REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 30 (2001) no. 2, pp. 135-150 ictp.acad.ro/jnaat

APPROXIMATION OPERATORS CONSTRUCTED BY MEANS OF SHEFFER SEQUENCES

MARIA CRĂCIUN

Abstract. In this paper we introduce a class of positive linear operators by using the "umbral calculus", and we study some approximation properties of it. Let Q be a delta operator, and S an invertible shift invariant operator. For $f \in C[0, 1]$ we define

$$(L_n^{Q,S}f)(x) = \frac{1}{s_n(1)} \sum_{k=0}^n {n \choose k} p_k(x) s_{n-k}(1-x) f\left(\frac{k}{n}\right),$$

where $(p_n)_{n\geq 0}$ is a binomial sequence which is the basic sequence for Q, and $(s_n)_{n\geq 0}$ is a Sheffer set, $s_n = S^{-1}p_n$. These operators generalize the binomial operators of T. Popoviciu.

MSC 2000. 41A36, 05A40.

1. INTRODUCTION

Let P be the linear space of all polynomials with real coefficients, and P_n the linear space of all polynomials of degree at most n.

We will consider some linear operators defined on P. We will denote by I the identity and by D the derivative. The shift operator $E^a : P \to P$ is defined by $E^a p(x) = p(x+a)$.

A linear operator T which commutes with all shift operators is called a *shift* invariant operator. In symbols, $E^aT = TE^a$, for all real a.

Let us remind that if T_1 and T_2 are shift invariant operators, then $T_1T_2 = T_2T_1$.

DEFINITION 1. A shift invariant operator for which $Qx = const \neq 0$ is called a delta operator.

By a *polynomial sequence* we shall denote a sequence of polynomials $p_n(x)$, $n = 0, 1, 2, \ldots$ where $p_n(x)$ is of degree exactly n for all n.

[&]quot;T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68–1, 3400 Cluj-Napoca, Romania, e-mail: craciun@ictp-acad.math.ubbcluj.ro.

A sequence of *binomial type* is a polynomial sequence $(p_n)_{n\geq 0}$ with $p_0(x) = 1$ and satisfying the identities

$$p_{n}(x+y) = \sum_{k=0}^{n} {n \choose k} p_{k}(x) p_{n-k}(y),$$

for all x, y and n = 0, 1, 2, ...

DEFINITION 2. Let Q be a delta operator and $(p_n(x))_{n\geq 0}$ a polynomial sequence. If

- i) $p_0(x) = 1$,
- ii) $p_n(0) = 0, \ n = 1, 2, \dots,$
- iii) $Qp_n = np_{n-1}, n = 1, 2, \dots,$

then (p_n) is called the sequence of basic polynomials for Q.

PROPOSITION 1. [8].

- i) Every delta operator has a unique sequence of basic polynomials.
- ii) If $p_n(x)$ is a basic sequence for some delta operator Q, then it is binomial.
- iii) If $p_n(x)$ is a binomial sequence, then it is a basic sequence for some delta operator Q.

Let X be the multiplication operator defined as (Xp)(x) = xp(x) for every polynomial p.

For any operator T defined on P, the operator T' = TX - XT is called the *Pincherle derivative* of the operator T.

PROPOSITION 2. [8].

- i) If T is a shift invariant operator, then its Pincherle derivative is also a shift invariant operator.
- ii) If Q is a delta operator, then its Pincherle derivative Q' is an invertible operator.

PROPOSITION 3. [8], [11]. If $(p_n(x))_{n\geq 0}$ is a sequence of basic polynomials for the delta operator Q then

i)
$$p_n(x) = X(Q')^{-1}p_{n-1}(x), n = 1, 2, ...,$$

ii) $p_n(x) = x \sum_{k=0}^{n-1} {n-1 \choose k} p_{n-1-k}(x) p'_{k+1}(0), n = 1, 2, ...$

DEFINITION 3. A polynomial sequence $(s_n(x))_{n\geq 0}$ is called a Sheffer set relative to the delta operator Q if:

- i) $s_0(x) = const \neq 0$
- ii) $Qs_n = ns_{n-1}, n = 1, 2, \dots$

An Appel set is a Sheffer set relative to the derivative D.

PROPOSITION 4. [11]. Let Q be a delta operator with basic polynomial set $(p_n(x))_{n\geq 0}$ and $(s_n(x))_{n\geq 0}$ a polynomial sequence. The next statements are equivalent:

- i) $s_n(x)$ is a Sheffer set relative to Q.
- ii) There exists an invertible shift invariant operator S such that $s_n(x) = S^{-1}p_n(x)$.
- iii) For all $x, y \in \mathbb{R}$ and n = 0, 1, 2, ..., the following identity holds:

$$s_n(x+y) = \sum_{k=0}^n {n \choose k} p_k(x) s_{n-k}(y).$$

From the previous Proposition it results that the pair (Q, S) gives us a unique Sheffer set.

2. THE OPERATORS CONSTRUCTED BY MEANS OF SHEFFER POLYNOMIALS AND THEIR CONVERGENCE

In 1931 in [9] Tiberiu Popoviciu has used binomial sequences in order to construct some operators of the form

(1)
$$(L_n f)(x) = \frac{1}{p_n(1)} \sum_{k=0}^n {n \choose k} p_k(x) p_{n-k}(1-x) f(\frac{k}{n})$$

where $f \in C[0, 1]$ and $x \in [0, 1]$. These operators are called *binomial operators*.

