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Abstract. In the present note we study the degree of simultaneous approxi-
mation by certain Birkhoff spline interpolation operators. Special emphasis is
on estimates in terms of higher order moduli of smoothness. This generalizes
earlier results of Meir and Sharma, Demko, Howell and Varma, and Buckett and
Varma.
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1. INTRODUCTION AND PROBLEM DESCRIPTION

The present paper is dedicated to Professor Werner Haußmann who has
had a significant impact on the professional careers of both authors. Profes-
sor Haußmann has constantly shown an interest in interpolation, including
lacunary (Birkhoff) interpolation by polynomials and other function spaces.
Likewise he encouraged several of his students to consider the problems of
simultaneous and quantitative approximation. The present paper deals with
certain spline cases. Our focus is on error estimates for simultaneous approxi-
mation in terms of higher order moduli of smoothness. All results are based on
a powerful general estimation technique which turned out to be rather useful
in [6], [10] and [11].

In a 1968 paper I.J. Schoenberg [16] initiated the study of so-called g-
splines in connection with the problem of lacunary interpolation by splines (see
[13]). It seems, however, that the 1973 article by Meir and Sharma gave even
more impetus to the further development of the theory of lacunary (Birkhoff)
splines. In this paper–in which the spline knots and the interpolation nodes
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coincide—they also indicate that it might be of interest to investigate the
analogous problems when this is not the case (see [13, p. 442]). This was done
indeed in several later papers, some of which we will also discuss here.

As in the polynomial case incidence matrices E are useful to visualize an
individual interpolation problem. Let a ≤ y0 < y1 < . . . < ym ≤ b be a
sequence of arbitrary points in the interval [a, b]. With this sequence of points
we associate a matrix

E = (ei,j) i = 0, . . . ,m; j = 0, . . . , R,

where R is a positive integer.
Such matrices have as entries |E| ≥ m + 1 ones and (m + 1)(R + 1) − |E|

zeros and are such that in each row (corresponding to one of the yi’s) there
exists at least one entry equal to one. We also assume that the last column
contains at least one entry equal to one.

The partition y0 < y1 < . . . < ym constitutes the union of the sets of spline
knots {xk} (which are also interpolation nodes) and of further interpolation
nodes {zl}. A typical case is

x0 < z0 < x1 < z1 < . . . < xn−1 < zn−1 < xn;

so here

y0 = x0 < y1 = z0 < y2 = x1 < y3 = z1 < . . .

. . . < y2n−2 = xn−1 < y2n−1 = zn−1 < y2n = xn.

The set {zl} may be empty, that is, the interpolation nodes may coincide with
the spline knots.

Lacunary spline interpolation consists of finding a spline s (sufficiently
smooth and to be specified below) such that the following |E| conditions are
fulfilled:

s(j)(yi) = a
(j)
i if ei,j = 1.

Here the a(j)
i are arbitrary real numbers.

We will not deal with the problems of existence and uniqueness of Birkhoff
spline interpolation here. A valuable source of information in regard to these
is the book by Lorentz, Jetter and Riemenschneider [12].

In the present note we will only consider cases in which—assuming unique
solutions—for f ∈ CR[a, b] we put

a
(j)
i = f (j)(yi) if ei,j = 1.
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Since the last column of E has at least one entry equal to one, f (R)(yi) is
indeed needed for some i ∈ {0, . . . ,m} in this setting.

One further case of interest is the one in which f ∈ CR′ [a, b] with 0 ≤ R′ <
R. In this situation one typically requires

a
(j)
i = 0 for R′ + 1 ≤ j ≤ R and ei,j = 1.

For details in the context of Birkhoff interpolation by polynomials see, e.g.,
[10], [11].

Forcing some a(j)
i to be equal to zero takes us into quite a different situation

which one might name “Birkhoff–Fejér interpolation by spline functions”. In
fact, this was also considered in the spline case, but we will not deal with this
question here. See [8] for many references on how this problem was dealt with
in the polynomial case.

In the sequel we study the degree of uniform approximation of f ∈ CR[a, b]
and its derivatives up to a certain order by interpolating splines in the Schoen-
berg spaces S(r)

∆,q and their corresponding derivatives.
Thus S(r)

∆,q , −1 ≤ r < q, is the class of splines s such that

(i) s ∈ Cr[0, 1],
(ii) s ∈ Πq on [xν , xν+1], 0 ≤ ν ≤ n − 1, where ∆ = ∆n : a = x0 < x1 <

. . . < xn = b are the spline knots.

