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Abstract. Some inequalities for the ”derivatives” of iterated linear operators
will be presented, which will be applied for the investigation of degrees of ap-
proximation. Thus, with the application of the Laplacian we improve some
classical results concerning the Jackson type estimate, the inverse theorem as
well as the saturation phenomenon.
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1. INTRODUCTION

Let Xp,d be either Lp(T d), the Lp-space of periodic functions with T =
[−π, π] or Lp(Rd), 1 ≤ p ≤ +∞ (for p = +∞, let L∞(T d) = C(T d) and
L∞(Rd) be the set of bounded functions in C(Rd)). Denote by || · ||Xp,d

the
usual norm on Xp,d. Denote further Di := ∂/∂xi and Dα := Dα1

i · · ·D
αd
d ,

where the multiindex α = (α1, . . . , αd) has non-negative integers αi. The
length of α is |α| = α1 + . . . + αd. Let πn,d be the set of trigonometric
polynomials of degree ≤ n with respect to each variable xi, i = 1, ..., d.

The Peetre K-functional defined on Xp,d is given by

Kk(f, t)Xp,d
:= inf

g∈Wk
p,d

{||f − g||Xp,d
+ tk sup

|α|=k
||Dαg||Xp,d

},

where W k
p,d is the Sobolev space given by
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W r
p,d := {f ∈ Xp,d : Dαf ∈ Xp,d, |α| ≤ r}.

It is known (see [1] and [4]) that Kk(f, t)Xp,d
is equivalent to the modulus of

smoothness ωk(f, t)Xp,d
, defined by

ωk(f, t)Xp,d
:= sup
|h|≤t,h∈Rd

{∥∥∥ k∑
j=0

(−1)j
(k
j

)
f(·+ jh)

∥∥∥
Xp,d

}
.

Two basic results in Approximation Theory are the so-called Bernstein in-
equality and the Jackson inequality.

Roughly speaking, in case of approximation by πn,d the Bernstein inequality
tells us that the Lp-norm of the derivative of a polynomial can be estimated
by the product of the Lp-norm of the polynomial and the degree of the corre-
sponding polynomial. For example (see [12])

(1.1) ||DαTn||Lp(T d) ≤ Cn|α|||Tn||Lp(T d), for 1 ≤ p ≤ ∞, Tn ∈ πn,d,

while the Jackson inequality says that the best approximation constant Ep,d(f)
for f ∈ Lp(T d) in case of approximation by πn,d can be estimated if the
smoothness of the given function is known. The second result was pointed out
by Jackson in 1912 (see [5]) in case d = 1 and p = ∞. To mention his result
let

kn,r(t) = αn,r ·
sin2r(nt/2)
sin2r(t/2)

,

where the constant αn,r is such that ||kn,r||L1(T ) = 1. Let Kn,r,d be the tensor-
product of the kernels kn,r, namely

Kn,r,d(t) =
d∏
i=1

kn,r(ti), t = (t1, . . . , td),

and let Jn,r,d be the corresponding convolution operator with the kernel Kn,r,d,
i.e.,

Jn,r,df = Kn,r ∗ f,

the so-called Jackson operator. Jackson’s result may be formulated as

||f − Jn,2,1f ||Lp(T ) ≤ C2ω2(f, 1
n)Lp(T ).
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If we consider the best approximation polynomials as operators of the ap-
proximated function, then these operators are in general not linear. There
are however only a few cases for which one can get the exact form of the
best approximation polynomials. Thus, the linear method or the linear oper-
ator approach is a good alternative for the approximation by polynomials, in
particular the linear positive method which has been attracting special inter-
est in the past. In connection with the approximation degree for the linear
method one investigates, among others, the Jackson type estimate (i.e., the
upper bound of the approximation error), the inverse theorem and the satura-
tion phenomenon. We refer to [2], [11], [12] and [14] for detailed information
concerning these subjects. In [6] (see also [3] and [7]) we introduced a new
technique. Using this technique we unify the above mentioned subjects for a
large class of positive linear operators in one form. In this way we obtain for
example the best lower and upper estimate for the Bernstein operator (see [7]
and [15]) which completely characterizes the approximation behaviour of this
operator. In the present paper we shall give a brief view of our investigation
concerning this subject. In Section 2 we shall point out the relation between
the derivative of iterated operators and the approximation behaviour of the
considered operators. In Section 3 we give some applications of our technique
(or the results in Section 2) for approximation by trigonometric polynomials
in several variables.