Such operators and their generalizations have been studied by the Romanian mathematicians as: D. D. Stancu, A. Lupaş, L. Lupaş, G. Moldovan, C. Manole, O. Agratini, A. Vernescu, and others.

Let Q be a delta operator and S an invertible shift invariant operator. Let $(p_n(x))_{n\geq 0}$ be the sequence of basic polynomials for Q, and $(s_n(x))_{n\geq 0}$ a Sheffer set relative to Q, $s_n = S^{-1}p_n$ with $s_n(1) \neq 0$ for any positive integer n.

In this note we want to study the operators $L_n^{Q,S}: C[0,1] \to C[0,1],$

(2)
$$(L_n^{Q,S}f)(x) = \frac{1}{s_n(1)} \sum_{k=0}^n {n \choose k} p_k(x) s_{n-k}(1-x) f\left(\frac{k}{n}\right)$$

Because $p_k(0) = \delta_{k,0}$ (from the definition of basic polynomials), we have $(L_n^{Q,S} f)(0) = f(0)$.

In order to evaluate expression $(L_n^{Q,S}e_m)(x)$, where $e_m(x) = x^m$ we shall make use of C. Manole's method for binomial operators (see [5]) which we have adapted to our purposes.

Let us introduce the polynomials

(3)
$$S_m(x,y,n) = \sum_{k=0}^n {n \choose k} p_k(x) s_{n-k}(y) \left(\frac{k}{n}\right)^m$$

From Proposition 4 iii) we have $S_0(x, y, n) = s_n(x+y)$.

In the following we consider that x is the variable. Let us denote $\theta = X(Q')^{-1}$.

From Proposition 3 i) it results that $\theta p_k(x) = p_{k+1}(x)$ and consequently the linear operator θ is called the *shift operator* for the sequence $(p_n)_{n\geq 0}$ (see [10]). Therefore $\theta Q p_k(x) = \theta(k p_{k-1}(x)) = k p_k(x)$; consequently k is an eigenvalue for the operator θQ , with its eigenvector $p_k(x)$. We have

(4)
$$(\theta Q)^m = k^m p_k(x)$$

for every positive integer m, and then

$$S_m(x, y, n) = \frac{1}{n^m} (\theta Q)^m \sum_{k=0}^n {n \choose k} p_k(x) s_{n-k}(y)$$

= $\frac{1}{n^m} (\theta Q)^m S_0(x, y, n) = \frac{1}{n^m} (\theta Q)^m s_n(x+y).$

In this way we obtain

(5)
$$S_m(x,y,n) = \frac{1}{n^m} (\theta Q)^m E^y s_n(x)$$

Using the operational formula (see for instance [10])

$$(\theta Q)^m = \sum_{k=0}^n S(m,k)\theta^k Q^k,$$

where $S(m,k) = [0, 1, ..., k; e_m]$ are the Stirling numbers of the second kind, relation (5) becomes:

(6)
$$S_m(x, y, n) = \frac{1}{n^m} \sum_{k=0}^n S(m, k) \theta^k Q^k E^y s_n(x).$$

Because Q is shift invariant and $Q^k s_n(x) = n(n-1) \dots (n-k+1) s_{n-k}(x) = n^{[k]} s_{n-k}(x)$ we obtain

(7)
$$S_m(x,y,n) = \frac{1}{n^m} \sum_{k=0}^n {n \choose k} k! S(m,k) \theta^k E^y s_{n-k}(x), \ \forall m \in \mathbb{N}^*$$

Theorem 1. If $L_n^{Q,S}$ is the linear operator defined by (2) then

(8)

$$(L_n^{Q,S}e_0)(x) = e_0(x)$$

$$(L_n^{Q,S}e_1)(x) = a_n e_1(x)$$

$$(L_n^{Q,S}e_2)(x) = b_n x^2 + x(a_n - b_n - c_n),$$

where

(9)
$$a_{n} = \frac{[(Q')^{-1}s_{n-1}](1)}{s_{n}(1)},$$
$$b_{n} = \frac{n-1}{n} \frac{[(Q')^{-2}s_{n-2}](1)}{s_{n}(1)},$$
$$c_{n} = \frac{n-1}{n} \frac{[(Q')^{-2}(S^{-1})'Ss_{n-2}](1)}{s_{n}(1)}$$

Proof. Using the notation (3) we can write

(10)
$$(L_n^{Q,S}e_m)(x) = S_m(x,1-x,n)/s_n(1).$$

Because $S_0(x, 1-x, n) = s_n(1)$ we have $(L_n^{Q,S}e_0)(x) = e_0(x)$. As we have

(11)
$$\theta E^{y} s_{n-1}(x) = X(Q')^{-1} E^{y} s_{n-1}(x) = X E^{y}(Q')^{-1} s_{n-1}(x),$$

we obtain from (7): $S_1(x, 1-x, n) = x[(Q')^{-1}s_{n-1}](1)$; consequently we get:

$$(L_n^{Q,S}e_1)(x) = \frac{[(Q')^{-1}s_{n-1}](1)}{s_n(1)}x.$$

Using the Pincherle derivative of the shift operator E^y

(12)
$$(E^y)' = yE^y = E^yX - XE^y$$

we can write

$$\theta E^{y} s_{n-k}(x) = E^{y} X(Q')^{-1} s_{n-k}(x) - y E^{y}(Q')^{-1} s_{n-k}(x)$$