We recall that S(−1)
∆,q are the splines which may be discontinuous at xi, 0 ≤

i ≤ n, and that the number k = q − r ≥ 1 is the defect of the splines. More
on (more general) Schoenberg spaces can be found in [5, Ch. 5], for example.

As usual we put h = hn := max{xν+1 − xν : 0 ≤ ν ≤ n − 1}; this is the
“mesh gauge”. We will thus omit the subscript n if it is clear from the context.

The “mesh ratio” is given by

βn = max{xν+1 − xν}
min{xν+1 − xν}

.

The only function norm used throughout this note is the sup–norm ‖ · ‖∞,
we will thus simply denote it by ‖ · ‖.

All inequalities below will be given in terms of higher order moduli of
smoothness ωs(f ; δ). For f ∈ C[a, b], s ∈ N0, δ ≥ 0, the latter quantities
are defined by

ωs(f ; δ) := sup{|∆s
hf(x)| : x, x+ sh ∈ [a, b], |h| ≤ δ},
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where

∆s
hf(x) :=

s∑
ν=0

(−1)s−ν
(s
ν

)
f(x+ νh).

Properties of higher order moduli are collected in L. Schumaker’s book [17,
p. 55f.], for example. We mention just one of them, which is important as an
explanation for why our estimates given below imply what was already known,
namely:

if f ∈ Cr[a, b], r ∈ N0, then ωs+r(f ; δ) ≤ δr · ωs(f (r), δ), δ ≥ 0.

2. MAIN RESULT

The approach via higher order moduli was also used in [7] where refined
inequalities where given for the so–called “clamped” cubic splines as considered
by Sharma and Meir [15], among others. An essential tool there, and also in
our other papers on Birkhoff interpolation, was the following lemma first given
in [6]. It describes how well a function f ∈ Cr(I) can be smoothed by certain
smoother functions.

Lemma 2.1. Let I = [0, 1], f ∈ Cr(I), r ∈ N0. For any 0 < δ ≤ 1 and
s ∈ N there exists a function fδ,r+s ∈ C2r+s(I) with

(i) ‖f (j) − f (j)
δ,r+s‖ ≤ c · ωr+s(f (j), δ), 0 ≤ j ≤ r;

(ii) ‖f (j)
δ,r+s‖ ≤ c · δ−j · ωj(f, δ), 0 ≤ j ≤ r + s;

(iii) ‖f (j)
δ,r+s|| ≤ c · δ−(r+s) · ωr+s(f (j−r−s), δ), r + s ≤ j ≤ 2r + s.

Here the constant c depends only on r and s.

As was noted in [6], the statement of the lemma can be carried over to any
finite interval [a, b], a < b, by using the suitable linear transformation, and
the impact of this transformation will only be on the constant c figuring in the
lemma. In the sequel c will denote a constant that can be different at every
occurence, even in the same formula.

In the following theorem we adjust the smoothing approach also used earlier
to the present situation. The quantities ku ≤ pl ≤ pu figuring there stand
for “k−upper”, “p−lower” “p−upper”, respectively. The operators Sn in the
theorem are indexed only in order to have a subscript available also indicating
the dependence of certain constants.
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Theorem 2.2. Let 0 ≤ ku ≤ pl ≤ pu be given integers. For n ∈ N, let
Sn : Cpl [a, b]→ Cku [a, b] be a linear operator such that the following hold:
For p ∈ {pl, pu} and g ∈ Cp[a, b] we have

‖(Sng − g)(k)‖ ≤ εp,k · δn(p, k) ‖g(p)‖, 0 ≤ k ≤ ku,

where the constants εp,k are independent of n, but δn(p, k) depends on all three
parameters.

Then for all f ∈ Cpl [a, b], 0 ≤ k ≤ ku and any 0 < δ ≤ b− a,

‖(Snf − f)(k)‖ ≤ c ·
[
δn(pl, k) + δn(pu, k) · δ−(pu−pl)

]
· ωpu−pl

(f (pl); δ).

Here the constant c depends on ku, pl, pu, and all the εp,k.

Proof. For f ∈ Cpl , g ∈ Cpu and 0 ≤ k ≤ ku we write

‖(Snf − f)(k)‖ ≤ ‖[Sn(f − g)− (f − g)](k)‖+ ‖(Sng − g)(k)‖
≤ εpl,k · δn(pl, k) · ‖(f − g)(pl)||+ εpu,k · δn(pu, k) · ‖g(pu)‖.