2. ITERATION OF CONVOLUTION OPERATORS

For positive convolution operators the following results generalize the theo-
rems in [6] (see also [17]). Let Φ ∈ X1,d be a positive kernel. The convolution
operator L defined by this Φ is

Lf = f ∗ Φ,

which satisfies Lf = 1 for f ≡ 1 and Lf ∈ Xp,d whenever f ∈ Xp,d, 1 ≤ p ≤ ∞.
We shall denote by Φj the kernel of Lj , which is given by L1 := L and
Ljf := L(Lj−1f). The key step of our technique is the so-called iteration
inequality. For better understanding we shall present this inequality for the
case Lp(R) and give a much more natural proof. The proof is different from
the one in [6].

Lemma 2.1. [9]. Suppose Φ ∈W 1
∞,1. Then for all f ∈ Xp,1, 1 ≤ p ≤ +∞,

||(LN (f))′||Xp,1 ≤ 1
ε
√
N
||f ||Xp,1 , ∀f ∈ Xp,1, N = 1, 2, ...,

where

ε−2 =
∫
R

(Φ′(t))2

Φ(t) dt < +∞.
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Proof. We notice that if we can verify this inequality for p = 1 and p = +∞,
then, via the Riesz-Thorin theorem (see Chapter XII [18]), this inequality holds
for all 1 ≤ p ≤ +∞. Furthermore, it is enough to prove it only for p = +∞.
To see this, we note that, for all f ∈ X1,1, g ∈ X∞,1 with f∗(x) := f(−x) and
g∗(x) := g(−x), it holds that∫

R

∫
R
g(x)f(t)Φ′(x− t)dtdx =

∫
R

∫
R
f∗(t)g∗(x)Φ′(t− x)dxdt

or ∫
R

(L(f))′ · g =
∫
R
f∗ · (L(g∗))′.

As LN is again a convolution operator, the last identity implies∣∣∣∣∫
R

(LN (f))′ · g
∣∣∣∣ =

∣∣∣∣∫
R
f∗ · (LN (g∗))′

∣∣∣∣ ≤ 1
ε
√
N
||f ||X1,1 ||g||X∞,1 ,

which yields the assertion for p = 1 by the duality argument. Thus, it remains
to prove our inequality only for p = +∞. To this end, let us observe that one
can write Lf as

Lf(x) =
∫
R
f(t+ x)Φ(t)dt.

Hence,

LNf(x) =
∫
RN

f(t1 + t2 + ...+ tN + x)Φ(t1)Φ(t2) · · ·Φ(tN )dt1dt2 · · · dtN .

Writing t1 + t2 + ...+ tN +x = (t1 +x/N) + (t2 +x/N) + ...+ (tN +x/N) and
replacing tj + x/N, j = 1, 2, ..., N in the last formula by tj , j = 1, 2, ..., N, we
obtain

LNf(x) =
∫
RN

f(t1+t2+...+tN )Φ(t1− x
N )Φ(t2− x

N ) · · ·Φ(tN− x
N )dt1dt2 · · · dtN .

It is now clear that the derivative of LNf(x) is

(LN (f))′(x) =

= −
∫
RN

f(t1 + t2 + ...+ tN ) 1
NK(t1, t2, ..., tN , x)

N∑
j=1

(Φ(tj − x
N ))′

Φ(tj − x
N ) dt1 · · · dtN ,

where K(t1, t2, ..., tN , x) = Φ(t1 − x
N )Φ(t2 − x

N ) · · ·Φ(tN − x
N ). Denote
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lj :=
(Φ(tj − x

N ))′

Φ(tj − x
N ) .

Using Cauchy’s inequality we get, because of the positivity of K,

∣∣∣(LN (f))′(x)
∣∣∣ ≤ 1

N

(∫
RN
|f |2K

) 1
2
(∫

RN
K ·

( N∑
j=1

lj
)2
) 1

2

.

It is clear that the first integral can be estimated by∫
RN
|f |2K ≤ ||f ||2X∞,1

as
∫
RN K = 1. On the other hand, since (

∑N
j=1 lj)2 =

∑N
j=1 l

2
j +2

∑
i<j lilj and∫

R Φ(ti − x
N )dti = 1 we conclude that

∫
RN

K ·
( N∑
j=1

lj
)2 =

N∑
j=1

∫
RN

Kl2j + 2
∑
i<j

∫
RN

Klilj

= Nε+ 2
∑
i<j

∫
R2

Φ′(ti − x
N )Φ′(tj − x

N )dtidtj

= Nε.