Then

(13)
$$\theta^2 E^y s_{n-k}(x) = X E^y (Q')^{-1} E^y X (Q')^{-1} s_{n-k}(x) - y X E^y (Q')^{-2} s_{n-k}(x)$$

Because $s_{n-k} = S^{-1}p_{n-k}$, $XS^{-1} = S^{-1}X - (S^{-1})'$ (from the definition of Pincherle derivative) and $(Q')^{-1}p_{n-k}(x) = p_{n-k+1}(x)/x$ (from Proposition 3 i), we obtain

(14)
$$\theta^2 E^y s_{n-k}(x) = X E^y (Q')^{-1} s_{n-k+1}(x) - X E^y (Q')^{-2} (S^{-1})' S s_{n-k}(x) - y X E^y (Q')^{-2} s_{n-k}(x).$$

Replacing (11) and (14) in (7) we can write

$$S_{2}(x, y, n) = xE^{y}(Q')^{-1}s_{n-1}(x) - \frac{n-1}{n} [xE^{y}(Q')^{-2}(S^{-1})'Ss_{n-2}(x) - yxE^{y}(Q')^{-2}s_{n-2}(x)]$$

From (10) and the previous relation one obtains expression $L_n^{Q,S}e_2$ from theorem's conclusion.

LEMMA 1. Let Q be a delta operator and S an invertible shift invariant operator. Let $(p_n(x))_{n\geq 0}$ be the sequence of basic polynomials for Q and $(s_n(x))_{n\geq 0}$ a Sheffer set relative to Q, $s_n = S^{-1}p_n$ with $s_n(1) \neq 0$ for any positive integer n. If $p'_k(0) \geq 0$ and $s_k(0) \geq 0$ for n = 0, 1, 2, ... then the operator $L_n^{Q,S}$ defined by (2) is positive.

Proof. If $p'_k(0) \ge 0$ using Proposition 3 ii), it is easy to prove by induction that $p_k(x) \ge 0, \forall k \in \mathbb{N}$ and $\forall x \in [0, 1]$.

If we consider x = 0 in Proposition 4 iii) we obtain

$$s_{n}(x) = \sum_{k=0}^{n} {n \choose k} p_{k}(x) s_{n-k}(0);$$

accordingly, for $s_k(0) \ge 0$ and $p_k(x) \ge 0$, $\forall k \in \mathbb{N}, \forall x \in [0,1]$, we have $s_k(x) \ge 0, \forall k \in \mathbb{N}$ and $\forall x \in [0,1]$. Therefore the operator $L_n^{Q,S}$ is positive. \Box

LEMMA 2. If the operator $L_n^{Q,S}$ is positive, then $a_n \in [0,1]$, $b_n \leq 1$ and $0 \leq c_n \leq \min\{\frac{1-b_n}{2}, a_n - a_n^2\}, \forall n \in \mathbb{N}$, where a_n, b_n and c_n are defined by (9).

Proof. Since $0 \leq e_1(t) \leq 1$, $\forall t \in [0,1]$ and the operator $L_n^{Q,S}$ is positive, we have $0 \leq (L_n^{Q,S}e_1)(x) \leq 1$, $\forall x \in [0,1]$, and as $(L_n^{Q,S}e_1)(x) = a_n x$, we get $a_n \in [0,1]$.

From $t(1-t) \ge 0$ it results that $(L_n^{Q,S}e_1)(x) - (L_n^{Q,S}e_2)(x) \ge 0$, which leads to $x(1-x)b_n + xc_n \ge 0, \forall x \in [0,1]$ and choosing x = 1, we get $c_n \ge 0$.

Since $t^2 - t + 1/4 \ge 0$, we obtain $(L_n^{Q,S}e_2)(x) - (L_n^{Q,S}e_1)(x) + (L_n^{Q,S}e_0)(x)/4$ $\ge 0, \forall x \in [0, 1]$, relation equivalent to $x^2b_n - xb_n - xc_n + 1/4 \ge 0, \forall x \in [0, 1]$. If we consider x = 1/2, it results that $c_n \le (1 - b_n)/2$ and because $c_n \ge 0$ we get $b_n \le 1$.

Finally, from the Schwarz's inequality,

$$[(L_n^{Q,S}e_1)(x)]^2 \le (L_n^{Q,S}e_2)(x)(L_n^{Q,S}e_0)(x),$$

we have $a_n^2 x^2 \le b_n x^2 + x(a_n - b_n - c_n), \forall x \in [0, 1]$. For x = 1 that implies $c_n \le a_n - a_n^2$.

THEOREM 2. Let Q be a delta operator and S an invertible shift invariant operator. Let $(p_n(x))_{n\geq 0}$ be the sequence of basic polynomials for Q, with $p'_n(0) \geq 0, \forall n \in \mathbb{N}$, and $(s_n(x))_{n\geq 0}$ a Sheffer set relative to Q, $s_n = S^{-1}p_n$ with $s_n(1) \neq 0$ and $s_n(0) \geq 0, \forall n \in \mathbb{N}$. If $f \in C[0,1]$ and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 1$, where a_n and b_n are defined by (9), then the operator $L_n^{Q,S}$ converges to the function f, uniformly on the interval [0,1].

