APPROXIMATION OPERATORS CONSTRUCTED BY MEANS OF SHEFFER SEQUENCES

MARIA CRǍCIUN

Abstract

In this paper we introduce a class of positive linear operators by using the "umbral calculus", and we study some approximation properties of it. Let Q be a delta operator, and S an invertible shift invariant operator. For $f \in C[0,1]$ we define $$
\left(L_{n}^{Q, S} f\right)(x)=\frac{1}{s_{n}(1)} \sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(1-x) f\left(\frac{k}{n}\right)
$$ where $\left(p_{n}\right)_{n \geq 0}$ is a binomial sequence which is the basic sequence for Q, and $\left(s_{n}\right)_{n \geq 0}$ is a Sheffer set, $s_{n}=S^{-1} p_{n}$. These operators generalize the binomial operators of T. Popoviciu.

MSC 2000. 41A36, 05A40.

1. INTRODUCTION

Let P be the linear space of all polynomials with real coefficients, and P_{n} the linear space of all polynomials of degree at most n.

We will consider some linear operators defined on P. We will denote by I the identity and by D the derivative. The shift operator $E^{a}: P \rightarrow P$ is defined by $E^{a} p(x)=p(x+a)$.

A linear operator T which commutes with all shift operators is called a shift invariant operator. In symbols, $E^{a} T=T E^{a}$, for all real a.

Let us remind that if T_{1} and T_{2} are shift invariant operators, then $T_{1} T_{2}=$ $T_{2} T_{1}$.

Definition 1. A shift invariant operator for which $Q x=$ const $\neq 0$ is called a delta operator.

By a polynomial sequence we shall denote a sequence of polynomials $p_{n}(x)$, $n=0,1,2, \ldots$ where $p_{n}(x)$ is of degree exactly n for all n.

[^0]A sequence of binomial type is a polynomial sequence $\left(p_{n}\right)_{n \geq 0}$ with $p_{0}(x)=1$ and satisfying the identities

$$
p_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} p_{k}(x) p_{n-k}(y)
$$

for all x, y and $n=0,1,2, \ldots$.
DEFINITION 2. Let Q be a delta operator and $\left(p_{n}(x)\right)_{n \geq 0}$ a polynomial sequence. If
i) $\quad p_{0}(x)=1$,
ii) $\quad p_{n}(0)=0, n=1,2, \ldots$,
iii) $\quad Q p_{n}=n p_{n-1}, n=1,2, \ldots$,
then $\left(p_{n}\right)$ is called the sequence of basic polynomials for Q.
Proposition 1. [8].
i) Every delta operator has a unique sequence of basic polynomials.
ii) If $p_{n}(x)$ is a basic sequence for some delta operator Q, then it is binomial.
iii) If $p_{n}(x)$ is a binomial sequence, then it is a basic sequence for some delta operator Q.

Let X be the multiplication operator defined as $(X p)(x)=x p(x)$ for every polynomial p.

For any operator T defined on P, the operator $T^{\prime}=T X-X T$ is called the Pincherle derivative of the operator T.

Proposition 2. [8].
i) If T is a shift invariant operator, then its Pincherle derivative is also a shift invariant operator.
ii) If Q is a delta operator, then its Pincherle derivative Q^{\prime} is an invertible operator.

Proposition 3. [8], [11]. If $\left(p_{n}(x)\right)_{n \geq 0}$ is a sequence of basic polynomials for the delta operator Q then
i) $\quad p_{n}(x)=X\left(Q^{\prime}\right)^{-1} p_{n-1}(x), n=1,2, \ldots$,
ii) $\quad p_{n}(x)=x \sum_{k=0}^{n-1}\binom{n-1}{k} p_{n-1-k}(x) p_{k+1}^{\prime}(0), n=1,2, \ldots$

Definition 3. A polynomial sequence $\left(s_{n}(x)\right)_{n \geq 0}$ is called a Sheffer set relative to the delta operator Q if:
i) $\quad s_{0}(x)=$ const $\neq 0$
ii) $\quad Q s_{n}=n s_{n-1}, n=1,2, \ldots$

An Appel set is a Sheffer set relative to the derivative D.

Proposition 4. [11. Let Q be a delta operator with basic polynomial set $\left(p_{n}(x)\right)_{n \geq 0}$ and $\left(s_{n}(x)\right)_{n \geq 0}$ a polynomial sequence. The next statements are equivalent:
i) $\quad s_{n}(x)$ is a Sheffer set relative to Q.
ii) There exists an invertible shift invariant operator S such that $s_{n}(x)=$ $S^{-1} p_{n}(x)$.
iii) For all $x, y \in \mathbb{R}$ and $n=0,1,2, \ldots$, the following identity holds:

$$
s_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(y) .
$$

From the previous Proposition it results that the pair (Q, S) gives us a unique Sheffer set.

2. THE OPERATORS CONSTRUCTED BY MEANS OF SHEFFER POLYNOMIALS AND THEIR CONVERGENCE

In 1931 in [9] Tiberiu Popoviciu has used binomial sequences in order to construct some operators of the form

$$
\begin{equation*}
\left(L_{n} f\right)(x)=\frac{1}{p_{n}(1)} \sum_{k=0}^{n}\binom{n}{k} p_{k}(x) p_{n-k}(1-x) f\left(\frac{k}{n}\right) \tag{1}
\end{equation*}
$$

where $f \in C[0,1]$ and $x \in[0,1]$. These operators are called binomial operators.
Such operators and their generalizations have been studied by the Romanian mathematicians as: D. D. Stancu, A. Lupaş, L. Lupaş, G. Moldovan, C. Manole, O. Agratini, A. Vernescu, and others.

Let Q be a delta operator and S an invertible shift invariant operator. Let $\left(p_{n}(x)\right)_{n \geq 0}$ be the sequence of basic polynomials for Q, and $\left(s_{n}(x)\right)_{n \geq 0}$ a Sheffer set relative to $Q, s_{n}=S^{-1} p_{n}$ with $s_{n}(1) \neq 0$ for any positive integer n.