For pl = pu put g = f to obtain the original inequality. If pl < pu and
0 < δ ≤ b − a, it follows from Lemma 2.1 (use r = 0 and s = pu − pl there)
that there exists a function gδ,pu−pl

∈ Cpu−pl [a, b] such that

‖f (pl) − gδ,pu−pl
‖ ≤ c · ωpu−pl

(f (pl); δ).

If Gδ denotes a pl–th primitive of gδ,pu−pl
, then Gδ ∈ Cpu [a, b], and the latter

inequality becomes

‖f (pl) −G(pl)
δ ‖ ≤ c · ωpu−pl

(f (pl); δ).

Furthermore, Lemma 2.1 also shows that

‖G(pu)
δ ‖ = ‖G(pl+pu−pl)

δ ‖ = ‖g(pu−pl)
δ ‖ ≤ c · δ−(pu−pl) · ωpu−pl

(f (pl); δ).

Hence, for 0 ≤ k ≤ ku, one has

‖(Snf − f)(k)‖ ≤

≤ max{εpl,k; εpu,k} ·
[
δn(pl, k) · c · ωpu−pl

(f (pl); δ)+

+δn(pu, k) · c · δ−(pu−pl) · ωpu−pl
(f (pl); δ)

]
=
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= c ·max{εpl,k; εpu,k} ·
[
δn(pl, k) + δn(pu, k) · δ−(pu−pl)

]
ωpu−pl

(f (pl); δ).

From this we obtain the claim of the theorem. �

3. THE QUINTIC MEIR–SHARMA LACUNARY INTERPOLANT – MODIFIED (0,2)

CASE

In a 1973 paper by A. Meir and A. Sharma [13], error bounds were given
for lacunary interpolation of certain functions by deficient quintic splines. We
recall that S(3)

∆,5 denotes the class of quintic splines s such that

(i) s ∈ C3[0, 1],
(ii) s ∈ Π5 on each interval

[
ν
n ,

ν+1
n

]
, 0 ≤ ν ≤ n− 1.

Given f ∈ C3[0, 1], for n odd, let sn be the unique element (cf. [13, Theo-
rem 1]) in S(3)

∆,5 which interpolates f in the sense that

(i) sn
(
ν
n

)
= f

(
ν
n

)
, 0 ≤ ν ≤ n;

(ii) s′′n
(
ν
n

)
= f ′′

(
ν
n

)
, 0 ≤ ν ≤ n;

(iii) s′′′n (0) = f ′′′(0), s′′′n (1) = f ′′′(1).

The interpolant is sometimes called the Meir–Sharma interpolant of f . Its
interpolation conditions can be visualized by the following scheme (incidence
matrix) from which it is clear that we are dealing with a modified (0, 2)–
interpolation problem here (xν = ν

n , 0 ≤ ν ≤ n):

x0 1 0 1 1
x1 1 0 1 0
x2 1 0 1 0
...

...
...

...
...

xn−1 1 0 1 0
xn 1 0 1 1

Meir and Sharma showed that, for f ∈ C4[0, 1],

‖(f − sn)(k)‖ ≤ 75 · 1
n3−k · ω1

(
f (4); 1

n

)
+ 8 · 1

n4−k ‖f
(4)‖, 0 ≤ k ≤ 3.
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Their lacunary interpolant was further investigated (and generalized) in
a note by B.K. Swartz and R.S. Varga [18]. The latter mentioned authors
showed in Theorem 1 in [18], among other things, the following:

(i) for f ∈ C3[0, 1],

‖(f − sn)(k)‖ ≤ ε3,k ·
1

n2−k · ‖f
(3)‖

=: ε3,k · δn(3, k) · ‖f (3)‖, 0 ≤ k ≤ 3,

with ε3,k independent of f and n.
Furthermore, in their Lemma 1 they proved
(ii) for f ∈ C6[0, 1],

‖(f − sn)(k)‖ ≤ 20 · 1
n5−k · ‖f

(6)‖

=: 20 · δn(6, k) · ‖f (6)‖, 0 ≤ k ≤ 3.

Thus all the information is available to apply Theorem 2.2 in order to arrive
at

Proposition 3.1. Let sn be the Meir–Sharma lacunary interpolant. Then,
for any f ∈ C3[0, 1],

‖(f − sn)(k)‖ ≤ c · 1
n2−k · ω3

(
f ′′′; 1

n

)
, 0 ≤ k ≤ 3,

with an absolute constant c.