Proof. If $\lim_{n\to\infty} a_n = 1$ then $\lim_{n\to\infty} (L_n^{Q,S}e_1)(x) = e_1(x)$. From Lemma 2, $c_n \leq a_n - a_n^2$ so we have $\lim_{n\to\infty} c_n = 0$, and as $\lim_{n\to\infty} b_n = 1$, we get $\lim_{n\to\infty} (L_n^{Q,S}e_2)(x) = e_2(x)$. Therefore $\lim_{n\to\infty} (L_n^{Q,S}e_i)(x) = e_i(x)$ for i = 0, 1, 2 so we can use the convergence criterion of Bohman–Korokvin. \Box

3. Representations of the operator ${\cal L}_n^{Q,S}$

THEOREM 3. The operator $L_n^{Q,S}$ can be represented in the form

(15)
$$(L_n^{Q,S}f)(x) = \sum_{k=0}^n \frac{k!}{n^k} {n \choose k} \left[0, \frac{1}{n}, \dots, \frac{k}{n}; f \right] d_{k,n}(x),$$

where

$$d_{k,n}(x) = \frac{1}{s_n(1)} (\theta^k E^{1-x} s_{n-k})(x).$$

Moreover $L_n^{Q,S}(P_m) \subseteq P_m, \forall m \in \mathbb{N}.$

Proof. From the Newton interpolation formula we have

$$f\left(\frac{k}{n}\right) = \sum_{j=0}^{k} \frac{j!}{n^{j}} {k \choose j} \left[0, \frac{1}{n}, \dots, \frac{j}{n}; f\right]$$

If we denote $w_{k,n}(x,y) = \binom{n}{k} p_k(x) s_{n-k}(y)$ then

$$\sum_{k=0}^{n} w_{k,n}(x,y) f\left(\frac{k}{n}\right) = \sum_{k=0}^{n} \frac{k!}{n^{k}} \left[0, \frac{1}{n}, \dots, \frac{k}{n}; f\right] \sum_{j=k}^{n} {j \choose k} w_{j,n}(x,y).$$

But

$$\sum_{j=k}^{n} {\binom{j}{k}} w_{j,n}(x,y) = {\binom{n}{k}} \sum_{j=k}^{n} {\binom{n-k}{j-k}} p_j(x) s_{n-j}(y)$$
$$= {\binom{n}{k}} \sum_{j=0}^{n-k} {\binom{n-k}{j}} p_{j+k}(x) s_{n-k-j}(y)$$
$$= {\binom{n}{k}} \theta^k \sum_{j=0}^{n-k} {\binom{n-k}{j}} p_j(x) s_{n-k-j}(y)$$
$$= {\binom{n}{k}} \theta^k E^y s_{n-k}(x)$$

Since $(L_n^{Q,S}f)(x) = \frac{1}{s_n(1)} \sum_{k=0}^n w_{k,n}(x, 1-x) f(\frac{k}{n})$ we obtain (15). In order to show that $L_n^{Q,S}(P_m) \subseteq P_m$ we shall prove that $deg(d_{k,n}(x)) = k$.

In order to show that $L_n^{Q,S}(P_m) \subseteq P_m$ we shall prove that $deg(d_{k,n}(x)) = k$. We remind that if (p_n) is a basic sequence for Q = q(D) and h(t) is the compositional inverse of q(t), then the generating function for (p_n) is

(16)
$$\sum_{k=0}^{\infty} p_k(x) \frac{t^k}{k!} = e^{xh(t)}$$

and if $s_n = S^{-1}p_n$, with S = s(D) then

(17)
$$\sum_{k=0}^{\infty} s_k(x) \frac{t^k}{k!} = \frac{1}{s(h(t))} e^{xh(t)}$$

If we differentiate the relation (16) m times with respect to t, we get

(18)
$$\sum_{k=0}^{\infty} p_{k+m}(x) \frac{t^k}{k!} = \frac{d^m}{dx^m} (e^{xh(t)}) = (xh_1(t) + x^2h_1(t) + \dots + x^mh_m(t))e^{xh(t)},$$

where every $h_i(t)$ is a product of derivatives of h(t).

Let us denote $r(k, m, x) = \sum_{j=0}^{k} {k \choose j} p_{j+m}(x) s_{k-j}(1-x)$. Expanding $\frac{1}{s(h(t))} h_i(t) e^{h(t)} = \sum_{k \ge 0} \alpha_{ik} \frac{t^k}{k!}$, from (17) and (18) we get $r(k, m, x) = x \alpha_{1k} + x^2 \alpha_{2k} + \dots + x^m \alpha_{mk}$. Because $d_{k,n}(x) = r(n-k, k, x)/s_n(1)$ we obtain $deg(d_{k,n}(x)) = k$.

Suppose that $p \in P_m$. Then $\left[0, \frac{1}{n}, \dots, \frac{k}{n}; p\right] = 0$ for $k \ge m+1$, and using (15) we get $L_n^{Q,S}(P_m) \subseteq P_m$.