In this note we want to study the operators $L_{n}^{Q, S}: C[0,1] \rightarrow C[0,1]$,

$$
\begin{equation*}
\left(L_{n}^{Q, S} f\right)(x)=\frac{1}{s_{n}(1)} \sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(1-x) f\left(\frac{k}{n}\right) \tag{2}
\end{equation*}
$$

Because $p_{k}(0)=\delta_{k, 0}$ (from the definition of basic polynomials), we have $\left(L_{n}^{Q, S} f\right)(0)=f(0)$.

In order to evaluate expression $\left(L_{n}^{Q, S} e_{m}\right)(x)$, where $e_{m}(x)=x^{m}$ we shall make use of C. Manole's method for binomial operators (see [5] which we have adapted to our purposes.

Let us introduce the polynomials

$$
\begin{equation*}
S_{m}(x, y, n)=\sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(y)\left(\frac{k}{n}\right)^{m} \tag{3}
\end{equation*}
$$

From Proposition 4 iii) we have $S_{0}(x, y, n)=s_{n}(x+y)$.
In the following we consider that x is the variable. Let us denote $\theta=$ $X\left(Q^{\prime}\right)^{-1}$.

From Proposition 3 i) it results that $\theta p_{k}(x)=p_{k+1}(x)$ and consequently the linear operator θ is called the shift operator for the sequence $\left(p_{n}\right)_{n \geq 0}$ (see [10]). Therefore $\theta Q p_{k}(x)=\theta\left(k p_{k-1}(x)\right)=k p_{k}(x)$; consequently k is an eigenvalue for the operator θQ, with its eigenvector $p_{k}(x)$. We have

$$
\begin{equation*}
(\theta Q)^{m}=k^{m} p_{k}(x) \tag{4}
\end{equation*}
$$

for every positive integer m, and then

$$
\begin{aligned}
S_{m}(x, y, n) & =\frac{1}{n^{m}}(\theta Q)^{m} \sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(y) \\
& =\frac{1}{n^{m}}(\theta Q)^{m} S_{0}(x, y, n)=\frac{1}{n^{m}}(\theta Q)^{m} s_{n}(x+y)
\end{aligned}
$$

In this way we obtain

$$
\begin{equation*}
S_{m}(x, y, n)=\frac{1}{n^{m}}(\theta Q)^{m} E^{y} s_{n}(x) \tag{5}
\end{equation*}
$$

Using the operational formula (see for instance [10])

$$
(\theta Q)^{m}=\sum_{k=0}^{n} S(m, k) \theta^{k} Q^{k}
$$

where $S(m, k)=\left[0,1, \ldots, k ; e_{m}\right]$ are the Stirling numbers of the second kind, relation (5) becomes:

$$
\begin{equation*}
S_{m}(x, y, n)=\frac{1}{n^{m}} \sum_{k=0}^{n} S(m, k) \theta^{k} Q^{k} E^{y} s_{n}(x) \tag{6}
\end{equation*}
$$

Because Q is shift invariant and $Q^{k} s_{n}(x)=n(n-1) \ldots(n-k+1) s_{n-k}(x)=$ $n^{[k]} s_{n-k}(x)$ we obtain

$$
\begin{equation*}
S_{m}(x, y, n)=\frac{1}{n^{m}} \sum_{k=0}^{n}\binom{n}{k} k!S(m, k) \theta^{k} E^{y} s_{n-k}(x), \forall m \in \mathbb{N}^{*} \tag{7}
\end{equation*}
$$

Theorem 1. If $L_{n}^{Q, S}$ is the linear operator defined by (2) then

$$
\begin{align*}
& \left(L_{n}^{Q, S} e_{0}\right)(x)=e_{0}(x) \\
& \left(L_{n}^{Q, S} e_{1}\right)(x)=a_{n} e_{1}(x) \tag{8}\\
& \left(L_{n}^{Q, S} e_{2}\right)(x)=b_{n} x^{2}+x\left(a_{n}-b_{n}-c_{n}\right)
\end{align*}
$$

where

$$
\begin{align*}
a_{n} & =\frac{\left[\left(Q^{\prime}\right)^{-1} s_{n-1}\right](1)}{s_{n}(1)} \\
b_{n} & =\frac{n-1}{n} \frac{\left[\left(Q^{\prime}\right)^{-2} s_{n-2}\right](1)}{s_{n}(1)}, \tag{9}\\
c_{n} & =\frac{n-1}{n} \frac{\left[\left(Q^{\prime}\right)^{-2}\left(S^{-1}\right)^{\prime} S s_{n-2}\right](1)}{s_{n}(1)}
\end{align*}
$$

Proof. Using the notation (3) we can write

$$
\begin{equation*}
\left(L_{n}^{Q, S} e_{m}\right)(x)=S_{m}(x, 1-x, n) / s_{n}(1) \tag{10}
\end{equation*}
$$

Because $S_{0}(x, 1-x, n)=s_{n}(1)$ we have $\left(L_{n}^{Q, S} e_{0}\right)(x)=e_{0}(x)$.
As we have

$$
\begin{equation*}
\theta E^{y} s_{n-1}(x)=X\left(Q^{\prime}\right)^{-1} E^{y} s_{n-1}(x)=X E^{y}\left(Q^{\prime}\right)^{-1} s_{n-1}(x) \tag{11}
\end{equation*}
$$

we obtain from $(7): S_{1}(x, 1-x, n)=x\left[\left(Q^{\prime}\right)^{-1} s_{n-1}\right](1)$; consequently we get:

$$
\left(L_{n}^{Q, S} e_{1}\right)(x)=\frac{\left[\left(Q^{\prime}\right)^{-1} s_{n-1}\right](1)}{s_{n}(1)} x
$$

Using the Pincherle derivative of the shift operator E^{y}

$$
\begin{equation*}
\left(E^{y}\right)^{\prime}=y E^{y}=E^{y} X-X E^{y} \tag{12}
\end{equation*}
$$

we can write

$$
\theta E^{y} s_{n-k}(x)=E^{y} X\left(Q^{\prime}\right)^{-1} s_{n-k}(x)-y E^{y}\left(Q^{\prime}\right)^{-1} s_{n-k}(x)
$$