Proof. In Theorem 2.2 we put ku = 3, pl = 3, pu = 6. This yields

‖(f − sn)(k)‖ ≤ c ·
[ 1
n2−k + 1

n5−k · δ
−3
]
· ω3(f ′′′; δ),

where 0 < δ ≤ 1 is arbitrary. Putting δ = 1
n gives

‖(f − sn)(k)‖ ≤ c · 1
n2−k · ω3

(
f ′′′; 1

n

)
, 0 ≤ k ≤ 3.

�

Corollary 3.2. For f ∈ C4[0, 1], the estimate in Proposition 3.1 gives

‖(f − sn)(k)‖ ≤ c · 1
n3−k · ‖f

(4)‖, 0 ≤ k ≤ 3,

and for f ∈ C5[0, 1] we get

‖(f − sn)(k)|| ≤ c · 1
n4−k · ‖f

(5)‖, 0 ≤ k ≤ 3.

Thus the original asymptotic order in the estimate of Meir and Sharma is
fully contained in the more elegant statement of Proposition 3.1. This is also
true for f (4) ∈ Lipα[0, 1], a case mentioned explicitly by them.
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Remark 3.3. Swartz and Varga also gave estimates for k = 4 if f ∈ C4[0, 1].
Since sn is piecewise quintic and in C3[0, 1] only, between the interpolation
knots s(4)

n is a linear function and possibly an element of L∞[0, 1] \ C[0, 1].
This situation is not covered by Theorem 2.2, and an extension of it is needed
with Cku [a, b] replaced by, say,

Wku+1,∞[a, b] = {f ∈ Cku [a, b] : f (ku+1) exists a.e. and is in L∞[a, b]}.

4. DEMKO’S GENERALIZED LACUNARY SPLINE INTERPOLANTS

The work of Meir and Sharma discussed in the previous section was remark-
ably generalized in a 1976 article of S. Demko [4]. We will show next that part
of his results can also be improved using higher order moduli of smoothness.
Again we are dealing with uniform partitions here. In order to formulate our
result, we first cite

Theorem 4.1. (see [4, Theorem 2.4]). Let ∆ : a = x0 < . . . < xn = b be
a uniform partition of [a, b] with n > 2. Let A,B,C be disjoint sets such that
1 ≤ |A| = d < q, A ∪ B ∪ C = {0, 1, . . . , 2q − d − 1}, |B| = |C| = q − d and
j+ k is even for (j, k) ∈ B×C and 0 ∈ A∪B. Then given arbitrary real data
{fi,j : j ∈ A, 0 ≤ i ≤ n}, {gi,j : j ∈ B, i = 0, n}, there is a unique element
s ∈ S(2q−d−1)

∆,2q−1 satisfying

(i) s(j)(xi) = fi,j , j ∈ A, 0 ≤ i ≤ n;
(ii) s(j)(xi) = gi,j , j ∈ B, i = 0, n,

if and only if n is odd.

The existence and uniqueness result of Meir and Sharma is obtained for the
special case A = {0, 2}, B = {3}, C = {1}, where d = 2, q = 3, so that the
spline space in question is indeed S(3)

∆,5.

Demko also proved (an even stronger form of)

Theorem 4.2. (see [4, Theorem 3.3]). Let A,B,C and ∆ be as in Theorem
4.1. Given f ∈ C2q[a, b], let s be the unique element in S(2q−d−1)

∆,2q−1 interpolating
f in the following sense:

s(j)(xi) = f (j)(xi), j ∈ A, 0 ≤ i ≤ n;
s(j)(xi) = f (j)(xi), j ∈ B, i = 0, n.

Then
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‖(s− f)(k)‖ ≤ K · h2q−1−k · ‖f (2q)‖, 0 ≤ k ≤ 2q − d− 1.

Another of his results was (a more general form of)

Corollary 4.3. (see [4, Corollary 3.4]). Let A,B,C and ∆ be as in Theo-
rem 4.1. Let f ∈ Cp[a, b], 0 ≤ p < 2q−1. Suppose that max{l : l ∈ A∪B} ≤ p.
Let s be the unique element of S(2q−d−1)

∆,2q−1 satisfying

s(j)(xi) = f (j)(xi), j ∈ A, 0 ≤ i ≤ n;
s(j)(xi) = f (j)(xi), j ∈ B, i = 0, n.