REMARK 1. For Q = D (it means that s_n is an Appell set A_n) we have $\theta = X$, therefore in this case $d_{k,n} = \frac{A_{n-k}(1)}{A_n(1)}x^k$. This representation for operators constructed with Appell sequences was given by C. Manole in [5].

THEOREM 4. Suppose that all the assumptions of Theorem 2 are true, then there exists θ_{1n} , θ_{2n} , $\theta_{3n} \in [0, 1]$ such that $\forall x \in [0, 1]$ and $\forall f \in C[0, 1]$ we have

$$(L_n^{Q,S}f)(x) = f(a_nx) + \alpha(x,n)[\theta_{1n}, \theta_{2n}, \theta_{3n}; f]$$

where $\alpha(x, n) = x^2(b_n - a_n^2) + x(a_n - b_n - c_n).$

Proof. First we shall prove that $f(a_n x) \leq (L_n^{Q,S} f)(x)$ for every convex function f.

Let us denote $c_k = \frac{1}{s_n(1)} {n \choose k} p_k(x) s_{n-k}(1-x)$ and $x_k = \frac{k}{n}, k = 0, 1, ..., n$.

We have $c_k \ge 0$, $\sum_{k=0}^{n} c_k = 1$ and $x_k > 0$, $\forall k \in \mathbb{N}$. If f is a convex function then $f(\sum_{k=0}^{n} c_k x_k) \le \sum_{k=0}^{n} c_k f(x_k)$; but

$$\sum_{k=0}^{n} c_k x_k = (L_n^{Q,S} e_1)(x) = a_n x \text{ and } \sum_{k=0}^{n} c_k f(x_k) = (L_n^{Q,S} f)(x)$$

therefore we get $f(a_n x) \leq (L_n^{Q,S} f)(x)$.

If we consider the formula

$$f(a_n x) = (L_n^{Q,S} f)(x) + (R_n f)(x)$$

we have $(R_n f) \leq 0$ for every convex function f.

Since $(R_n e_i)(x) = 0$ for i = 0, 1, the degree of exactness of the previous formula is one and then there exist $\theta_{1n}, \theta_{2n}, \theta_{3n} \in [0, 1]$ such that the remainder can be represented in the following form

$$(R_n f)(x) = (R_n e_2)(x)[\theta_{1n}, \theta_{2n}, \theta_{3n}; f]$$

where $(R_n e_2)(x) = x^2(a_n^2 - b_n) + x(b_n + c_n - a_n)$, so we obtain the conclusion. \Box

4. EXAMPLES

1. If S = I then $s_n = p_n$ and in this case the operator defined by (2) becomes the binomial operator (1) introduced by Tiberiu Popoviciu in [9].

1.1. For Q = D the basic sequence is $p_n(x) = x^n$ and $L_n^{D,I}$ is the Bernstein operator B_n .

1.2. If Q is Abel operator $A = E^{-\beta}D$ we have $p_n(x) = x(x+n\beta)^{n-1}$ and $L_n^{A,I}$ is the second operator introduced by Cheney and Sharma in [1],

$$(L_n^{A,I}f)(x) =$$

= $\frac{1}{(1+n\beta)^{n-1}} \sum_{k=0}^n {n \choose k} x(x+k\beta)^{k-1} (1-x)(1-x+(n-k)\beta)^{n-k-1} f\left(\frac{k}{n}\right)$

1.3. For Laguerre delta operator $L = \frac{D}{D+I}$ the basic sequence is $l_n(x) = \sum_{k=0}^{n} \binom{n}{(k-1)!} x^k$ and the corresponding binomial operator has been considered by T. Popoviciu.

1.4. The delta operator $Q = \frac{1}{\alpha} \nabla_{\alpha} = \frac{1}{\alpha} (I - E^{-\alpha})$ has the basic sequence $p_n(x) = x^{[n,-\alpha]} = x(x+\alpha) \dots (x+(n-1)\alpha)$ and in this case we obtain the operator

$$(S_n f)(x) = \frac{1}{1^{[n,-\alpha]}} \sum_{k=0}^n {n \choose k} x^{[k,-\alpha]} (1-x)^{[n-k,-\alpha]} f(\frac{k}{n})$$

which has been introduced and investigated in detail by D. D. Stancu in [14], [16] and other papers.

1.5. The exponential polynomials $t_n(x) = \sum_{k=0}^n S(n,k)x^k = e^{-x} \sum_{k=0}^{\infty} \frac{k^n x^k}{k!}$, where S(n,k) denote the Stirling numbers of the second kind, are basic polynomials for the delta operator $T = \ln(I+D)$. The approximation operator construct by means of the exponential polynomials

$$(L_n^T f)(x) = \frac{1}{t_n(1)} \sum_{k=0}^n {\binom{n}{k}} t_k(x) t_{n-k}(1-x) f(\frac{k}{n})$$

was studied by C. Manole in [5].

1.6. If we take the delta operator $Q = G = \frac{1}{\alpha} E^{-\beta} \nabla_{\alpha} = \frac{1}{\alpha} (E^{-\beta} - E^{-\alpha-\beta})$ its basic sequence is $p_n(x) = x(x + \alpha + n\beta)^{[n-1,-\alpha]}$ and the operator

$$(L_n^G f)(x) = \frac{1}{(1+n\beta)^{[n,-\alpha]}} \cdot \sum_{k=0}^n {n \choose k} x(x+\alpha+k\beta)^{[k-1,-\alpha]} (1-x)(1-x+(n-k)\beta)^{[n-k,-\alpha]} f\left(\frac{k}{n}\right)$$

was investigated by D. D. Stancu, G. Moldovan. In [18] D. D. Stancu and M. R. Occorsio have studied this operator with the nodes $\frac{k+\gamma}{n+\delta}$, $0 \le \gamma \le \delta$.

