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Dedicated to Professor Werner Haussmann on his sixties birthday

Abstract. The concept of harmonic Hilbert space Hp(R"™) was introduced in
[2] as an extension of periodic Hilbert spaces [1], [2], [5], [6]. In [4] we introduced
multivariate harmonic Hilbert spaces and studied approximation by exponential-
type function in these spaces and derived error bounds in the uniform norm
for special functions of exponential type which are defined by Fourier partial
integrals Sy (f):

S0@ = [ xeanOPOei.a)
[=b,b] = [=b1,b1] X ... X [=bn,bn], b1 >0,...,b, >0, where
F(t)~ (&)" / f(z)exp(—i(z,t))dz € La(R™) N Ly (R™)
is the Fourier transform of Dj‘ € L2 (R™)NCo(R™). In this paper we will investigate
more general approximation operators Sy in harmonic Hilbert spaces of tensor

product type.

MSC 2000. 42B99, 41A65.

1. HARMONIC HILBERT SPACES

The function D is called the defining function of the harmonic Hilbert space
Hp(R™). It satisfies the following conditions:

D(~t)=D(t), 0<D() <1, DeL(R") (= D e Ly(R")).

The Fourier integral of the defining function is called the generating function
of the harmonic Hilbert space:

d(x) = [ D(t)expli(a, 1))t € L(R").
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The generating function is a function from the Wiener algebra A(R™). This
algebra is defined as the set of functions

fa) = [ F@explita. )t
F(t) = (&) /]R F(x) exp(—i(z, t))dz € L1 (RY).

It is a subalgebra of the algebra of uniformly continuous functions on the real
line vanishing at infinity Co(R™). The norm of this algebra is the maximum
norm: || fl|,, = sup{|f(z)| : z € R"}. The norm of the Wiener algebra is given

by [[flla = Jen [E(@)] d2.
The inequality ||f||., < ||f]l, holds for any function of the Wiener algebra.

Note that F' > 0 implies || f|l ., = | fll,-
The inner product of the harmonic Hilbert space is defined by
— 1
= F(t)G(t)——dt.
(Fop= [ FOTO 55

It is a reproducing kernel Hilbert space:
f(x) = (f,d(- —z))p.
Any harmonic Hilbert space is a subspace of the Wiener algebra:
Hp(R™) C A(R") C Co(R™).

The imbeddings are continuous due to the estimates

1flloe < 1fllg < /) Il -

Examples of defining functions in the univariate case are taken from su-
mmability theory. We give a list of typical examples:
Sobolev space WH(R) :

1
(t) - ma d(.’E) —7T€Xp(— ’ZED,
holomorphic Sobolev space  H!(R):

L
14+ 22’

N[

D(t) = exp(—[t]), d(z)=

Paley—Wiener space PW;(R):

D@t)= (- [t)%, d(z)=2sin(bz)/x.
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Harmonic blending approximation

Tensor product harmonic Hilbert spaces are obtained by choosing tensor
products of univariate defining functions. For notational simplicity we consider

mainly the case n = 2:
DP(ty,t2) = D1 (t1)Da(t2) = (D1 ® D2)(t1,t2),
)

dP(z1,22) = di(z1)d2(x2) = (di ® da)(z1, T2),
HDP(]RQ) = Hp, (R) ® HD2(R)'
In our examples from the univariate case we use the following notations.
Tensor product Sobolev space W (L1 (R?):
d(x1,x9) = 7" exp(— |x1]|) exp(— |z2]).

Dty te) = —— - ———
(1, 2) 1+12 1412

Tensor product holomorphic Sobolev space H (11 (R?):

1 1 1
D(ty,t9) = exp(— [t1]) exp(— |t2]), d(r1,x2) = 212 112
1 2
1’1)(R2):

Tensor product holomorphic Paley—Wiener space PI/Vb(1 by
sin(byz1) sin(boxs)
Ty

D(ty,ta) = (b1 — [t1)S (b2 — [t2))} . d(21,39) =4 -

2. 1-FOURIER PARTIAL INTEGRALS
We denote the set of functions ¢ € Loo(R™) satisfying 0 < ¢(t) <1, t €

R, by Lo (R, [0, 1))
The function ¢ € Loo(R™,[0,1]) is used to define the t-Fourier partial

integral
SulP@) = [ B explite,0)dt

as an approximation of the Fourier integral

f@) = $i0)@) = [ Ft)expli(a, )t

The classical Fourier partial integral with respect to the interval [—b,b] is

given by the characteristic function
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»(t) = Xj-b4) (1),
Sy(f)(x) = /Rn X[—b,p) () F(t) exp(i(, t))dt =: Sp(f)(x)-

In the univariate case we have

0

bty =(1-1), .