Then

‖(s− f)(k)‖ ≤ K · hp−1−k · ω(f (p);h)
≤ 2K · hp−1−k · ‖f (p)‖, 0 ≤ k ≤ min{p, 2q − d− 1}.

We now apply Theorem 2.2 to the cases considered above. We then get

Proposition 4.4. Let A,B,C and ∆ be as in Theorem 4.1. Let f ∈
Cp[a, b], 0 ≤ p < 2q − 1. Suppose that max{l : l ∈ A ∪ B} ≤ p, and let s
be the unique spline considered above. Then we have

‖(s− f)(k)‖ ≤ c · hp−1−k · ω2q−p(f (p);h), 0 ≤ k ≤ min{p, 2q − d− 1}.

Proof. In Theorem 2.2 we set ku = min{p, 2q − d − 1}, pl = p, pu =
2q, δn(p, k) = hp−1−k, δn(2q, k) = h2q−1−k, δ = h. This gives

‖(s− f)(k)‖ ≤ c ·
[
hp−1−k + h2q−1−k · h−(2q−p)

]
· ω2q−p(f (p);h)

= c · hp−1−k · ω2q−p(f (p);h), 0 ≤ k ≤ min{p, 2q − d− 1}.

�

Remark 4.5. In case of the Meir–Sharma interpolant the parameters are
as follows:

max{l : l ∈ A ∪B} = 3 = p,

min{p, 2q − d− 1} = min{3, 3} = 3,
2q − p = 3.

We have thus rediscovered Proposition 3.1 as a special case of Proposition 4.4.

One further example explicitely mentioned in Demko’s paper is an interpo-
lation scheme investigated by Carlson and Hall in [3] and called “Scheme C”
there. Using Demko’s notation, this is the case A = {1}, B = {0}, C = {2},
and is visualized in the interpolation matrix below:
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x0 1 1
x1 0 1
x2 0 1
...

...
...

xn−1 0 1
xn 1 1

Here the parameters are

max{l : l ∈ A ∪B} = 1 ≤ p < 3 = 2q − 1,

min{p, 2q − d− 1} = min{p, 4− 1− 1} =
{

1, if p = 1
2, if p = 2 ,

2q − p = 4− p =
{

3, if p = 1
2, if p = 2 .

Proposition 4.4 implies

Proposition 4.6. Let f ∈ Cp[a, b], p = 1 or p = 2. Then the “Scheme C”
interpolant s ∈ S(2)

∆,3 satisfies the inequalities:

‖(s− f)(k)‖ ≤ c · hp−1−k · ω4−p(f (p);h), 0 ≤ k ≤ min{p, 2}.

In particular, if f ∈ C4[a, b], then

‖(s− f)(k)‖ ≤ c · h1−k · ω2(f ′′;h)
≤ c · h3−k · ‖f (4)‖, 0 ≤ k ≤ 2.

Remark 4.7. As was already mentioned by Demko (see [4, p. 375]), Carlson
and Hall (see Corollary 3 in [3]), proved an order of O(h4) for f ∈ C5[a, b] and
k = 0. The general method from above does not provide this order. This is
due to the fact that, for the present value of q = 2, Theorem 4.2 gives O(h3)
for f ∈ C4[a, b], and no more than that. This calls for a refinement of Demko’s
method in order to provide subtler input for smooth functions.

5. QUARTIC HOWELL–VARMA INTERPOLANTS–MODIFIED (0,2) CASE

G. Howell and A. Varma [9] considered deficient quartic lacunary inter-
polants in S(2)

∆,4. Here ∆ : 0 = x0 < x1 < . . . < xn = 1 is an arbitrary
partition.
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For f ∈ C2[0, 1] and zi = xi+xi+1
2 , i = 0, 1, . . . , n − 1, they showed (see

Theorem 1 in [9]) that there exists a unique sn ∈ S(2)
∆,4 such that

(i) sn(zi) = f(zi), i = 0, 1, . . . , n− 1;
(ii) s′′n(xi) = f ′′(xi), i = 0, 1, . . . , n;
(iii) sn(0) = f(0), sn(1) = f(1).
This is one example for a situation in which the spline knots do not coincide

with the interpolation nodes. The interpolation scheme is now as follows:

x0 1 0 1
z0 1 0 0
x1 0 0 1
z1 1 0 0
...