2. If Q = D and S is an invertible shift invariant operator then $p_n(x) = x^n$ and $s_n = A_n = S^{-1}x^n$ is an Appell set. The operator of the form

$$(L_n^{D,S}f)(x) = \frac{1}{A_n(1)} \sum_{k=0}^n {\binom{n}{k}} x^k A_{n-k}(1-x)f(\frac{k}{n})$$

was introduced and investigated by C. Manole in [5].

2.1. If $S = (I+D)^{-1}$ the corresponding Appell set is $A_n(x) = x^n + nx^{n-1}$ and then

$$(L_n^{D,(I+D)^{-1}}f)(x) = \frac{1}{n+1} \sum_{k=0}^n {n \choose k} x^k (1-x)^{n-k} (n-k+1-x) f(\frac{k}{n}).$$

3. If we take $Q = A = E^{-\beta}D$ and $S = E^{\beta}Q' = I - \beta D$ then $p_n(x) = x(x+n\beta)^{n-1}$ is the basic sequence for Q and $s_n(x) = (x+n\beta)^n$ a Sheffer set for Q we obtain the first operator introduced by Cheney and Sharma in [1]:

$$(L_n^{A,I-\beta D}f)(x) = \frac{1}{(1+n\beta)^n} \sum_{k=0}^n {n \choose k} x(x+k\beta)^{k-1} (1-x+(n-k)\beta)^{n-k} f\left(\frac{k}{n}\right)$$

4. For $Q = \frac{1}{\alpha} E^{-\beta} \nabla_{\alpha} = \frac{1}{\alpha} (E^{-\beta} - E^{-\alpha-\beta})$ and $S = E^{\alpha+\beta} Q' = \frac{1}{\alpha} ((\alpha+\beta)I - \beta E^{\alpha})$ we have $p_n(x) = x(x + \alpha + n\beta)^{[n-1,-\alpha]}$ and $s_n(x) = (x + n\beta)^{[n,-\alpha]}$ therefore the operator $L_n^{Q,S}$ in this case is

$$(L_n^{[\alpha,\beta]}f)(x) = = \frac{1}{(1+n\beta)^{[n,-\alpha]}} \sum_{k=0}^n {n \choose k} x(x+\alpha+k\beta)^{[k-1,-\alpha]} (1-x+(n-k)\beta)^{[n-k,-\alpha]} f\left(\frac{k}{n}\right)$$

If we replace x with s(x) we obtain a operator which has been studied by G. Moldovan in [6]. He has found the value of this operator for the monomials e_i for i = 1, 2 using some generalized identities of Vandermonde type.

We want to find the sequences a_{n, b_n} , c_n , which appears in $(L_n^{[\alpha,\beta]}e_i)(x)$, using relations (9).

The Pincherle derivative of ${\cal Q}$ is

$$Q' = -\frac{\beta}{\alpha}E^{-\beta} + \left(1 + \frac{\beta}{\alpha}\right)E^{-\alpha-\beta} = E^{-\alpha-\beta}\left(I - \frac{\beta}{\alpha}\Delta_{\alpha}\right)$$

 \mathbf{SO}

$$(Q')^{-1} = E^{\alpha+\beta} \sum_{k\geq 0} \beta^k \left(\frac{\Delta_{\alpha}}{\alpha}\right)^k.$$

Since $s_{n-1}(x) = (x + (n-1)\beta)^{[n-1,-\alpha]} = E^{(n-2)\alpha+(n-1)\beta}x^{[n-1,\alpha]}$ and $x^{[n,\alpha]} = x(x-1)\dots(x-(n-1)\alpha)$ is the basic sequence for the delta operator $\frac{\Delta_{\alpha}}{\alpha}$, we have $\left(\frac{\Delta_{\alpha}}{\alpha}\right)^k s_{n-1}(x) = E^{(n-2)\alpha+(n-1)\beta}\left(\frac{\Delta_{\alpha}}{\alpha}\right)^k x^{[n-1,\alpha]} = (n-1)^{[k]}E^{(n-2)\alpha+(n-1)\beta}$. $\cdot x^{[n-1-k,\alpha]}$. Because $a_n = \frac{[(Q')^{-1}s_{n-1}](1)}{s_n(1)}$ we get

$$a_n = \sum_{k=0}^{n-1} {\binom{n-1}{k}} \frac{k!\beta^k}{(1+n\beta)^{[k+1,-\alpha]}}$$

Since $b_n = \frac{n-1}{n} \frac{[(Q')^{-2}s_{n-2}](1)}{s_n(1)}$ and

$$(Q')^{-2} = E^{2\alpha+2\beta} \left(I - \frac{\beta}{\alpha} \Delta_{\alpha} \right)^{-2} = E^{2\alpha+2\beta} \sum_{k \ge 0} \left(k+1 \right) \beta^k \left(\frac{\Delta_{\alpha}}{\alpha} \right)^k$$

we obtain

$$b_n = \frac{n-1}{n} \sum_{k=0}^{n-2} {\binom{n-2}{k}} \frac{(k+1)!\beta^k}{(1+n\beta)^{[k+2,-\alpha]}}.$$