The desired assertion for the case p = +∞ follows from the last two inequali-
ties. �

Lemma 2.1 allows us to improve some well-known inverse results for the
approximation by positive linear operators. Thus, we have

Theorem 2.2. [9], [17]. Let there exist some j ≥ 1 such that Φj ∈ W 1
∞,d

and

ε−2 :=
∫
Md

|grad Φj(t)|2

Φj(t)
dt < +∞ ,

where M = R or M = T . Then for fixed k ∈ N there exists a constant Ck > 0,
which does not depend on ε, such that for all f ∈ Xp,d and 1 ≤ p ≤ ∞ we have

K2k+1(f, ε)Xp,d
≤ Ck ||(I − L)kf)||Xp,d

.

To present further results we need the concept of conjugate functions in
case d = 1. It is known that the conjugate function f̃ of f is defined in the
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periodic case by

f̃(x) := − 1
2π

∫ π

0

f(x+ t)− f(x− t)
tan t

2
dt

(cf. [18]) and for the real line R by

f̃(x) :=
∫ ∞

0

f(x+ t)− f(x− t)
t

dt,

respectively. In case 1 < p <∞ one has (see [18])

||g̃||Xp,1 ≤ Cp||g||Xp,1 .

The above inequality is not true for p = 1 and p = ∞. In fact, the following
estimate for trigonometric polynomials is in general sharp:
For p = 1 or p =∞ one has (see [18])

||T̃n||Lp(T ) ≤ C lnn||Tn||Lp(T ), ∀Tn ∈ πn,1.

On the other hand, it is known that for polynomials and their conjugate
functions one has the so-called Szegö-inequality (see [18]):
For all 1 ≤ p ≤ ∞ there holds

||T̃ ′n||Lp(T ) ≤ Cn||Tn||Lp(T ), ∀Tn ∈ πn,1.

Now let d be greater than 1, Lig be the conjugate function of g with respect
to xi and D̃i := DiLi. In this way we define D̃α = D̃α1

1 . . . D̃αd
d . With these

notations the Szegö-inequality in multivariable version is

(2.1) ||D̃αTn||Lp(T d) ≤ Cαn|α|||Tn||Lp(T d), ∀Tn ∈ πn,d.

Using our technique we get a generalization of the Szegö-inequality:

Theorem 2.3. [8]. Let 1 ≤ p ≤ ∞, k ∈ N, and the dimension d ≥ 1 be
fixed. Then there exists a positive constant Ck > 0 such that for all ε > 0, all
n and all Tn ∈ πn,d one has

sup
|α+β|=2k+1

||DαD̃βTn||Lp(T d) ≤(2.2)

≤ Ck

{
1

ε2k+2 sup
|α|=2k+1

||DαTn||Lp(T d) + εn||∆kTn||Lp(T d)

}
.
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The following result characterizes completely the quantitative approxima-
tion behavior for some positive linear operators.

Theorem 2.4. [6], [9], [10], [17]. Let the condition of Theorem 2.2 be fulfilled
and 1 ≤ p ≤ +∞ be fixed. If there exists some constant A > 0 such that for
all g ∈W 3

p,d

(2.3) ||g − Lg − η(ε)∆g||Xp,d
≤ Aε3 sup

|α+β|=3
||DαD̃βg||Xp,d

with η(ε) ∼ ε2, then for some Ck > 0, which does not depend on ε, the in-
equalities

(2.4) C−1
k Kk

∆(f, ε)Xp,d
≤ ||(I − L)kf ||Xp,d

≤ Ck Kk
∆(f, ε)Xp,d

, ∀f ∈ Xp,d

are valid, where Kk
∆(f, ·)Xp,d

is the K-functional for f , defined by

Kk
∆(f, t)Xp,d

= inf
g∈W 2k

p,d
(T d)

{||f − g||Xp,d
+ t2k||∆kg||Xp,d

}

with the Laplacian ∆ and the identity operator I.

It is known (see e.g [13]) that if 1 < p <∞ then

sup
|α|=2k

||Dαg||Xp,d
≤ Cp,d,k||∆kg||Xp,d

.

Thus K2k(f, t)Xp,d
is equivalent to Kk

∆(f, t)Xp,d
. For p = 1 or p =∞ however

one can use the approach of [13] to show that these K-functionals are not
equivalent. In general (see [17] for the detail) we have for some C > 0, which
does not depend on f ∈ Xp,d and t, the estimate

(2.5) C−1K2k+1(f, t)Xp,d
≤ Kk

∆(f, t)Xp,d
≤ CK2k(f, t)Xp,d

.