Then
(13) $\theta^{2} E^{y} s_{n-k}(x)=X E^{y}\left(Q^{\prime}\right)^{-1} E^{y} X\left(Q^{\prime}\right)^{-1} s_{n-k}(x)-y X E^{y}\left(Q^{\prime}\right)^{-2} s_{n-k}(x)$

Because $s_{n-k}=S^{-1} p_{n-k}, X S^{-1}=S^{-1} X-\left(S^{-1}\right)^{\prime}$ (from the definition of Pincherle derivative) and $\left(Q^{\prime}\right)^{-1} p_{n-k}(x)=p_{n-k+1}(x) / x$ (from Proposition 3 i), we obtain

$$
\begin{align*}
\theta^{2} E^{y} s_{n-k}(x)= & X E^{y}\left(Q^{\prime}\right)^{-1} s_{n-k+1}(x)-X E^{y}\left(Q^{\prime}\right)^{-2}\left(S^{-1}\right)^{\prime} S s_{n-k}(x)- \tag{14}\\
& -y X E^{y}\left(Q^{\prime}\right)^{-2} s_{n-k}(x)
\end{align*}
$$

Replacing (11) and (14) in (7) we can write

$$
\begin{aligned}
S_{2}(x, y, n)= & x E^{y}\left(Q^{\prime}\right)^{-1} s_{n-1}(x)-\frac{n-1}{n}\left[x E^{y}\left(Q^{\prime}\right)^{-2}\left(S^{-1}\right)^{\prime} S s_{n-2}(x)-\right. \\
& \left.-y x E^{y}\left(Q^{\prime}\right)^{-2} s_{n-2}(x)\right]
\end{aligned}
$$

From (10) and the previous relation one obtains expression $L_{n}^{Q, S} e_{2}$ from theorem's conclusion.

Lemma 1. Let Q be a delta operator and S an invertible shift invariant operator. Let $\left(p_{n}(x)\right)_{n \geq 0}$ be the sequence of basic polynomials for Q and $\left(s_{n}(x)\right)_{n \geq 0}$ a Sheffer set relative to $Q, s_{n}=S^{-1} p_{n}$ with $s_{n}(1) \neq 0$ for any positive integer n. If $p_{k}^{\prime}(0) \geq 0$ and $s_{k}(0) \geq 0$ for $n=0,1,2, \ldots$ then the operator $L_{n}^{Q, S}$ defined by (2) is positive.

Proof. If $p_{k}^{\prime}(0) \geq 0$ using Proposition 3 ii), it is easy to prove by induction that $p_{k}(x) \geq 0, \forall k \in \mathbb{N}$ and $\forall x \in[0,1]$.

If we consider $x=0$ in Proposition 4 iii) we obtain

$$
s_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} p_{k}(x) s_{n-k}(0)
$$

accordingly, for $s_{k}(0) \geq 0$ and $p_{k}(x) \geq 0, \forall k \in \mathbb{N}, \forall x \in[0,1]$, we have $s_{k}(x) \geq 0, \forall k \in \mathbb{N}$ and $\forall x \in[0,1]$. Therefore the operator $L_{n}^{Q, S}$ is positive.

LEMMA 2. If the operator $L_{n}^{Q, S}$ is positive, then $a_{n} \in[0,1], b_{n} \leq 1$ and $0 \leq c_{n} \leq \min \left\{\frac{1-b_{n}}{2}, a_{n}-a_{n}^{2}\right\}, \forall n \in \mathbb{N}$, where a_{n}, b_{n} and c_{n} are defined by (9).

Proof. Since $0 \leq e_{1}(t) \leq 1, \forall t \in[0,1]$ and the operator $L_{n}^{Q, S}$ is positive, we have $0 \leq\left(L_{n}^{Q, S} e_{1}\right)(x) \leq 1, \forall x \in[0,1]$, and as $\left(L_{n}^{Q, S} e_{1}\right)(x)=a_{n} x$, we get $a_{n} \in[0,1]$.

From $t(1-t) \geq 0$ it results that $\left(L_{n}^{Q, S} e_{1}\right)(x)-\left(L_{n}^{Q, S} e_{2}\right)(x) \geq 0$, which leads to $x(1-x) b_{n}+x c_{n} \geq 0, \forall x \in[0,1]$ and choosing $x=1$, we get $c_{n} \geq 0$.

Since $t^{2}-t+1 / 4 \geq 0$, we obtain $\left(L_{n}^{Q, S} e_{2}\right)(x)-\left(L_{n}^{Q, S} e_{1}\right)(x)+\left(L_{n}^{Q, S} e_{0}\right)(x) / 4$ $\geq 0, \forall x \in[0,1]$, relation equivalent to $x^{2} b_{n}-x b_{n}-x c_{n}+1 / 4 \geq 0, \forall x \in[0,1]$. If we consider $x=1 / 2$, it results that $c_{n} \leq\left(1-b_{n}\right) / 2$ and because $c_{n} \geq 0$ we get $b_{n} \leq 1$.

Finally, from the Schwarz's inequality,

$$
\left[\left(L_{n}^{Q, S} e_{1}\right)(x)\right]^{2} \leq\left(L_{n}^{Q, S} e_{2}\right)(x)\left(L_{n}^{Q, S} e_{0}\right)(x)
$$

we have $a_{n}^{2} x^{2} \leq b_{n} x^{2}+x\left(a_{n}-b_{n}-c_{n}\right), \forall x \in[0,1]$. For $x=1$ that implies $c_{n} \leq a_{n}-a_{n}^{2}$.