, +
Seh@) = [ Pt expliatidt =: (1) (z).

The Fejér-partial integral is given by

1

o) =(1-%),

+

1
b (1- Lg‘)+ F(t) explizt)dt =: Fy(f)(z).
Sy is a bounded linear operator on A(R™). It satisfies the norm inequality

155 (Pllg < W flla -

The restriction of Sy to the harmonic Hilbert space Hp(R™) defines a bounded
linear self adjoint operator:

(Sw(f)vg))D = (Sw(f)ag))[) .

Moreover, the following estimate holds

15y (Nllp < I1fllp-

Sy is a projector if and only if
PP =1 & S =5y

In this case Sy, is a projector on A(R™) and induces by restriction an orthogonal
projector on Hp(R™).

The approximation order of the t-Fourier integral in the harmonic Hil-
bert space Hp(R™) is determined by the remainder of the generating function
d — Sy(d).
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PROPOSITION 2.1. Assume that f € Hp(R™). Then the error estimate

1f =Sy (Nl < NFlIp 1T =2llap
holds with

ld=Su(d)l, = \/ L= w®PD@dt = 1=l -

Proof. The structure of the harmonic Hilbert space as a reproducing kernel
Hilbert space implies

(f,d(- —2))p = f(x)

in view of
dly —2) = | exp(~ila. ) D(®) expli(y. 1))

and

dt = (f,d(-—x))p.

B F(t)D(t) exp(—i(z,t))
fw=[ i

Moreover, we have

So(f)@) = [ oF(®)expli(e,)dt
which implies
2 _
I1S6(1)11p° = [ SPIF@R/Dit)de.

The translation operator and the i-Fourier partial integral operator com-
mute:

Suld-—2)) = | it exp(=ila, 0)D(O) expi(y, )dt = Sy(d)(y — ),

i.e., we have
Sy(d(- — x)) = Sy(d)(- — z).
Next we can conclude
f(@) = Sy(f)() = (f,d(- —2))p — (Sy(f).d
= (fvd( _‘T))D - (fvsw( (

(-—2)p
“=z)))p>
i.e., we have

f(@) = Sy(f)(x) = (fd(- =) = Sy(d(- = 2))) p = (f, S1-4(d(- = 2))) -
Consider the linear functional on Hp(R™) defined by

Lyo(f) = f(2) = Sp(f)(2) = (f, S1—y(d(- = 2)))p -
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By the Riezs representation theorem in Hilbert spaces [A.N. Michel, C.J.
Herget: Applied Linear Algebra and Functional Analysis] its norm is given by

[ Lyl = [[S1-4(d(- — )] p
= [[S1-(d)(- =)l
= [[S1-4(d)l p
= ld—=Sy(d)l -
Since
ld=Su@lp* = [ (1= v(®)2Di)at
the proof is complete. O

REMARK 2.1. If Sy is an orthogonal projector the sharper estimate

1f =Sy (e <N =Se(DHliplld =Sy p
holds.

This follows from

f(@) = Syp(f)(@) = (f, S1—p(d(- — 2))) p = (S1-4(f), S1—¢(d(- — 2))) p
by an application of the Cauchy—Schwarz inequality .

3. LATTICES OF FOURIER PARTIAL INTEGRAL OPERATORS

We denote the set of functions ¢ € Loo(R") satisfying 0 < ¢(¢) <1, t €
R™, by Loo(R™, [0,1]). We summarize some algebraic properties of L. (R", [0, 1]):

( )wEL ( R™ [071]):>1—¢€L00(R"7[0>1])-

(2) ¢,7 € Loo (”[0,1]>:w 7 € Loo(R™,[0,1]).
(3)w76L (R™[0,1)=>v&y:=¢+7—1-7€ L ( R™, [0, 1]).
Eg% ;7 € Loo(R ”[071])=>¢\/7—maX{1/17}6L (R™, [0, 1]).

V,7 € Loo(R,[0,1]) = ¢ Ay := min{s), 7} € Loo(R",[0,1]).
(6) ¥ -y < min{y,v} < max{y,y} <P @& r.

This shows that L. (R"™, [0, 1]) is a lattice of real valued measurable func-
tions. The following result is easily verified.

