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ON SOME AITKEN-STEFFENSEN-HALLEY-TYPE METHODS

FOR APPROXIMATING THE ROOTS OF SCALAR EQUATIONS

ION PĂVĂLOIU∗

Abstract. In this note we extend the Aitken-Steffensen method to the Halley
transformation. Under some rather simple assumptions we obtain error bounds
for each iteration step; moreover, the convergence order of the iterates is 3, i.e.
higher than for the Aitken-Steffensen case.

MSC 2000. 65H05.

1. INTRODUCTION

Let f : [a, b] → R, a, b ∈ R, a < b and suppose that f ∈ C4 [a, b], and
f ′ (x) > 0, ∀x ∈ [a, b]. Consider the function h : [a, b] → R given by

h (x) = f(x)√
f ′(x)

.

As it was shown in [2], the Halley method for solving:

(1.1) f (x) = 0,

is given by

(1.2) xn+1 = xn − h(xn)
h′(xn)

, n = 0, 1, . . . , x0 ∈ [a, b] .

This sequence is in fact generated by the Newton method for solving h (x) =
0.

The first and second order derivatives of h are given by

h′ (x) = 2(f ′(x))2−f ′′(x)·f(x)

2(f ′(x))3/2
(1.3)
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h′′ (x) = 3(f ′′(x))2−2f ′′′(x)f ′(x)

4(f ′(x))5/2
· f (x)(1.4)

which yield the following equalities for a solution x̄ of (1.1):

h′ (x̄) =
(

f ′ (x̄)
)1/2

, and(1.5)

h′′ (x̄) = 0.(1.6)

Relation (1.6) ensures the convergence order 3 for the sequence (xk)k≥0.

In the papers [2]–[8] and [12] there are studied the convergence and the
convergence order of some sequences generated by some interpolatory methods
applied to equation h (x) = 0.

We shall consider other two equations equivalent to (1.1) of the form:

x− ϕ1 (x) = 0, and(1.7)

x− ϕ2 (x) = 0(1.8)

The Aitken method for solving h (x) = 0 is given by the iteration

(1.9) xn+1 = ϕ1 (xn)− h(ϕ1(xn))
[ϕ1(xn),ϕ2(xn);h]

, n = 0, 1, . . . , x0 ∈ [a, b] .

In this note we shall study the convergence of these iterates. We shall
show that the functions ϕ1 and ϕ2 may be chosen in order to obtain bilateral
approximations at each iteration step; this fact allows the control of the errors.
On the other hand, the convergence order of (xn)n≥0 given by (1.9) is at least
equal to 3.

Hypotheses f ∈ C4 [a, b] and f ′ (x) > 0, ∀x ∈ [a, b] imply, taking into
account (1.5), that there exist α, β ∈ R, a ≤ α < x̄ < β ≤ b such that
h′ (x) > 0,∀x ∈ [α, β].

2. ERROR EVALUATION AND LOCAL CONVERGENCE

Consider the interval [α, β] given above. We shall make the following as-
sumptions on ϕ1 and ϕ2:

i. the function f ∈ C4 [a, b] ;
ii. equation (1.1) has the solution x̄ ∈ [a, b];
iii. the inequality f ′ (x) > 0 holds for x ∈ [α, β] ;
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iv. the function ϕ1verifies the relation 0 < [x, y;ϕ1] < 1 for all x, y ∈ [α, β],
where [x, y;ϕ] denotes the first order divided difference of ϕ on x and
y;

v. the function ϕ2 verifies the relations −1 < [x, y;ϕ2] < 0 for all x, y ∈
[α, β] .

We can state the following result:

Theorem 2.1. Assume that i–v hold, and for some x0 ∈ [α, β] sufficiently

close to x̄ we have ϕ1 (x0) , ϕ2 (x0) ∈ [α, β] . Then the following relations hold:

j. the sequences (xn)n≥0 , (ϕ1 (xn))n≥0 and (ϕ2 (xn))n≥0 converge to x̄;

jj. for any n = 0, 1, . . . , one has

|x̄− xn+1| ≤ max
{

|xn+1 − ϕ1 (xn)| , |xn+1 − ϕ2 (xn)|
}

;

jjj. there exists k ∈ R, k > 0,which does not depend on n ∈ N such that

|xn+1 − x̄| ≤ k |xn − x̄|3 , n = 0, 1, . . .

Proof. By ϕ1(x0), ϕ2(x0) ∈ [α, β] it obviously follows that h′(ϕ1(x0)) > 0
and h′(ϕ2(x0)) > 0. Denote by I0 the interval having the extremities ϕ1(x0)
and ϕ2(x0). We notice, taking into account the mean formula, that

[ϕ1(x0), ϕ2(x0);h] > 0.