...
...

...
xn−1 0 0 1
zn−1 1 0 0
xn 1 0 1

Setting again h := max{xν+1 − xν : 0 ≤ ν ≤ n − 1} and assuming that the
“mesh ratios” satisfy

βn ≤ K, n ∈ N,

they showed in Theorem 2 in [9] that
(i) for f ∈ C2[0, 1], ‖(f − sn)(k)‖ ≤ ε2,k · h2−k · ‖f ′′‖, 0 ≤ k ≤ 2,
(ii) for f ∈ C5[0, 1], ‖(f − sn)(k)‖ ≤ ε5,k · h5−k · ‖f (5)‖, 0 ≤ k ≤ 2.

An application of Theorem 2.2 now leads to

Proposition 5.1. Let sn be the quartic Howell–Varma (0, 2) interpolant
from above. Then, for all f ∈ C2[0, 1],

‖(f − sn)(k)‖ ≤ c · h2−k · ω3(f ′′;h), 0 ≤ k ≤ 2,

with c an absolute constant.

Proof. In Theorem 2.2 we set ku = 2, pl = 2, pu = 5. This gives, putting
δ = h,

‖(f − sn)(k)‖ ≤ c ·
[
h2−k + h5−k · h−3

]
· ω3(f ′′;h)

= c · h2−k · ω3(f ′′;h), 0 ≤ k ≤ 2.

�

Corollary 5.2. Proposition 5.1 implies all the separate statements in
Howell’s and Varma’s Theorem 2 ([9, p. 931]).
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Remark 5.3. The authors mentioned also considered a different (0, 2) in-
terpolation spline qn ∈ S(2)

∆,4 satisfying conditions of the Fejér–type, namely

(i’) qn(zi) = f(zi), i = 0, 1, . . . , n− 1;
(ii’) q′′n(xi) = 0, i = 0, 1, . . . , n;
(iii’) qn(0) = f(0), qn(1) = f(1).

So the incidence matrix is the one from above, but, due to the Fejér–type
conditions, the spline is now defined on all of C[0, 1]. Howell and Varma (see
[9, Theorem 3]) proved error estimates also in this case. It is beyond the scope
of this note to also generalize and improve these.

6. BURKETT–VARMA INTERPOLANTS OF (0,1,2,4)–TYPE

J. Burkett and A. Varma [1] investigated (0, 1, 2, 4) spline interpolation
in S(4)

∆,8. They proved that, for given f ∈ C4[0, 1] and zi = xi+xi+1
2 , i =

0, 1, . . . , n− 1, there is a unique sn ∈ S(4)
∆,8 satisfying

(i) s(j)
n (xi) = f (j)(xi), i = 0, 1, . . . , n; j = 0, 1, 2;

(ii) s(4)
n (zi) = f (4)(zi), i = 0, 1, . . . , n− 1;

(iii) s′′′n (x0) = f ′′′(x0), s′′′n (xn) = f ′′′(xn).

Schematically, the interpolation requirements are again represented below:

x0 1 1 1 1 0
z0 0 0 0 0 1
x1 1 1 1 0 0
z1 0 0 0 0 1
x2 1 1 1 0 0
...

...
...

...
...

...
xn−1 1 1 1 0 0
zn−1 0 0 0 0 1
xn 1 1 1 1 0

Theorem 2 in [1] gives the following inequalities:

(i) for f ∈ C4E[0, 1], ‖(f − sn)(k)‖ ≤ ε4,k · h4−k · ‖f (4)‖, 0 ≤ k ≤ 4;
(ii) for f ∈ C9[0, 1], ‖(f − sn)(k)‖ ≤ ε9,k · h9−k · ‖f (9)‖, 0 ≤ k ≤ 4.

From them we derive
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Proposition 6.1. Let sn ∈ S(4)
∆,8 be the Burkett–Varma (0, 1, 2, 4) inter-

polant. Then, for all f ∈ C4[0, 1],

‖(f − sn)(k)‖ ≤ c · h4−k · ω5(f (4);h), 0 ≤ k ≤ 4.