The Pincherle derivative of S^{-1} may be written in the form

$$(S^{-1})' = -(\alpha + \beta)E^{-\alpha - \beta}(Q')^{-1} - E^{-\alpha - \beta}(Q')^{-2}Q'' = -E^{-\alpha - \beta}(Q')^{-2}((\alpha + \beta)Q' + Q'').$$

Because $Q'' = \frac{1}{\alpha}(\beta^2 E^{-\beta} - (\alpha + \beta)^2 E^{-\alpha - \beta})$ and $(\alpha + \beta)Q' + Q'' = -\beta E^{-\beta}$ this implies

$$(Q')^{-2}(S^{-1})'S = \beta(Q')^{-3}E^{-\beta}$$

= $\beta E^{3\alpha+2\beta}(I - \frac{\beta}{\alpha}\Delta_{\alpha})^{-3}$
= $E^{3\alpha+2\beta}\sum_{k\geq 0}\frac{(k+1)(k+2)}{2}\beta^{k+1}\left(\frac{1}{\alpha}\Delta_{\alpha}\right)^{k}.$

From (9) and the previous relation we get

$$c_n = \frac{n-1}{2n} \left((1+n\alpha+n\beta) \sum_{k=0}^{n-3} {\binom{n-2}{k}} \frac{(k+2)!\beta^{k+1}}{(1+n\beta)^{[k+3,-\alpha]}} + \frac{n!\beta^{n-1}}{(1+n\beta)^{[n,-\alpha]}} \right).$$

5. EVALUATION OF THE ORDERS OF APPROXIMATION

Now we establish some estimates of the order of approximation of a function $f \in C[0, 1]$ by means of the operator $L_n^{Q,S}$, defined by (2).

According to a result of O. Shisha and B. Mond [13], we can write

$$\left|f(x) - \left(L_n^{Q,S}f\right)(x)\right| \le \left[1 + \frac{1}{\delta^2}L_n^{Q,S}\left((t-x)^2;x\right)\right]\omega_1(f;\delta), \ \delta \in \mathbb{R}^+$$

Using the relations (8) we have

$$L_n^{Q,S}\left((t-x)^2;x\right) = x^2(b_n - 2a_n + 1) + x(a_n - b_n - c_n)$$

so we get

$$\left| f(x) - \left(L_n^{Q,S} f \right)(x) \right| \le \left[1 + \frac{1}{\delta^2} \left[x^2 (b_n - 2a_n + 1) + x(a_n - b_n - c_n) \right] \right] \omega_1(f;\delta)$$

One observes that if $b_n - 2a_n + 1 < 0$ then $x^2(b_n - 2a_n + 1) + x(a_n - b_n - c_n) \le \frac{(a_n - b_n - c_n)^2}{4(2a_n - b_n - 1)}$, $\forall x \in [0, 1]$. By choosing $\delta = \frac{1}{\sqrt{n}}$ we can state

THEOREM 5. If $f \in C[0,1]$ and $\exists k \in \mathbb{N}$ such as $b_n - 2a_n + 1 < 0$, $\forall n \ge k$, then we can give the following estimation of the order of approximation, by means of the first modulus of continuity

$$\left\| f - L_n^{Q,S} f \right\| \le \left(1 + \frac{n}{4} \frac{(a_n - b_n - c_n)^2}{(2a_n - b_n - 1)} \right) \omega_1 \left(f; \frac{1}{\sqrt{n}} \right), \quad n \ge k,$$

where a_n , b_n , c_n are defined by (9).

In the case of binomial operators of positive type defined by (1), since S' = I' = O we have

(19)
$$a_n = 1, \ c_n = 0, \ b_n = \frac{n-1}{n} \frac{[(Q')^{-2} p_{n-2}](1)}{p_n(1)}.$$

$$\|f - L_n f\| \le \left(\frac{5}{4} + \frac{n}{4}d_n\right)\omega_1\left(f; \frac{1}{\sqrt{n}}\right),$$

where

(20)
$$d_n = \frac{n-1}{n} - b_n = \frac{n-1}{n} \left(1 - \frac{\left[(Q')^{-2} p_{n-2} \right](1)}{p_n(1)} \right)$$

We mention that this inequality was established by D. D. Stancu in [18].