Theorem 2. Let Q be a delta operator and S an invertible shift invariant operator. Let $\left(p_{n}(x)\right)_{n \geq 0}$ be the sequence of basic polynomials for Q, with $p_{n}^{\prime}(0) \geq 0, \forall n \in \mathbb{N}$, and $\left(s_{n}(x)\right)_{n \geq 0}$ a Sheffer set relative to $Q, s_{n}=S^{-1} p_{n}$ with $s_{n}(1) \neq 0$ and $s_{n}(0) \geq 0, \forall n \in \mathbb{N}$. If $f \in C[0,1]$ and $\lim _{n \rightarrow \infty} a_{n}=$ $\lim _{n \rightarrow \infty} b_{n}=1$, where a_{n} and b_{n} are defined by (9), then the operator $L_{n}^{Q, S}$ converges to the function f, uniformly on the interval $[0,1]$.

Proof. If $\lim _{n \rightarrow \infty} a_{n}=1$ then $\lim _{n \rightarrow \infty}\left(L_{n}^{Q, S} e_{1}\right)(x)=e_{1}(x)$. From Lemma $2, c_{n} \leq a_{n}-a_{n}^{2}$ so we have $\lim _{n \rightarrow \infty} c_{n}=0$, and as $\lim _{n \rightarrow \infty} b_{n}=1$, we get $\lim _{n \rightarrow \infty}\left(L_{n}^{Q, S} e_{2}\right)(x)=e_{2}(x)$. Therefore $\lim _{n \rightarrow \infty}\left(L_{n}^{Q, S} e_{i}\right)(x)=e_{i}(x)$ for $i=$ $0,1,2$ so we can use the convergence criterion of Bohman-Korokvin.

3. REPRESENTATIONS OF THE OPERATOR $L_{n}^{Q, S}$

Theorem 3. The operator $L_{n}^{Q, S}$ can be represented in the form

$$
\begin{equation*}
\left(L_{n}^{Q, S} f\right)(x)=\sum_{k=0}^{n} \frac{k!}{n^{k}}\binom{n}{k}\left[0, \frac{1}{n}, \ldots, \frac{k}{n} ; f\right] d_{k, n}(x) \tag{15}
\end{equation*}
$$

where

$$
d_{k, n}(x)=\frac{1}{s_{n}(1)}\left(\theta^{k} E^{1-x} s_{n-k}\right)(x)
$$

Moreover $L_{n}^{Q, S}\left(P_{m}\right) \subseteq P_{m}, \forall m \in \mathbb{N}$.
Proof. From the Newton interpolation formula we have

$$
f\left(\frac{k}{n}\right)=\sum_{j=0}^{k} \frac{j!}{n^{j}}\binom{k}{j}\left[0, \frac{1}{n}, \ldots, \frac{j}{n} ; f\right]
$$

If we denote $w_{k, n}(x, y)=\binom{n}{k} p_{k}(x) s_{n-k}(y)$ then

$$
\sum_{k=0}^{n} w_{k, n}(x, y) f\left(\frac{k}{n}\right)=\sum_{k=0}^{n} \frac{k!}{n^{k}}\left[0, \frac{1}{n}, \ldots, \frac{k}{n} ; f\right] \sum_{j=k}^{n}\binom{j}{k} w_{j, n}(x, y)
$$

But

$$
\begin{aligned}
\sum_{j=k}^{n}\binom{j}{k} w_{j, n}(x, y) & =\binom{n}{k} \sum_{j=k}^{n}\binom{n-k}{j-k} p_{j}(x) s_{n-j}(y) \\
& =\binom{n}{k} \sum_{j=0}^{n-k}\binom{n-k}{j} p_{j+k}(x) s_{n-k-j}(y) \\
& =\binom{n}{k} \theta^{k} \sum_{j=0}^{n-k}\binom{n-k}{j} p_{j}(x) s_{n-k-j}(y) \\
& =\binom{n}{k} \theta^{k} E^{y} s_{n-k}(x)
\end{aligned}
$$

Since $\left(L_{n}^{Q, S} f\right)(x)=\frac{1}{s_{n}(1)} \sum_{k=0}^{n} w_{k, n}(x, 1-x) f\left(\frac{k}{n}\right)$ we obtain (15).
In order to show that $L_{n}^{Q, S}\left(P_{m}\right) \subseteq P_{m}$ we shall prove that $\operatorname{deg}\left(d_{k, n}(x)\right)=k$.
We remind that if $\left(p_{n}\right)$ is a basic sequence for $Q=q(D)$ and $h(t)$ is the compositional inverse of $q(t)$, then the generating function for $\left(p_{n}\right)$ is

$$
\begin{equation*}
\sum_{k=0}^{\infty} p_{k}(x) \frac{t^{k}}{k!}=e^{x h(t)} \tag{16}
\end{equation*}
$$

and if $s_{n}=S^{-1} p_{n}$, with $S=s(D)$ then

$$
\begin{equation*}
\sum_{k=0}^{\infty} s_{k}(x) \frac{t^{k}}{k!}=\frac{1}{s(h(t))} e^{x h(t)} \tag{17}
\end{equation*}
$$

If we differentiate the relation (16) m times with respect to t, we get

$$
\begin{equation*}
\sum_{k=0}^{\infty} p_{k+m}(x)_{k!}^{t^{k}}=\frac{d^{m}}{d x^{m}}\left(e^{x h(t)}\right)=\left(x h_{1}(t)+x^{2} h_{1}(t)+\cdots+x^{m} h_{m}(t)\right) e^{x h(t)} \tag{18}
\end{equation*}
$$

where every $h_{i}(t)$ is a product of derivatives of $h(t)$.
Let us denote $r(k, m, x)=\sum_{j=0}^{k}\binom{k}{j} p_{j+m}(x) s_{k-j}(1-x)$. Expanding $\frac{1}{s(h(t))} h_{i}(t) e^{h(t)}=\sum_{k \geq 0} \alpha_{i k} \frac{t^{k}}{k!}$, from (17) and (18) we get $r(k, m, x)=x \alpha_{1 k}+$ $x^{2} \alpha_{2 k}+\cdots+x^{m} \alpha_{m k}$.

Because $d_{k, n}(x)=r(n-k, k, x) / s_{n}(1)$ we obtain $\operatorname{deg}\left(d_{k, n}(x)\right)=k$.
Suppose that $p \in P_{m}$. Then $\left[0, \frac{1}{n}, \ldots, \frac{k}{n} ; p\right]=0$ for $k \geq m+1$, and using (15) we get $L_{n}^{Q, S}\left(P_{m}\right) \subseteq P_{m}$.

