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HARMONIC BLENDING APPROXIMATION
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Dedicated to Professor Werner Haussmann on his sixties birthday

Abstract. The concept of harmonic Hilbert space HD(Rn) was introduced in
[2] as an extension of periodic Hilbert spaces [1], [2], [5], [6]. In [4] we introduced
multivariate harmonic Hilbert spaces and studied approximation by exponential-
type function in these spaces and derived error bounds in the uniform norm
for special functions of exponential type which are defined by Fourier partial
integrals Sb(f):

Sb(f)(x) =
∫
Rn

χ[−b,b](t)F (t) exp(i(t, x))dt,

[−b, b] = [−b1, b1]× ...× [−bn, bn], b1 > 0, ..., bn > 0, where

F (t) ∼
(

1
2π

)n ∫
Rn

f(x) exp(−i(x, t))dx ∈ L2(Rn) ∩ L1(Rn)

is the Fourier transform of f ∈ L2(Rn)∩C0(Rn). In this paper we will investigate
more general approximation operators Sψ in harmonic Hilbert spaces of tensor
product type.

MSC 2000. 42B99, 41A65.

1. HARMONIC HILBERT SPACES

The function D is called the defining function of the harmonic Hilbert space
HD(Rn). It satisfies the following conditions:

D(−t) = D(t), 0 ≤ D(t) ≤ 1, D ∈ L1(Rn) (⇒ D ∈ L2(Rn)).

The Fourier integral of the defining function is called the generating function
of the harmonic Hilbert space:

d(x) =
∫
Rn
D(t) exp(i(x, t))dt ∈ L2(Rn).
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The generating function is a function from the Wiener algebra A(Rn). This
algebra is defined as the set of functions

f(x) =
∫
Rn
F (t) exp(i(x, t))dt,

F (t) = ( 1
2π )n

∫
Rn
f(x) exp(−i(x, t))dx ∈ L1(Rn).

It is a subalgebra of the algebra of uniformly continuous functions on the real
line vanishing at infinity C0(Rn). The norm of this algebra is the maximum
norm: ‖f‖∞ = sup{|f(x)| : x ∈ Rn}. The norm of the Wiener algebra is given
by ‖f‖a =

∫
Rn |F (t)| dt.

The inequality ‖f‖∞ ≤ ‖f‖a holds for any function of the Wiener algebra.
Note that F ≥ 0 implies ‖f‖∞ = ‖f‖a.

The inner product of the harmonic Hilbert space is defined by

(f, g)D =
∫
Rn
F (t)G(t) 1

D(t)dt.

It is a reproducing kernel Hilbert space:

f(x) = (f, d(· − x))D.

Any harmonic Hilbert space is a subspace of the Wiener algebra:

HD(Rn) ⊆ A(Rn) ⊆ C0(Rn).

The imbeddings are continuous due to the estimates

‖f‖∞ ≤ ‖f‖a ≤
√
d(0) ‖f‖D .

Examples of defining functions in the univariate case are taken from su-
mmability theory. We give a list of typical examples:

Sobolev space W 1(R) :

D(t) = 1
1 + t2

, d(x) = π exp(− |x|),

holomorphic Sobolev space H1(R):

D(t) = exp(− |t|), d(x) = 1
π
· 1

1 + x2 ,

Paley–Wiener space PWb(R):

D(t) = (b− |t|)0
+, d(x) = 2 sin(bx)/x.
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Tensor product harmonic Hilbert spaces are obtained by choosing tensor
products of univariate defining functions. For notational simplicity we consider
mainly the case n = 2:

DP (t1, t2) = D1(t1)D2(t2) = (D1 ⊗D2)(t1, t2),
dP (x1, x2) = d1(x1)d2(x2) = (d1 ⊗ d2)(x1, x2),
HDP (R2) = HD1(R)⊗HD2(R).

In our examples from the univariate case we use the following notations.
Tensor product Sobolev space W (1,1)(R2):

D(t1, t2) = 1
1 + t21

· 1
1 + t22

, d(x1, x2) = π2 exp(− |x1|) exp(− |x2|).

Tensor product holomorphic Sobolev space H(1,1)(R2):

D(t1, t2) = exp(− |t1|) exp(− |t2|), d(x1, x2) = 1
π2 ·

1
1 + x2

1
· 1

1 + x2
2
.

Tensor product holomorphic Paley–Wiener space PW (1,1)
b1,b2

(R2):

D(t1, t2) = (b1 − |t1|)0
+ (b2 − |t2|)0

+ , d(x1, x2) = 4 · sin(b1x1)
x1

· sin(b2x2)
x2

.

