tan β · tanα27π ·B−1, as B → π−.

D). The limit B →∞
(
α→ 0+)

In case i) we have

h ∼ tan β ·
(

γ

ρ · g · |cosα|

)1/2
,

hm ∼ tan β ·
(

γ

ρ · g · |cosα|

)1/2
and

Q ∼ 6B + 9
tan β · |tanα|

∂γ∗

∂x∗
.

CONCLUSIONS

We have to remark at the end of this paper that, when we take into account
surface tension gradients which compete with gravity, they give rise to some
specific terms in the expressions of velocity (6) or (13), free surface velocity
(7) or (14) and the volume flux of the fluid (12) or (15)

They are respectively 1
µ
∂γ
∂x · z,

1
µ
∂γ
∂x · h, 1

2µ
∂γ
∂x

a∫
−a
h2 (y) dy and they have the

same sign as ∂γ
∂x . This fact is very plausible from physical point of view.
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We have also to observe that the extra term in the expression of Q persist
in all asymptotic expansions.
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