Remark 1. For $Q=D$ (it means that s_{n} is an Appell set A_{n}) we have $\theta=$ X, therefore in this case $d_{k, n}=\frac{A_{n-k}(1)}{A_{n}(1)} x^{k}$. This representation for operators constructed with Appell sequences was given by C. Manole in [5].

Theorem 4. Suppose that all the assumptions of Theorem 2 are true, then there exists $\theta_{1 n}, \theta_{2 n}, \theta_{3 n} \in[0,1]$ such that $\forall x \in[0,1]$ and $\forall f \in C[0,1]$ we have

$$
\left(L_{n}^{Q, S} f\right)(x)=f\left(a_{n} x\right)+\alpha(x, n)\left[\theta_{1 n}, \theta_{2 n}, \theta_{3 n} ; f\right]
$$

where $\alpha(x, n)=x^{2}\left(b_{n}-a_{n}^{2}\right)+x\left(a_{n}-b_{n}-c_{n}\right)$.
Proof. First we shall prove that $f\left(a_{n} x\right) \leq\left(L_{n}^{Q, S} f\right)(x)$ for every convex function f.

Let us denote $c_{k}=\frac{1}{s_{n}(1)}\binom{n}{k} p_{k}(x) s_{n-k}(1-x)$ and $x_{k}=\frac{k}{n}, k=0,1, \ldots, n$.
We have $c_{k} \geq 0, \sum_{k=0}^{n} c_{k}=1$ and $x_{k}>0, \forall k \in \mathbb{N}$. If f is a convex function then $f\left(\sum_{k=0}^{n} c_{k} x_{k}\right) \leq \sum_{k=0}^{n} c_{k} f\left(x_{k}\right)$; but

$$
\sum_{k=0}^{n} c_{k} x_{k}=\left(L_{n}^{Q, S} e_{1}\right)(x)=a_{n} x \quad \text { and } \quad \sum_{k=0}^{n} c_{k} f\left(x_{k}\right)=\left(L_{n}^{Q, S} f\right)(x)
$$

therefore we get $f\left(a_{n} x\right) \leq\left(L_{n}^{Q, S} f\right)(x)$.
If we consider the formula

$$
f\left(a_{n} x\right)=\left(L_{n}^{Q, S} f\right)(x)+\left(R_{n} f\right)(x)
$$

we have $\left(R_{n} f\right) \leq 0$ for every convex function f.
Since $\left(R_{n} e_{i}\right)(x)=0$ for $i=0,1$, the degree of exactness of the previous formula is one and then there exist $\theta_{1 n}, \theta_{2 n}, \theta_{3 n} \in[0,1]$ such that the remainder can be represented in the following form

$$
\left(R_{n} f\right)(x)=\left(R_{n} e_{2}\right)(x)\left[\theta_{1 n}, \theta_{2 n}, \theta_{3 n} ; f\right]
$$

where $\left(R_{n} e_{2}\right)(x)=x^{2}\left(a_{n}^{2}-b_{n}\right)+x\left(b_{n}+c_{n}-a_{n}\right)$, so we obtain the conclusion.

4. EXAMPLES

1. If $S=I$ then $s_{n}=p_{n}$ and in this case the operator defined by (2) becomes the binomial operator (1) introduced by Tiberiu Popoviciu in 9 .
1.1. For $Q=D$ the basic sequence is $p_{n}(x)=x^{n}$ and $L_{n}^{D, I}$ is the Bernstein operator B_{n}.
1.2. If Q is Abel operator $A=E^{-\beta} D$ we have $p_{n}(x)=x(x+n \beta)^{n-1}$ and $L_{n}^{A, I}$ is the second operator introduced by Cheney and Sharma in [1],

$$
\begin{aligned}
& \left(L_{n}^{A, I} f\right)(x)= \\
& =\frac{1}{(1+n \beta)^{n-1}} \sum_{k=0}^{n}\binom{n}{k} x(x+k \beta)^{k-1}(1-x)(1-x+(n-k) \beta)^{n-k-1} f\left(\frac{k}{n}\right)
\end{aligned}
$$

1.3. For Laguerre delta operator $L=\frac{D}{D+I}$ the basic sequence is $l_{n}(x)=$ $\sum_{k=0}^{n}\binom{n}{k} \frac{(n-1)!}{(k-1)!} x^{k}$ and the coresponding binomial operator has been considered by T. Popoviciu.
1.4. The delta operator $Q=\frac{1}{\alpha} \nabla_{\alpha}=\frac{1}{\alpha}\left(I-E^{-\alpha}\right)$ has the basic sequence $p_{n}(x)=x^{[n,-\alpha]}=x(x+\alpha) \ldots(x+(n-1) \alpha)$ and in this case we obtain the operator

$$
\left(S_{n} f\right)(x)=\frac{1}{11^{[n,-\alpha]}} \sum_{k=0}^{n}\binom{n}{k} x^{[k,-\alpha]}(1-x)^{[n-k,-\alpha]} f\left(\frac{k}{n}\right)
$$

which has been introduced and investigated in detail by D. D. Stancu in [14], [16] and other papers.
1.5. The exponential polynomials $t_{n}(x)=\sum_{k=0}^{n} S(n, k) x^{k}=$
$e^{-x} \sum_{k=0}^{\infty} \frac{k^{n} x^{k}}{k!}$, where $S(n, k)$ denote the Stirling numbers of the second kind, are basic polynomials for the delta operator $T=\ln (I+D)$. The approximation operator construct by means of the exponential polynomials

$$
\left(L_{n}^{T} f\right)(x)=\frac{1}{t_{n}(1)} \sum_{k=0}^{n}\binom{n}{k} t_{k}(x) t_{n-k}(1-x) f\left(\frac{k}{n}\right)
$$