2. ψ-FOURIER PARTIAL INTEGRALS

We denote the set of functions ψ ∈ L∞(Rn) satisfying 0 ≤ ψ(t) ≤ 1 , t ∈
Rn, by L∞(Rn, [0, 1]).

The function ψ ∈ L∞(Rn, [0, 1]) is used to define the ψ-Fourier partial
integral

Sψ(f)(x) =
∫
Rn
ψ(t)F (t) exp(i(x, t))dt

as an approximation of the Fourier integral

f(x) = S1(f)(x) =
∫
Rn
F (t) exp(i(x, t))dt.

The classical Fourier partial integral with respect to the interval [−b, b] is
given by the characteristic function
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ψ(t) = χ[−b,b](t),

Sψ(f)(x) =
∫
Rn
χ[−b,b](t)F (t) exp(i(x, t))dt =: Sb(f)(x).

In the univariate case we have

ψ(t) =
(
1− |t|b

)0

+
,

Sψ(f)(x) =
∫ b

−b
F (t) exp(ixt)dt =: Sb(f)(x).

The Fejér-partial integral is given by

φ(t) =
(
1− |t|b

)1

+
,

Sφ(f)(x) =
∫ b

−b

(
1− |t|b

)1

+
F (t) exp(ixt)dt =: Fb(f)(x).

Sψ is a bounded linear operator on A(Rn). It satisfies the norm inequality

‖Sψ(f)‖a ≤ ‖f‖a .

The restriction of Sψ to the harmonic Hilbert space HD(Rn) defines a bounded
linear self adjoint operator:

(Sψ(f), g))D = (Sψ(f), g))D .

Moreover, the following estimate holds

‖Sψ(f)‖D ≤ ‖f‖D .

Sψ is a projector if and only if

ψ2 = ψ ⇔ S2
ψ = Sψ.

In this case Sψ is a projector on A(Rn) and induces by restriction an orthogonal
projector on HD(Rn).

The approximation order of the ψ-Fourier integral in the harmonic Hil-
bert space HD(Rn) is determined by the remainder of the generating function
d− Sψ(d).
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Proposition 2.1. Assume that f ∈ HD(Rn). Then the error estimate

‖f − Sψ(f)‖∞ ≤ ‖f‖D ‖1− ψ‖2,D
holds with

‖d− Sψ(d)‖D =
√∫

Rn
(1− ψ(t))2D(t)dt = ‖1− ψ‖2,D .

Proof. The structure of the harmonic Hilbert space as a reproducing kernel
Hilbert space implies

(f, d(· − x))D = f(x)
in view of

d(y − x) =
∫
Rn

exp(−i(x, t))D(t) exp(i(y, t))dt

and

f(x) =
∫
Rn

F (t)D(t) exp(−i(x, t))
D(t) dt = (f, d(· − x))D.

Moreover, we have

Sφ(f)(x) =
∫
Rn
φ(t)F (t) exp(i(x, t))dt

which implies

‖Sφ(f)‖D
2 =

∫
Rn
φ(t)2|F (t)|2/D(t)dt.

The translation operator and the ψ-Fourier partial integral operator com-
mute:

Sψ(d(· − x))(y) =
∫
Rn
ψ(t) exp(−i(x, t))D(t) exp(i(y, t))dt = Sψ(d)(y − x),

i.e., we have
Sψ(d(· − x)) = Sψ(d)(· − x).

Next we can conclude

f(x)− Sψ(f)(x) = (f, d(· − x))D − (Sψ(f), d(· − x))D
= (f, d(· − x))D − (f, Sψ(d(· − x)))D ,

i.e., we have

f(x)− Sψ(f)(x) = (f, d(· − x)− Sψ(d(· − x)))D = (f, S1−ψ(d(· − x)))D .

Consider the linear functional on HD(Rn) defined by

Lψ,x(f) = f(x)− Sψ(f)(x) = (f, S1−ψ(d(· − x)))D .
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By the Riezs representation theorem in Hilbert spaces [A.N. Michel, C.J.
Herget: Applied Linear Algebra and Functional Analysis] its norm is given by

‖Lψ,x‖ = ‖S1−ψ(d(· − x))‖D
= ‖S1−ψ(d)(· − x)‖D
= ‖S1−ψ(d)‖D
= ‖d− Sψ(d)‖D .