PROPOSITION 3.1. Assume ¥,y € Loo(R",[0,1]). Then we have
l—¢ry=0=-¢)o(l-7)=>0-¢)+0-7)-10-9¢) (1-7),
l—gpoy=(0-9) - 1-7).

The set of commuting non negative Hermitian operators Sy forms an o-
perator lattice with respect to the order relation:
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Sy >0 (Syf, f)p > 0,Yf € Hp(R™).

Consider any two functions ¢,y € Lo (R™,[0,1]). The associated Fourier
partial integral operators Sy, S, commute and their product is again a product
Fourier partial integral operator satisfying

SpSy = S48y = Sy

The Boolean sum of 1,y € Lo(R"™, [0,1]) defines the blending Fourier partial
integral operator:

Sy ® S, =8y + Sy — Syn.
It is important to note that
V=g = (1-y)=1-¢
V=9, Y=y =@ =9y, WoN=var

Note that the characteristic functions y s , x n satisfy the above conditions.
In particular we have

XM * XN = XMnN, XM D XN =Xmun, 1—XxXm = Xwme,
with M¢=R" — M.

PRroPoOSITION 3.2. The set of operators Sy, with Y2 =9 form a Boolean
algebra of commuting projectors

B:={Sy : 1 € Leo(R™,[0,1]), ¥* = ¢}.

This aspect turns out to be useful in the multivariate setting.
We first determine the approximation order of product approximation Sy.S,, =

Sy -
PROPOSITION 3.3. Assume that f € Hp(R™). Then the error estimate
1 = 868, (Nllog < 16l (11 =%l + 11 =l p)
holds.

Proof. By Proposition 2.1 we have

1 = SuSy(Nllee < If1Ip lId = SySy (D)l -
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Since
ld = SySy(d)l|p = lld = Sy(d) + Sy(d = Sy(d))]
we obtain
ld = SySy(d)]lp < lld = Sy(d)lp + [155(d = Sy (d))l
< |ld = Sy(d)lp + lld = Sy(d)ll
=1 =%l p + 11 =7llsp -
O
Next we determine the approximation order of blending approximation Sy, +
Sy = Spy = Syery-
PROPOSITION 3.4. Assume that f € Hp(R™). Then the error estimate

1f = (S @ ) (Nllog < 11l /10 =)0,/ 100 =)z,

holds.

Proof. By Proposition 2.1 we have
1f =Sy ® S5 (Nl < Ifllp lld =Sy & Sy(d)l

Since
151w ()] 5% = /Rn(l —7(t) @ ¥(t))*D(t)dt

= | (1=()* (1 =% (t)*D(t)dt

R
< \/ |- ’V(t))“D(t)dt\/ L= v D
= la-v?, ,-Ja-»7,,

the proof is complete. O

As a special case we obtain

PROPOSITION 3.5. Assume that f € Hp(R™). Then the error estimate

1f = (6@ Sp) (Nl < I fllp |1 =0

2,D
holds.

4. APPROXIMATION IN TENSOR PRODUCT HARMONIC HILBERT SPACES
In the tensor product harmonic Hilbert space

Hpr(R?) = Hp(R) ® Hp(R)
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we have the simple situation
Dp(tl,tg) = D(tl)D(tQ) =D® D(tl,tg),
dP<1'1, 1‘2) = d(xl)d<1'2) =d® d(.%'l, xg).

This leads to special constructions of -Fourier integrals choosing tensor
products of measurable functions:

V(t1,t2) = ¢(t1) = ¢ ® 1r(t1,t2),
w(tht?) = C(tQ) = 1R & C(tlth)'
Recall that
la=Sy(d)l, = \/ @ v@)2D@dt = 1=l p.
The tensor product structure implies

|47 = Sera @) 5 = [Sa-0re1a ")

DP

= \//R2 D(t1)D(t2)(1 = ¢(t1))?dt1dts
= ||1 —¢ 2,D
Hdp - SlR@ﬁ(dP)HDP = H51R®(1R—C)(dP)HDP

1l2,ps

= \//R2 D(tl)D(t2)<1 — C(t2>)2dt1dt2
- Hl B C||2,D||1”27D.
An application of Proposition 3.3 yields

PROPOSITION 4.1. Assume that f € Hp(R) ® Hp(R). Then the error esti-
mate

1 = Spoc(N)llao < 1llpe 1, (I = .+ 111 = Cll )
holds.
For blending approximation in Hp, (R?) with the operator

Spa1r  S1ze¢ = S1pec T Sea1x — Sea¢

it follows
HdP - S¢®1R D SlR@C(dP)HDP =

= |Ste-sreaa-o0@)]| .