was studied by C. Manole in 5 .
1.6. If we take the delta operator $Q=G=\frac{1}{\alpha} E^{-\beta} \nabla_{\alpha}=\frac{1}{\alpha}\left(E^{-\beta}-\right.$ $\left.E^{-\alpha-\beta}\right)$ its basic sequence is $p_{n}(x)=x(x+\alpha+n \beta)^{[n-1,-\alpha]}$ and the operator

$$
\begin{aligned}
& \left(L_{n}^{G} f\right)(x)=\frac{1}{(1+n \beta)^{[n,-\alpha]}} . \\
& \cdot \sum_{k=0}^{n}\binom{n}{k} x(x+\alpha+k \beta)^{[k-1,-\alpha]}(1-x)(1-x+(n-k) \beta)^{[n-k,-\alpha]} f\left(\frac{k}{n}\right)
\end{aligned}
$$

was investigated by D. D. Stancu, G. Moldovan. In [18] D. D. Stancu and M. R. Occorsio have studied this operator with the nodes $\frac{k+\gamma}{n+\delta}, 0 \leq \gamma \leq \delta$.
2. If $Q=D$ and S is an invertible shift invariant operator then $p_{n}(x)=x^{n}$ and $s_{n}=A_{n}=S^{-1} x^{n}$ is an Appell set. The operator of the form

$$
\left(L_{n}^{D, S} f\right)(x)=\frac{1}{A_{n}(1)} \sum_{k=0}^{n}\binom{n}{k} x^{k} A_{n-k}(1-x) f\left(\frac{k}{n}\right)
$$

was introduced and investigated by C. Manole in [5].
2.1. If $S=(I+D)^{-1}$ the coresponding Appell set is $A_{n}(x)=x^{n}+n x^{n-1}$ and then

$$
\left(L_{n}^{D,(I+D)^{-1}} f\right)(x)=\frac{1}{n+1} \sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k}(n-k+1-x) f\left(\frac{k}{n}\right)
$$

3. If we take $Q=A=E^{-\beta} D$ and $S=E^{\beta} Q^{\prime}=I-\beta D$ then $p_{n}(x)=$ $x(x+n \beta)^{n-1}$ is the basic sequence for Q and $s_{n}(x)=(x+n \beta)^{n}$ a Sheffer set for Q we obtain the first operator introduced by Cheney and Sharma in [1]:

$$
\left(L_{n}^{A, I-\beta D} f\right)(x)=\frac{1}{(1+n \beta)^{n}} \sum_{k=0}^{n}\binom{n}{k} x(x+k \beta)^{k-1}(1-x+(n-k) \beta)^{n-k} f\left(\frac{k}{n}\right)
$$

4. For $Q=\frac{1}{\alpha} E^{-\beta} \nabla_{\alpha}=\frac{1}{\alpha}\left(E^{-\beta}-E^{-\alpha-\beta}\right)$ and $S=E^{\alpha+\beta} Q^{\prime}=\frac{1}{\alpha}((\alpha+\beta) I-$ βE^{α}) we have $p_{n}(x)=x(x+\alpha+n \beta)^{[n-1,-\alpha]}$ and $s_{n}(x)=(x+n \beta)^{[n,-\alpha]}$ therefore the operator $L_{n}^{Q, S}$ in this case is

$$
\begin{aligned}
& \left(L_{n}^{[\alpha, \beta]} f\right)(x)= \\
& =\frac{1}{(1+n \beta)^{[n,-\alpha]}} \sum_{k=0}^{n}\binom{n}{k} x(x+\alpha+k \beta)^{[k-1,-\alpha]}(1-x+(n-k) \beta)^{[n-k,-\alpha]} f\left(\frac{k}{n}\right)
\end{aligned}
$$

If we replace x with $s(x)$ we obtain a operator which has been studied by G. Moldovan in [6]. He has found the value of this operator for the monomials e_{i} for $i=1$, 2 using some generalized identities of Vandermonde type.

We want to find the sequences a_{n}, b_{n}, c_{n}, which appears in $\left(L_{n}^{[\alpha, \beta]} e_{i}\right)(x)$, using relations (9).

The Pincherle derivative of Q is

$$
Q^{\prime}=-\frac{\beta}{\alpha} E^{-\beta}+\left(1+\frac{\beta}{\alpha}\right) E^{-\alpha-\beta}=E^{-\alpha-\beta}\left(I-\frac{\beta}{\alpha} \Delta_{\alpha}\right)
$$

so

$$
\left(Q^{\prime}\right)^{-1}=E^{\alpha+\beta} \sum_{k \geq 0} \beta^{k}\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{k}
$$

Since $s_{n-1}(x)=(x+(n-1) \beta)^{[n-1,-\alpha]}=E^{(n-2) \alpha+(n-1) \beta} x^{[n-1, \alpha]}$ and $x^{[n, \alpha]}=$ $x(x-1) \ldots(x-(n-1) \alpha)$ is the basic sequence for the delta operator $\frac{\Delta_{\alpha}}{\alpha}$, we have $\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{k} s_{n-1}(x)=E^{(n-2) \alpha+(n-1) \beta}\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{k} x^{[n-1, \alpha]}=(n-1)^{[k]} E^{(n-2) \alpha+(n-1) \beta}$. $\cdot x^{[n-1-k, \alpha]}$. Because $a_{n}=\frac{\left[\left(Q^{\prime}\right)^{-1} s_{n-1}\right](1)}{s_{n}(1)}$ we get

$$
a_{n}=\sum_{k=0}^{n-1}\binom{n-1}{k} \frac{k!\beta^{k}}{(1+n \beta)^{[k+1,-\alpha]}}
$$

Since $b_{n}=\frac{n-1}{n} \frac{\left[\left(Q^{\prime}\right)^{-2} s_{n-2}\right](1)}{s_{n}(1)}$ and

$$
\left(Q^{\prime}\right)^{-2}=E^{2 \alpha+2 \beta}\left(I-\frac{\beta}{\alpha} \Delta_{\alpha}\right)^{-2}=E^{2 \alpha+2 \beta} \sum_{k \geq 0}(k+1) \beta^{k}\left(\frac{\Delta_{\alpha}}{\alpha}\right)^{k}
$$

we obtain

$$
b_{n}=\frac{n-1}{n} \sum_{k=0}^{n-2}\binom{n-2}{k} \frac{(k+1)!\beta^{k}}{(1+n \beta)^{[k+2,-\alpha]}} .
$$