Since

‖d− Sψ(d)‖D
2 =

∫
Rn

(1− ψ(t))2D(t)dt

the proof is complete. �

Remark 2.1. If Sψ is an orthogonal projector the sharper estimate

‖f − Sψ(f)‖∞ ≤ ‖f − Sψ(f)‖D ‖d− Sψ(d)‖D
holds.

This follows from

f(x)− Sψ(f)(x) = (f, S1−ψ(d(· − x)))D = (S1−ψ(f), S1−ψ(d(· − x)))D
by an application of the Cauchy–Schwarz inequality .

3. LATTICES OF FOURIER PARTIAL INTEGRAL OPERATORS

We denote the set of functions ψ ∈ L∞(Rn) satisfying 0 ≤ ψ(t) ≤ 1 , t ∈
Rn, by L∞(Rn, [0, 1]). We summarize some algebraic properties of L∞(Rn, [0, 1]):

(1) ψ ∈ L∞(Rn, [0, 1])⇒ 1− ψ ∈ L∞(Rn, [0, 1]).
(2) ψ, γ ∈ L∞(Rn, [0, 1])⇒ ψ · γ ∈ L∞(Rn, [0, 1]).
(3) ψ, γ ∈ L∞(Rn, [0, 1])⇒ ψ ⊕ γ := ψ + γ − ψ · γ ∈ L∞(Rn, [0, 1]).
(4) ψ, γ ∈ L∞(Rn, [0, 1])⇒ ψ ∨ γ := max{ψ, γ} ∈ L∞(Rn, [0, 1]).
(5) ψ, γ ∈ L∞(Rn, [0, 1])⇒ ψ ∧ γ := min{ψ, γ} ∈ L∞(Rn, [0, 1]).
(6) ψ · γ ≤ min{ψ, γ} ≤ max{ψ, γ} ≤ ψ ⊕ γ.

This shows that L∞(Rn, [0, 1]) is a lattice of real valued measurable func-
tions. The following result is easily verified.

Proposition 3.1. Assume ψ, γ ∈ L∞(Rn, [0, 1]). Then we have

1− ψ · γ = (1− ψ)⊕ (1− γ) = (1− ψ) + (1− γ)− (1− ψ) · (1− γ),
1− ψ ⊕ γ = (1− ψ) · (1− γ).

The set of commuting non negative Hermitian operators Sψ forms an o-
perator lattice with respect to the order relation:
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Sψ ≥ 0⇔ (Sψf, f)D ≥ 0,∀f ∈ HD(Rn).

Consider any two functions ψ, γ ∈ L∞(Rn, [0, 1]). The associated Fourier
partial integral operators Sψ, Sγ commute and their product is again a product
Fourier partial integral operator satisfying

SψSγ = SγSψ = Sψγ .

The Boolean sum of ψ, γ ∈ L∞(Rn, [0, 1]) defines the blending Fourier partial
integral operator:

Sψ ⊕ Sγ = Sγ + Sψ − Sψγ .

It is important to note that

ψ2 = ψ ⇒ (1− ψ)2 = 1− ψ
ψ2 = ψ, γ2 = γ ⇒ (ψγ)2 = ψγ, (ψ ⊕ γ)2 = ψ ⊕ γ.

Note that the characteristic functions χM , χN satisfy the above conditions.
In particular we have

χM · χN = χM∩N , χM ⊕ χN = χM∪N , 1− χM = χMc ,

with M c = Rn −M .

Proposition 3.2. The set of operators Sψ with ψ2 = ψ form a Boolean
algebra of commuting projectors

B := {Sψ : ψ ∈ L∞(Rn, [0, 1]), ψ2 = ψ}.

This aspect turns out to be useful in the multivariate setting.
We first determine the approximation order of product approximation SψSγ =

Sψ·γ .

Proposition 3.3. Assume that f ∈ HD(Rn). Then the error estimate

‖f − SψSγ(f)‖∞ ≤ ‖f‖D
(
‖1− ψ‖2,D + ‖1− γ‖2,D

)
holds.

Proof. By Proposition 2.1 we have

‖f − SψSγ(f)‖∞ ≤ ‖f‖D ‖d− SψSγ(d)‖D .



158 Franz-Jürgen Delvos 8

Since
‖d− SψSγ(d)‖D = ‖d− Sψ(d) + Sγ(d− Sψ(d))‖D

we obtain

‖d− SψSγ(d)‖D ≤ ‖d− Sψ(d)‖D + ‖Sγ(d− Sψ(d))‖D
≤ ‖d− Sψ(d)‖D + ‖d− Sψ(d)‖D
= ‖1− ψ‖2,D + ‖1− γ‖2,D .