Proof. We now use ku = 4, pl = 4, pu = 9 in Theorem 2.2 and put δn(p, k) =
hp−k for p ∈ {4, 9}, δ = h. This gives

‖(f − sn)(k)‖ ≤ c ·
[
h4−k + h9−k · h−5

]
· ω5(f (4);h)

≤ c · h4−k · ω5(f (4);h),

which was our claim. �

A different type of (0, 1, 2, 4) interpolation problem was investigated by the
same authors in [2]. They showed existence and unicity of a spline qn ∈ S(4)

∆,8
such that, for f ∈ C4[0, 1],

(i) qn(zi) = f(zi), i = 0, 1, . . . , n− 1;
(ii) q(j)

n (xi) = f (j)(xi), i = 0, 1, . . . , n; j = 1, 2, 4;
(iii) qn(x0) = f(x0), qn(xn) = f(xn).

Thus the “incidence matrix” now attains the form

x0 1 1 1 0 1
z0 1 0 0 0 0
x1 0 1 1 0 1
z1 1 0 0 0 0
x2 0 1 1 0 1
...

...
...

...
...

...
xn−1 0 1 1 0 1
zn−1 1 0 0 0 0
xn 1 1 1 0 1

It was shown in Theorem 2 of [2] that, if the mesh ratios βn remain bounded,
the following are valid:

(i) for f ∈ C4[0, 1], ‖(f − qn)(k)‖ ≤ ε4,k · h4−k · ‖f (4)‖, 0 ≤ k ≤ 4;
(ii) for f ∈ C9[0, 1], ‖(f − qn)(k)‖ ≤ ε9,k · h9−k · ‖f (9)‖, 0 ≤ k ≤ 4.

In Theorem 2.2 we put again ku = 4, pl = 4, pu = 9 and arrive at
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Proposition 6.2. Let qn be the Burkett–Varma spline interpolant as descri-
bed above. Then, for all f ∈ C4[0, 1],

‖(f − qn)(k)‖ ≤ c · h4−k · ω5(f (4);h), 0 ≤ k ≤ 4.

7. BURKETT–VARMA INTERPOLANTS–(0,1,3) CASE

This case was also considered in [2]. The authors showed that for f ∈
C3E[0, 1] there exists a unique sn ∈ S(3)

∆,7 such that

(i) s(j)
n (xi) = f (j)(xi), i = 0, 1 . . . , n; j = 0, 3;

(ii) s(j)
n (zi) = f (j)(zi), i = 0, 1, . . . , n− 1; j = 0, 1;

(iii) s′n(x0) = f ′(x0), s′n(xn) = f ′(xn).

The visualization is now:

x0 1 1 0 1
z0 1 1 0 0
x1 1 0 0 1
z1 1 1 0 0
x2 1 0 0 1
...

...
...

...
...

xn−1 1 0 0 1
zn−1 1 1 0 0
xn 1 1 0 1

From Theorem 4 in [2] we derive the following: If the mesh ratios βn remain
bounded, then

(i) for f ∈ C3[0, 1], ‖(f − sn)(k)‖ ≤ ε3,k · h3−k · ‖f ′′′||, 0 ≤ k ≤ 3;
(ii) for f ∈ C8[0, 1], ‖(f − sn)(k)‖ ≤ ε8,k · h8−k · ‖f (8)‖, 0 ≤ k ≤ 3.

Using Theorem 2.2 now with ku = 3, pl = 3, pu = 8 gives

Proposition 7.1. Let sn ∈ S(3)
∆,7 be the Burkett–Varma (0, 1, 3) spline in-

terpolant. Then for all f ∈ C3[0, 1] we have

‖(f − sn)(k)‖ ≤ c · h3−k · ω5(f ′′′;h), 0 ≤ k ≤ 3.
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8. CONCLUSION

(i) In the above we have restricted ourselves to the consideration of the
now classical quintic (0, 2) spline interpolant of Meir and Sharma, to
the generalization due to Demko, and to that of certain further lacu-
nary spline operators which were discussed more recently by Varma
and his collaborators. Inequalities similar to the ones given above can
also be derived for cases which were investigated in further papers such
as [19], [20], [14], and others.

(ii) As was already pointed out in the book by Lorentz, Jetter and Riemen-
schneider (see [12, p. 190]), “interpolation by spline functions is a
more complex subject than polynomial interpolation”. This is evident
in particular when the many possible choices of interpolation matri-
ces E (using interpolation nodes) meet the many possible choices of
Schoenberg spaces S(r)

∆,q (using spline knots).
Not even the fundamental problems of existence, uniqueness and

representation seem to have been treated to a satisfactory extent until
the time of this writing. The present note should be considered as
a possible guideline for future research concerning the quantitative
aspect of the matter.
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