The Pincherle derivative of S^{-1} may be written in the form

$$
\begin{aligned}
\left(S^{-1}\right)^{\prime} & =-(\alpha+\beta) E^{-\alpha-\beta}\left(Q^{\prime}\right)^{-1}-E^{-\alpha-\beta}\left(Q^{\prime}\right)^{-2} Q^{\prime \prime} \\
& =-E^{-\alpha-\beta}\left(Q^{\prime}\right)^{-2}\left((\alpha+\beta) Q^{\prime}+Q^{\prime \prime}\right)
\end{aligned}
$$

Because $Q^{\prime \prime}=\frac{1}{\alpha}\left(\beta^{2} E^{-\beta}-(\alpha+\beta)^{2} E^{-\alpha-\beta}\right)$ and $(\alpha+\beta) Q^{\prime}+Q^{\prime \prime}=-\beta E^{-\beta}$ this implies

$$
\begin{aligned}
\left(Q^{\prime}\right)^{-2}\left(S^{-1}\right)^{\prime} S & =\beta\left(Q^{\prime}\right)^{-3} E^{-\beta} \\
& =\beta E^{3 \alpha+2 \beta}\left(I-\frac{\beta}{\alpha} \Delta_{\alpha}\right)^{-3} \\
& =E^{3 \alpha+2 \beta} \sum_{k \geq 0} \frac{(k+1)(k+2)}{2} \beta^{k+1}\left(\frac{1}{\alpha} \Delta_{\alpha}\right)^{k}
\end{aligned}
$$

From (9) and the previous relation we get

$$
c_{n}=\frac{n-1}{2 n}\left((1+n \alpha+n \beta) \sum_{k=0}^{n-3}\binom{n-2}{k} \frac{(k+2)!\beta^{k+1}}{(1+n \beta)^{[k+3,-\alpha]}}+\frac{n!\beta^{n-1}}{(1+n \beta)^{[n,-\alpha]}}\right) .
$$

5. EVALUATION OF THE ORDERS OF APPROXIMATION

Now we establish some estimates of the order of approximation of a function $f \in C[0,1]$ by means of the operator $L_{n}^{Q, S}$, defined by (2).

According to a result of O. Shisha and B. Mond [13], we can write

$$
\left|f(x)-\left(L_{n}^{Q, S} f\right)(x)\right| \leq\left[1+\frac{1}{\delta^{2}} L_{n}^{Q, S}\left((t-x)^{2} ; x\right)\right] \omega_{1}(f ; \delta), \quad \delta \in \mathbb{R}^{+}
$$

Using the relations (8) we have

$$
L_{n}^{Q, S}\left((t-x)^{2} ; x\right)=x^{2}\left(b_{n}-2 a_{n}+1\right)+x\left(a_{n}-b_{n}-c_{n}\right)
$$

so we get

$$
\left|f(x)-\left(L_{n}^{Q, S} f\right)(x)\right| \leq\left[1+\frac{1}{\delta^{2}}\left[x^{2}\left(b_{n}-2 a_{n}+1\right)+x\left(a_{n}-b_{n}-c_{n}\right)\right]\right] \omega_{1}(f ; \delta)
$$

One observes that if $b_{n}-2 a_{n}+1<0$ then $x^{2}\left(b_{n}-2 a_{n}+1\right)+x\left(a_{n}-b_{n}-c_{n}\right)$
$\leq \frac{\left(a_{n}-b_{n}-c_{n}\right)^{2}}{4\left(2 a_{n}-b_{n}-1\right)}, \forall x \in[0,1]$.
By choosing $\delta=\frac{1}{\sqrt{n}}$ we can state
Theorem 5. If $f \in C[0,1]$ and $\exists k \in \mathbb{N}$ such as $b_{n}-2 a_{n}+1<0, \forall n \geq k$, then we can give the following estimation of the order of approximation, by means of the first modulus of continuity

$$
\left\|f-L_{n}^{Q, S} f\right\| \leq\left(1+\frac{n}{4} \frac{\left(a_{n}-b_{n}-c_{n}\right)^{2}}{\left(2 a_{n}-b_{n}-1\right)}\right) \omega_{1}\left(f ; \frac{1}{\sqrt{n}}\right), \quad n \geq k,
$$

where a_{n}, b_{n}, c_{n} are defined by (9).
In the case of binomial operators of positive type defined by (1), since $S^{\prime}=I^{\prime}=O$ we have

$$
\begin{equation*}
a_{n}=1, \quad c_{n}=0, \quad b_{n}=\frac{n-1}{n} \frac{\left[\left(Q^{\prime}\right)^{-2} p_{n-2}\right](1)}{p_{n}(1)} \tag{19}
\end{equation*}
$$

Then $b_{n}-2 a_{n}+1=b_{n}-1<0, \forall n \in \mathbb{N}$ therefore the previous inequality reduces to

$$
\left\|f-L_{n} f\right\| \leq\left(\frac{5}{4}+\frac{n}{4} d_{n}\right) \omega_{1}\left(f ; \frac{1}{\sqrt{n}}\right)
$$

where

$$
\begin{equation*}
d_{n}=\frac{n-1}{n}-b_{n}=\frac{n-1}{n}\left(1-\frac{\left[\left(Q^{\prime}\right)^{-2} p_{n-2}\right](1)}{p_{n}(1)}\right) \tag{20}
\end{equation*}
$$

We mention that this inequality was established by D. D. Stancu in [18.
In order to find an evaluation of the order of approximation using both moduli of smoothness ω_{1} and ω_{2} we can use a result of H. H. Gonska and R. K. Kovacheva included in the following