N \//Rz D(t1)D(t2)(1 = ¢(t1))?(1 — ((t2)dtrdty

=|1- ¢”2,D||(1 - C||2,D-
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Thus we have shown

PROPOSITION 4.2. Assume that f € Hp(R) ® Hp(R). Then the error esti-
mate

If = Sew1x ® Stpac(Fllo < N fllpp L=l plll —<Cllap
holds.

5. EXPONENTIAL-TYPE BLENDING APPROXIMATION

As a classical example let

Y(t1,t2) = X[—by,p1] (1) V(15 t2) = X[—bo b0 (t2),

In this case the operators are parametrically extended univariate Fourier par-
tial integrals

Sn(N@) = [ Xpuan () @) explila. )t

Sn(N@) = [ Xbmaai(t2) () explifa, 0)ds

These are functions of exponential-type in x1, respectively in x3. The cor-
responding product operator Sy, Sp, is the bivariate Fourier partial integral

Sty S, (f) () = /R2 X[=b1,b1] (F1) X [=bo,be) (t2) F'(t) exp(i(z, 1) )dt = Sy, p,) (f) ().

These are bivariate functions of exponential-type.
Recall that

ld = Se(d)l, = \//Rn(l — o(1))?D(t)dt = [|1 = ¢lly p -

PROPOSITION 5.1. The asymptotic error estimate for the bivariate Fourier
partial integral follows from the general result Proposition 4.1

|7 =Swm], =0 <\/ [~ Dityar + ¢ - D(t)dt) L biADy T oo

The Boolean sum Sy, @ Sy, is called the bivariate hyperbolic cross Fourier
integral

sz D Sb1 (f)(x) =
_ /R Xt (1) F(2) expi(a, £))dt + /R  X{etn ) (02) F (8) exp(i(e, 1))
- /]1%2 X[*bl,bl](tl)X[*bQ,bz} (tQ)F(t) exp(i(:v, t))dt = S(bl’b2)(f)(x)'

These are bivariate blending functions of exponential-type.
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PROPOSITION 5.2. The asymptotic error estimate for the bivariate hyper-
bolic cross Fourier integral follows from the general result Proposition 4.2

|7 - S<blv”2>(f)Hoo o) <\//: D(t)dt - \//:D(t)dt> . by V by T oo,

The first example is the tensor product Sobolev space. The univariate
defining function is

1
D(t) = —
®) 14 ¢2

and it defines the univariate Sobolev space
Hp(R) = W'(R),

The bivariate tensor product harmonic Hilbert space is obtained by choosing
the tensor product defining function,

Hp,(R?) = WD (®?).

The univariate error norms satisfy the asymptotic relations

1//bj01+1t2dt:(9(b1_§), /: Chadt = 0(b,?).

COROLLARY 5.1. The asymptotic error estimate for the bivariate product
Fourier partial integral in WD (R?) is given by

_1 _1
Hf—S(bl,bz)(f)Hoo:O(bl2 +b22), by Aby T oo
It is determined by the maximal univariate error bound.

COROLLARY 5.2. The asymptotic error estimate for the bivariate hyperbolic
cross Fourier partial integral in W(Ll)(RQ) s given by

1

Hf - S(bl’bZ)(f)Hoo =0 ((b1bz) 2) , b1 VbaToo.
It is determined by the product of the univariate error bounds.
For the univariate defining function
D(t) = exp(—|t])
the bivariate tensor product holomorphic Sobolev space is obtained,

Hp,(R?) = HED(R?).
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The univariate error norms satisfy the asymptotic relations

¢£%WFMW:O@WF?» V&ﬁm@mw=0@m@%n

COROLLARY 5.3. The asymptotic error estimate for the bivariate product
Fourier partial integral in H(WV (R?) ds given by

Hf - S(bl,bz)(f)Hoo =0 (eXP(—%) + eXP(—%)) ; b1 A by 1 oo,

It is determined by the mazimal univariate error bound.

COROLLARY 5.4. The asymptotic error estimate for the bivariate hyperbolic
cross Fourier partial integral in H(l’l)(RQ) is given by

|£=s®P(p)| =0 (exp(=52)), by Vst oo,

It is determined by the product of the univariate error bounds.
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