When x0 < x̄, by iv. and x̄ = ϕ1(x̄) it follows ϕ1(x0) < x̄. Analogously,
ϕ1(x0) > x̄ for x0 > x̄. Taking into account v. and x̄ = ϕ2(x̄) we get ϕ2(x0) >
x̄ for x0 < x̄ and ϕ2(x0) < x̄ for x0 > x̄. It is obvious that in both situations
x̄ ∈ I. It can be easily seen that for all n = 0, 1, . . . we have

ϕ1 (xn)− h(ϕ1(xn))
[ϕ1(xn),ϕ2(xn);h]

= ϕ2 (xn)− h(ϕ2(xn))
[ϕ1(xn),ϕ2(xn);h]

,

which, for n = 0 imply x1 > ϕ1(x0) and x1 < ϕ2(x0) if x0 < x̄, respectively
x1 < ϕ1(x0) and x1 > ϕ2(x0) if x0 > x̄, i.e., x1 ∈ int I0. It is clear now that,
analogously, x1 < ϕ1(x1) < x̄ < ϕ2(x1) if x1 < x̄ or x1 > ϕ1(x1) > x̄ > ϕ2(x1)
if x1 > x̄. Denoting by I1 the interval determined by ϕ1(x1) and ϕ2(x1) then

I1 ⊂ I0,

and the element x2 constructed by (1.9) satisfies x2, x̄ ∈ I1.
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Repeating the above reason we get xn+1, x̄ ∈ In, the interval being deter-
mined by ϕ1(xn), ϕ2(xn), and also that

In+1 ⊂ In.

and x̄ ∈ In+1. It is clear now that jj. holds. In order to obtain jjj. we shall
use the identity

h (x̄) =h (ϕ1 (xn)) + [ϕ1 (xn) , ϕ2 (xn) ;h] (x̄− ϕ1 (xn))

+ [x̄, ϕ1 (xn) , ϕ2 (xn) ;h] (x̄− ϕ1 (xn)) (x̄− ϕ2 (xn)) ,

which, together with (1.9) and h(x̄) = 0, imply

x̄− xn+1 = − [x̄,ϕ1(xn),ϕ2(xn);h]
[ϕ1(xn),ϕ2(xn);h]

(x̄− ϕ1 (xn)) (x̄− ϕ2 (xn)) .

For the difference x̄− ϕ1 (xn), by iv. one gets

x̄− ϕ1 (xn) = [x̄, xn;ϕ1] (x̄− xn) ,

i.e.,

x̄− ϕ1 (xn) < |x̄− xn| .

Analogously, by v. we get

|x̄− ϕ2 (xn)| < |x̄− xn| .

The mean formula for divided differences implies

[x̄, ϕ1 (xn) , ϕ2 (xn) ;h] =
1
2h

′′ (ξn) , with ξn ∈ In, and

[ϕ1 (xn) , ϕ2 (xn) ;h] = h′ (ηn) , ηn ∈ In.

For h′′ (ξn) we have

∣

∣h′′ (ξn)
∣

∣ =
∣

∣h′′ (ξn)− h′′ (x̄)
∣

∣ =
∣

∣h′′′ (θn)
∣

∣ |x̄− ξn| .

Since ξn ∈ In it follows

|x̄− ξn| < |x̄− xn| .

Denoting m1 = infx∈[α,β] |h′ (x)| , M3 = supx∈[α,β] |h′′′ (x)| , the above relations
lead to

|x̄− xn+1| ≤ M3

2m1
|x̄− xn|3 , n = 0, 1, . . . ,

i.e., jjj. for k = M3

2m1
.
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Since the initial approximation x0 was supposed sufficiently close to the
solution x̄, then

√

M3

2m1
|x̄− x0| < 1

implies, together with jjj., statement j. �

Remark 2.1. Supposing that f ′′(x) ≥ 0 for all x ∈ [a, b], and if instead of
iii. we assume that f ′(x) > 0, then obviously f(x) < 0 for a ≤ x < x̄, and so
in Theorem 2.1 we may take α = a. From the above conditions it follows that
h′(x) > 0 for x ∈ [a, x̄], and since f(x̄) = 0, one gets β > x̄. �

3. DETERMINING THE FUNCTIONS ϕ1 AND ϕ2

Under reasonable hypotheses on f , we shall show that there exist two classes
of functions among we can choose the functions ϕ1 and ϕ2 such that hypotheses
iv. and v. to be satisfied.

Besides assumptions i.–iii. on f, we shall suppose that f is strictly convex,
i.e., f ′′(x) > 0, ∀x ∈ [a, b]. This condition implies that f ′ is increasing on
[a, b]. If, moreover, f ′(x) < 2λ, with 0 < λ ≤ f ′

r(a), then we may consider the
functions

ϕ1 (x) = x− f (x)

µ
and(3.1)

ϕ2 (x) = x− f (x)

λ
(3.2)

where µ may be taken as any real number greater than the left derivative of
f at b, f ′

l (b).
In the following we shall show that the functions ϕ1 (x) and ϕ2 (x) chosen

above obey iv. and v. The derivatives of these functions are given by

ϕ′
1 (x) = 1− f ′ (x)

µ
, resp. ϕ′

1 (x) = 1− f ′ (x)

λ
.

Obviously, 0 ≤ ϕ′
1 (x) < 1. Also, the monotonicity of f ′ implies ϕ′

2 (x) < 0,
while f ′(x) < 2λ implies −1 < ϕ′

2 (x) .
Taking into account Remark 2.1, under the above hypotheses it is obvious

that if x0 < x̄, then condition ϕ1 (x0) ∈ [α, β] from Theorem 2.1 is obviously
satisfied. Indeed, this fact follows from ϕ′

1 (x) < 1, since ϕ1 (x0)−x̄ = ϕ1 (x0)−
ϕ1 (x̄) = ϕ′

1 (ξ) (x0 − x̄) < 0, x0 < θ < x̄, i.e., ϕ1 (x0) < x̄.

On the other hand, |ϕ1 (x0)− x̄| < |x0 − x̄| , and so the relations x0 <

ϕ2 (x0) < x̄ hold. The hypothesis ϕ2 (x0) ∈ [α, β] must be kept.
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