Lemma 3. [2]. If $I=[a, b]$ is a compact interval of the real axis and $I_{1}=$ $\left[a_{1}, b_{1}\right]$ is a subinterval of it, and if we assume that $L: C(I) \rightarrow C\left(I_{1}\right)$ is a positive operator, such that $L e_{0}=e_{0}$ and $0 \leq \delta \leq \frac{1}{2}(b-a)$, then we have

$$
\begin{aligned}
|f(x)-L(f(t) ; x)| \leq & \frac{2}{\delta}|L(t-x ; x)| \omega_{1}(f ; \delta)+ \\
& +\frac{3}{2}\left[1+\frac{1}{\delta}|L(t-x ; x)|+\frac{1}{2 \delta^{2}} L\left((t-x)^{2} ; x\right)\right] \omega_{2}(f ; \delta) .
\end{aligned}
$$

Using the relations (8) we obtain the inequality

$$
\begin{aligned}
& \left|f(x)-\left(L_{n}^{Q, S} f\right)(x)\right| \leq \frac{2}{\delta}\left|\left(a_{n}-1\right) x\right| \omega_{1}(f ; \delta)+ \\
& +\frac{3}{2}\left[1+\frac{1}{\delta}\left|\left(a_{n}-1\right) x\right|+\frac{1}{2 \delta^{2}}\left[x^{2}\left(b_{n}-2 a_{n}+1\right)+x\left(a_{n}-b_{n}-c_{n}\right)\right]\right] \omega_{2}(f ; \delta) .
\end{aligned}
$$

If $b_{n}-2 a_{n}+1<0$ the previous inequality implies

$$
\left\|f-L_{n}^{Q, S} f\right\| \leq \frac{2}{\delta}\left(1-a_{n}\right) \omega_{1}(f ; \delta)+\frac{3}{2}\left[1+\frac{1}{\delta}\left(1-a_{n}\right)+\frac{1}{8 \delta^{2}} \frac{\left(a_{n}-b_{n}-c_{n}\right)^{2}}{\left(2 a_{n}-b_{n}-1\right)}\right] \omega_{2}(f ; \delta) .
$$

By choosing $\delta=\frac{1}{\sqrt{n}}$ we get

$$
\begin{aligned}
\left\|f-L_{n}^{Q, S} f\right\| \leq & 2 \sqrt{n}\left(1-a_{n}\right) \omega_{1}\left(f ; \frac{1}{\sqrt{n}}\right)+ \\
& +\frac{3}{2}\left[1+\sqrt{n}\left(1-a_{n}\right)+\frac{n}{8} \frac{\left(a_{n}-b_{n}-c_{n}\right)^{2}}{\left(2 a_{n}-b_{n}-1\right)}\right] \omega_{2}\left(f ; \frac{1}{\sqrt{n}}\right) .
\end{aligned}
$$

If we consider the binomial operator introduced by Tiberiu Popoviciu, using (19) and the previous relation, we arrive at an inequality which has found by D. D. Stancu (see [18])

$$
\left\|f-L_{n} f\right\| \leq \frac{3}{16}\left(9+n d_{n}\right) \omega_{2}\left(f ; \frac{1}{\sqrt{n}}\right),
$$

where d_{n} is defined by (20).

REFERENCES

[1] Cheney, E. W. and Sharma, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5, pp. 77-82, 1964.
[2] Gonska, H. H. and Kovacheva, R. K., The second order modulus revisited: remarks, applications, problems, Conferenze del Seminario di Matematica Univ. Bari, 257, pp. 132, 1994.
[3] Lupaş, L. and Lupaş, A., Polynomials of binomial type and approximation operators, Studia Univ. Babes-Bolyai, Mathematica, 32, pp. 61-69, 1987.
[4] Lupaş, A., Approximation operators of binomial type, Proc. IDoMAT 98, International Series of Numerical Mathematics, ISNM 132, Birkhäuser Verlag, Basel, pp. 175-198, 1999.
[5] Manole, C., Developments in series of generalized Appell polynomials, with applications to the approximation of functions, Ph.D. Thesis, Cluj-Napoca, Romania, 1984 (in Romanian).
[6] Moldovan, G., Generalizations of the S. N. Bernstein operators, Ph.D. Thesis, ClujNapoca, Romania, 1971 (in Romanian).
[7] Moldovan, G., Discrete convolutions and positive operators I, Annales Univ. Sci. Budapest R. Eötvös, 15, pp. 31-34, 1972.
[8] Mullin, R. and Rota, G. C., On the foundations of combinatorial theory III, theory of binomial enumeration, in: B. Harris, ed., Graph Theory and Its Applications, Academic Press, New York, pp. 167-213, 1970.
[9] Popoviciu, T., Remarques sur les poynômes binomiaux, Bul. Soc. Ştiinte Cluj, 6, pp 146-148, 1931.
[10] Roman, S., Operational formulas, Linear and Multilinear Algebra, 12, pp. 1-20, 1982.
[11] Rota, G. C., Kahaner, D. and Odlyzko, A., Finite operator calculus, J. Math. Anal. Appl., 42, pp. 685-760, 1973.
[12] Sablonnière, P., Positive Bernstein-Sheffer operators, J. Approx. Theory, 83, pp. 330-341, 1995.
[13] Shisha, O. and Mond, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60, pp. 1196-1200, 1968.
[14] Stancu, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures Appl., 13, pp. 1173-1194, 1968.
[15] Stancu, D. D., On a generalization of the Bernstein polynomials, Studia Univ. BabeşBolyai, Cluj, 14, pp. 31-45, 1969.
[16] Stancu, D. D., Approximation properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, 15, pp. 31-38, 1970.
[17] Stancu, D. D., Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. Conf. Oberwolfach 1971 ISNM 16, Birkhäuser-Verlag, Basel, pp. 187-203, 1972.
[18] Stancu, D. D. and Occorsio, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27 no.1, pp. 167-181, 1998. ㅈ
[19] Stancu, D. D. and Cismaşiu, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26, pp. 221-227, 1997. [ᄌㅣ

Received September 12, 2000.

[^0]: "T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania, e-mail: craciun@ictp-acad.math.ubbcluj.ro.