�

Next we determine the approximation order of blending approximation Sψ+
Sγ − Sψ·γ = Sψ⊕γ .

Proposition 3.4. Assume that f ∈ HD(Rn). Then the error estimate

‖f − (Sψ ⊕ Sγ)(f)‖∞ ≤ ‖f‖D
√
‖(1− ψ)2‖2,D

√
‖((1− γ)2‖2,D

holds.

Proof. By Proposition 2.1 we have

‖f − Sψ ⊕ Sγ(f)‖∞ ≤ ‖f‖D ‖d− Sψ ⊕ Sγ(d)‖D
Since

‖S1−γ⊕ψ(d)‖D
2 =

∫
Rn

(1− γ(t)⊕ ψ(t))2D(t)dt

=
∫
Rn

(1− γ(t))2(1− ψ(t))2D(t)dt

≤
√∫

Rn
(1− γ(t))4D(t)dt

√∫
Rn

(1− ψ(t))4D(t)dt

=
∥∥∥(1− ψ)2

∥∥∥
2,D
·
∥∥∥(1− γ)2

∥∥∥
2,D

the proof is complete. �

As a special case we obtain

Proposition 3.5. Assume that f ∈ HD(Rn). Then the error estimate

‖f − (Sψ ⊕ Sψ)(f)‖∞ ≤ ‖f‖D
∥∥∥(1− ψ)2

∥∥∥
2,D

holds.

4. APPROXIMATION IN TENSOR PRODUCT HARMONIC HILBERT SPACES

In the tensor product harmonic Hilbert space

HDP (R2) = HD(R)⊗HD(R)
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we have the simple situation
DP (t1, t2) = D(t1)D(t2) = D ⊗D(t1, t2),
dP (x1, x2) = d(x1)d(x2) = d⊗ d(x1, x2).

This leads to special constructions of ψ-Fourier integrals choosing tensor
products of measurable functions:

γ(t1, t2) = φ(t1) = φ⊗ 1R(t1, t2),
ψ(t1, t2) = ζ(t2) = 1R ⊗ ζ(t1, t2).

Recall that

‖d− Sψ(d)‖D =
√∫

Rn
(1− ψ(t))2D(t)dt = ‖1− ψ‖2,D .

The tensor product structure implies∥∥∥dP − Sφ⊗1R(dP )
∥∥∥
DP

=
∥∥∥S(1R−φ)⊗1R(dP )

∥∥∥
DP

=
√∫

R2
D(t1)D(t2)(1− φ(t1))2dt1dt2

= ‖1− φ‖2,D‖1‖2,D,∥∥∥dP − S1R⊗ζ(d
P )
∥∥∥
DP

=
∥∥∥S1R⊗(1R−ζ)(d

P )
∥∥∥
DP

=
√∫

R2
D(t1)D(t2)(1− ζ(t2))2dt1dt2

= ‖1− ζ‖2,D‖1‖2,D.
An application of Proposition 3.3 yields

Proposition 4.1. Assume that f ∈ HD(R)⊗HD(R). Then the error esti-
mate

‖f − Sφ⊗ζ(f)‖∞ ≤ ‖f‖DP ‖1‖2,D
(
‖1− φ‖2,D + ‖1− ζ‖2,D

)
holds.

For blending approximation in HDP (R2) with the operator
Sφ⊗1R ⊕ S1R⊗ζ = S1R⊗ζ + Sφ⊗1R − Sφ⊗ζ

it follows∥∥∥dP − Sφ⊗1R ⊕ S1R⊗ζ(d
P )
∥∥∥
DP

=

=
∥∥∥S(1R−φ)⊗(1R−ζ)(d

P )
∥∥∥
DP

=
√∫

R2
D(t1)D(t2)(1− φ(t1))2(1− ζ(t2)2dt1dt2

= ‖1− φ‖2,D‖(1− ζ‖2,D.
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Thus we have shown

Proposition 4.2. Assume that f ∈ HD(R)⊗HD(R). Then the error esti-
mate

‖f − Sφ⊗1R ⊕ S1R⊗ζ(f)‖∞ ≤ ‖f‖DP ‖1− φ‖2,D‖1− ζ‖2,D
holds.