In order to find an evaluation of the order of approximation using both moduli of smoothness ω_1 and ω_2 we can use a result of H. H. Gonska and R. K. Kovacheva included in the following

LEMMA 3. [2]. If I = [a, b] is a compact interval of the real axis and $I_1 = [a_1, b_1]$ is a subinterval of it, and if we assume that $L : C(I) \to C(I_1)$ is a positive operator, such that $Le_0 = e_0$ and $0 \le \delta \le \frac{1}{2}(b-a)$, then we have

$$|f(x) - L(f(t);x)| \leq \frac{2}{\delta} |L(t-x;x)| \omega_1(f;\delta) + \frac{3}{2} \left[1 + \frac{1}{\delta} |L(t-x;x)| + \frac{1}{2\delta^2} L((t-x)^2;x) \right] \omega_2(f;\delta).$$

Using the relations (8) we obtain the inequality

$$\left| f(x) - \left(L_n^{Q,S} f \right)(x) \right| \le \frac{2}{\delta} \left| (a_n - 1)x \right| \omega_1(f;\delta) + \frac{3}{2} \left[1 + \frac{1}{\delta} \left| (a_n - 1)x \right| + \frac{1}{2\delta^2} \left[x^2(b_n - 2a_n + 1) + x(a_n - b_n - c_n) \right] \right] \omega_2(f;\delta).$$

If $b_n - 2a_n + 1 < 0$ the previous inequality implies

$$\left\| f - L_n^{Q,S} f \right\| \le \frac{2}{\delta} (1 - a_n) \omega_1(f; \delta) + \frac{3}{2} \left[1 + \frac{1}{\delta} (1 - a_n) + \frac{1}{8\delta^2} \frac{(a_n - b_n - c_n)^2}{(2a_n - b_n - 1)} \right] \omega_2(f; \delta).$$

By choosing $\delta = \frac{1}{\sqrt{n}}$ we get

$$\begin{aligned} \left\| f - L_n^{Q,S} f \right\| &\leq 2\sqrt{n}(1 - a_n)\omega_1(f; \frac{1}{\sqrt{n}}) + \\ &+ \frac{3}{2} \left[1 + \sqrt{n}(1 - a_n) + \frac{n}{8} \frac{(a_n - b_n - c_n)^2}{(2a_n - b_n - 1)} \right] \omega_2(f; \frac{1}{\sqrt{n}}). \end{aligned}$$

If we consider the binomial operator introduced by Tiberiu Popoviciu, using (19) and the previous relation, we arrive at an inequality which has found by D. D. Stancu (see [18])

$$||f - L_n f|| \le \frac{3}{16} (9 + nd_n) \omega_2(f; \frac{1}{\sqrt{n}}),$$

where d_n is defined by (20).

REFERENCES

- CHENEY, E. W. and SHARMA, A., On a generalization of Bernstein polynomials, Riv. Mat. Univ. Parma, 5, pp. 77–82, 1964.
- [2] GONSKA, H. H. and KOVACHEVA, R. K., The second order modulus revisited: remarks, applications, problems, Conferenze del Seminario di Matematica Univ. Bari, 257, pp. 1– 32, 1994.
- [3] LUPAŞ, L. and LUPAŞ, A., Polynomials of binomial type and approximation operators, Studia Univ. Babes-Bolyai, Mathematica, 32, pp. 61–69, 1987.
- [4] LUPAŞ, A., Approximation operators of binomial type, Proc. IDoMAT 98, International Series of Numerical Mathematics, ISNM 132, Birkhäuser Verlag, Basel, pp. 175–198, 1999.
- [5] MANOLE, C., Developments in series of generalized Appell polynomials, with applications to the approximation of functions, Ph.D. Thesis, Cluj-Napoca, Romania, 1984 (in Romanian).
- [6] MOLDOVAN, G., Generalizations of the S. N. Bernstein operators, Ph.D. Thesis, Cluj-Napoca, Romania, 1971 (in Romanian).
- [7] MOLDOVAN, G., Discrete convolutions and positive operators I, Annales Univ. Sci. Budapest R. Eötvös, 15, pp. 31–34, 1972.
- [8] MULLIN, R. and ROTA, G. C., On the foundations of combinatorial theory III, theory of binomial enumeration, in: B. Harris, ed., Graph Theory and Its Applications, Academic Press, New York, pp. 167–213, 1970.
- [9] POPOVICIU, T., Remarques sur les poynômes binomiaux, Bul. Soc. Ştiinte Cluj, 6, pp 146–148, 1931.
- [10] ROMAN, S., Operational formulas, Linear and Multilinear Algebra, 12, pp. 1–20, 1982.
- [11] ROTA, G. C., KAHANER, D. and ODLYZKO, A., Finite operator calculus, J. Math. Anal. Appl., 42, pp. 685–760, 1973.
- [12] SABLONNIÈRE, P., Positive Bernstein-Sheffer operators, J. Approx. Theory, 83, pp. 330–341, 1995.
- [13] SHISHA, O. and MOND, B., The degree of convergence of linear positive operators, Proc. Nat. Acad. Sci. U.S.A., 60, pp. 1196–1200, 1968.
- [14] STANCU, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures Appl., 13, pp. 1173–1194, 1968.
- [15] STANCU, D. D., On a generalization of the Bernstein polynomials, Studia Univ. Babeş-Bolyai, Cluj, 14, pp. 31–45, 1969.
- [16] STANCU, D. D., Approximation properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, 15, pp. 31–38, 1970.
- [17] STANCU, D. D., Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. Conf. Oberwolfach 1971 ISNM 16, Birkhäuser-Verlag, Basel, pp. 187–203, 1972.
- [18] STANCU, D. D. and OCCORSIO, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27 no.1, pp. 167–181, 1998.

Maria Crăciun	16

 STANCU, D. D. and CISMAȘIU, C., On an approximating linear positive operator of Cheney-Sharma, Rev. Anal. Numér. Théor. Approx., 26, pp. 221–227, 1997.
 Received September 12, 2000.