Obviously, (2.4) unifies the so-called direct estimate, inverse theorem and
saturation theorem in one form for those positive linear operators, which sat-
isfy the conditions of Theorems 2.2 and 2.4.

3. APPLICATONS

In this section we shall give two applications concerning the approximation
by trigonometric polynomials in several variables. We study first the Jackson
operators Jn,r,d with r ≥ 2. It is not hard to verify that these operators satisfy
all the conditions of Theorem 2.3. Thus, the following inequalities give the
final version for the approximation degree of Jackson operators
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Theorem 3.1. [9]. For fixed d ≥ 1, r ≥ 2 and k ≥ 1 there exists a positive
constant Cr,d,k > 0 such that for all 1 ≤ p ≤ ∞, for all f ∈ Lp(T d) and all
n ≥ 1

(3.1) C−1
r,d,kK

k
∆(f, 1

n)Lp(T d) ≤ ||(I − Jn,r)kf ||Lp(T d) ≤ Cr,d,kKk
∆(f, 1

n)Lp(T d).

Our method allows us also to improve some classical estimates about the
approximation by trigonometric polynomials. For d = 1 these results may
be found in Chapter 7 of [2]. Thus, the direct and inverse results may be
formulated as

Theorem 3.2. For fixed d ≥ 1, k ≥ 1 and 1 ≤ p ≤ ∞ there exists C > 0
such that the following estimates hold:

(3.2) En(f)p,d ≤ C
n2En(∆f)p,d, ∀f ∈W 2

p (T d);

(3.3) En(f)p,d ≤ CKk
∆(f, 1

n)Lp(T d), ∀f ∈ Lp(T d);

(3.4) Kk
∆(f, h)Lp(T d) ≤ Ch2k ∑

0≤n≤1/h
(n+ 1)2k−1En(f)p,d, ∀f ∈ Lp(T d).

Proof. The second inequality of (2.5) and the estimate in [12] (see pages
197-204 there) imply (3.4), while (3.3) is a simply consequence of (3.2). Thus,
we need only to show (3.2). It is known (see page 197 of [12]) that En(f)p,d ≤
CK3(f, 1

n)p,d. Thus, (2.5) implies En(f)p,d ≤ Cn−2||∆f ||p,d. On the other
hand, as for any Tn ∈ πn,d there holds En(f)p,d = En(f − Tn)p,d, we conclude
that

En(f)p,d ≤ Cn−2||∆f −∆Tn||Lp(T d), ∀Tn ∈ πn,d.

Assume T ∗n ∈ πn,d to be a best approximation of ∆f , so there exists a Tn ∈ πn,d
such that ∆Tn = c+ T ∗n with c = −

∫
T ∗n . We notice

∫
∆f = 0. Thus, we can

estimate c by |c| ≤
∫
|∆f − T ∗n | ≤ CEn(∆f)p,d. Therefore,

En(f)p,d ≤ Cn−2||∆f −∆Tn||Lp(T d) ≤ Cn−2En(∆f)p,d,

which gives (3.2). �

For applications (e.g., in Computer Aided Geometric Design) sometimes one
needs to know not only the distance between the approximation polynomial
and the function which is approximated, but the uniform smoothness of this
polynomial sequence in connection with this function as well. For a best
approximation sequence {T ∗n} of f one has (see [16], [17])
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1
n2k ||∆kT ∗n ||Lp(T d) ≤ CkKk

∆(f, 1
n)Lp(T d).

The following result shows that, in fact, if the distance between the approxima-
tion polynomial and the approximated function is bounded by a K-functional,
then the uniform smoothness of this sequence can always be estimated by this
K-functional.

Theorem 3.3. [9]. Let f ∈ Lp(T d) and the polynomial sequence {Tn},
Tn ∈ πn,d satisfy

||Tn − f ||Lp(T d) ≤ CkKk
∆(f, 1

n)Lp(T d).

Then there exists C ′k > 0 such that for j = 1, ..., k the following estimates hold:

1
n2j ||∆jTn||Lp(T d) ≤ C ′kK

j
∆(f, 1

n)Lp(T d),

and

Kj
∆(Tn, t)Lp(T d) ≤ C ′kK

j
∆(f, t)Lp(T d).

For d = 1 the above assertions follow from a lemma by Zamansky [2].
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