5. EXPONENTIAL-TYPE BLENDING APPROXIMATION

As a classical example let

γ(t1, t2) = χ[−b1,b1](t1), ψ(t1, t2) = χ[−b2,b2](t2),

In this case the operators are parametrically extended univariate Fourier par-
tial integrals

Sb1(f)(x) =
∫
R2
χ[−b1,b1](t1)F (t) exp(i(x, t))dt,

Sb2(f)(x) =
∫
R2
χ[−b2,b2](t2)F (t) exp(i(x, t))dt

These are functions of exponential-type in x1, respectively in x2. The cor-
responding product operator Sb1Sb2 is the bivariate Fourier partial integral

Sb2Sb1(f)(x) =
∫
R2
χ[−b1,b1](t1)χ[−b2,b2](t2)F (t) exp(i(x, t))dt = S(b1,b2)(f)(x).

These are bivariate functions of exponential-type.
Recall that

‖d− Sφ(d)‖D =
√∫

Rn
(1− φ(t))2D(t)dt = ‖1− φ‖2,D .

Proposition 5.1. The asymptotic error estimate for the bivariate Fourier
partial integral follows from the general result Proposition 4.1∥∥∥f − S(b1,b2)(f)

∥∥∥
∞

= O
(√∫ ∞

b1
D(t)dt+

√∫ ∞
b2

D(t)dt
)
, b1 ∧ b2 ↑ ∞.

The Boolean sum Sb1 ⊕ Sb2 is called the bivariate hyperbolic cross Fourier
integral

Sb2 ⊕ Sb1(f)(x) =

=
∫
R2
χ[−b1,b1](t1)F (t) exp(i(x, t))dt+

∫
R2
χ[−b2,b2](t2)F (t) exp(i(x, t))dt

−
∫
R2
χ[−b1,b1](t1)χ[−b2,b2](t2)F (t) exp(i(x, t))dt =: S(b1,b2)(f)(x).

These are bivariate blending functions of exponential-type.
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Proposition 5.2. The asymptotic error estimate for the bivariate hyper-
bolic cross Fourier integral follows from the general result Proposition 4.2

∥∥∥f − S(b1,b2)(f)
∥∥∥
∞

= O
(√∫ ∞

b1
D(t)dt ·

√∫ ∞
b2

D(t)dt
)
, b1 ∨ b2 ↑ ∞.

The first example is the tensor product Sobolev space. The univariate
defining function is

D(t) = 1
1 + t2

and it defines the univariate Sobolev space

HD(R) = W 1(R),

The bivariate tensor product harmonic Hilbert space is obtained by choosing
the tensor product defining function,

HDP (R2) = W (1,1)(R2).

The univariate error norms satisfy the asymptotic relations√∫ ∞
b1

1
1+t2dt = O

(
b
− 1

2
1

)
,

√∫ ∞
b2

1
1+t2dt = O

(
b
− 1

2
2

)
.

Corollary 5.1. The asymptotic error estimate for the bivariate product
Fourier partial integral in W (1,1)(R2) is given by∥∥∥f − S(b1,b2)(f)

∥∥∥
∞

= O
(
b
− 1

2
1 + b

− 1
2

2

)
, b1 ∧ b2 ↑ ∞

It is determined by the maximal univariate error bound.

Corollary 5.2. The asymptotic error estimate for the bivariate hyperbolic
cross Fourier partial integral in W (1,1)(R2) is given by∥∥∥f − S(b1,b2)(f)

∥∥∥
∞

= O
(
(b1b2)−

1
2
)
, b1 ∨ b2 ↑ ∞.

It is determined by the product of the univariate error bounds.

For the univariate defining function

D(t) = exp(−|t|)

the bivariate tensor product holomorphic Sobolev space is obtained,

HDP (R2) = H(1,1)(R2).
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The univariate error norms satisfy the asymptotic relations√∫ ∞
b1

exp(−|t|)dt = O
(

exp(− b1
2 )
)
,

√∫ ∞
b2

exp(−|t|)dt = O
(

exp(− b2
2 )
)
.

Corollary 5.3. The asymptotic error estimate for the bivariate product
Fourier partial integral in H(1,1)(R2) is given by∥∥∥f − S(b1,b2)(f)

∥∥∥
∞

= O
(
exp(− b1

2 ) + exp(− b2
2 )
)
, b1 ∧ b2 ↑ ∞.

It is determined by the maximal univariate error bound.

Corollary 5.4. The asymptotic error estimate for the bivariate hyperbolic
cross Fourier partial integral in H(1,1)(R2) is given by∥∥∥f − S(b1,b2)(f)

∥∥∥
∞

= O
(
exp(− b1+b2

2 )
)
, b1 ∨ b2 ↑ ∞.

It is determined by the product of the univariate error bounds.
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