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1. INTRODUCTION

The trajectory reversing method it seems to be one of the most powerful
method for estimating the asymptotic stability region of autonomous nonlinear
dynamical systems. The first papers concerning this method were due by
Genesio, Tartaglia and Vicino [4], [5] and also by Hsu [8]. There are two main
ways in which a concrete implementation of this idea may be done.

First. The boundary of stability region is synthetized from a number of
system trajectories obtained by backward integration of the differential system
which describe the dynamical system, starting from the equilibrium points.
These trajectories, starting in a neighborhood of an asymptotic stable point,
tend to the boundary of stability region, while the trajectories, starting near
an equilibrium point on the boundary, remain related to the boundary and
give essential information about it [4], [5]. In [2] such a procedure is based
on topological properties of the equilibrium points and closed orbits on the
stability boundary. Several necessary and sufficient conditions are given to
determine whether an equilibrium point or a closed orbit is on the stability
boundary.

Second. The stability region (or its boundary) is approximated by a se-
quence of estimates, consisting of certain domains (or surfaces) around of the
stable equilibrium point. Starting from an initial estimate Ω0, inside of the
true stability region, one performs a backward integration and obtains a new
estimate Ω1. If Γ0 denote the boundary surface of Ω0, the backward integra-
tion maps the points of Γ0 along the trajectories of the system into a new
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surface Γ1 which bounds the new estimate Ω1. The sequence {Ωk} should
satisfies the following properties:

1. Ωk ⊂ Ωk+1, that is {Ωk} should be a strictly monotonically increasing
sequence;

2. Every estimate Ωk should belongs to the true stability region.

In [6] the backward integration is performed by choosing p points, P kj , j =
1, 2, ..., p on the boundary surface Γk and moving each these points by back-
ward integration along the trajectories with the same step h (that is from the
time tk to tk+1 = tk + h); the results are the points P k+1

j which define the
boundary of the new estimate. The sequence {Γk} is proved to converge to
the boundary surface of the true stability region.

In [14] the possibility of yielding the successive estimates in analytic form is
studied. Starting with an initial parametrically defined surface within the true
stability region, it use Euler method to produce a sequence of parametrically
defined surfaces which approximates the required boundary.

A constructive methodology was proposed in [3]. It starts with a given Lya-
punov function and yields a sequence of Lyapunov functions which are then
used to estimate the stability region. The sequence is shown to satisfies the
conditions 1, 2. The methodology proceeds in three main steps: (A) Deter-
mining the critical level value of a given Lyapunov function V ; (B) Estimating
the stability region via the function V ; (C) Expanding the current estimate;
this step is performed via the following expansion schemes: the function V (x)
is replaced by either V (x+ df(x)) or V (x+ d/2(f(x+ df(x)) + f(x)), d > 0.
Steps (B) and (C) are then reapplied iteratively. The first expansion scheme
is related to the backward Euler numerical procedure. This idea also appear
in our paper [10], experiments 5 and 6, pp. 62–64, fig. 2.3–2.7.

Loccufier and Noldus [9] recently proposed a new trajectory reversing me-
thod, a combination of Lyapunov techniques, trajectory reversing and some
topological properties of the stability boundary. This method provides an
accurate estimation of the true stability region for a wide classes of high order
nonlinear dynamical system.

In this paper the expansion schemes based on Euler method are studied
and developed. We try to answer to the following question: What is the
asymptotical behavior of successive estimates produced by such expansion
schemes? In section 2 the expansion schemes are constructed and motivated.
The particular case of second order system and explicit form of Lyapunov
function is considered in section 3. A convergence theorem is then proved.
Section 4 contains an algorithm of trajectory reversing type and a number of
illustrative examples.
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2. EXPANSION SCHEMES

Consider a dynamical system which is described by the following nonlinear
autonomous system of differential equations

(1) ẋ = f(x), f : D ⊆ Rn → Rn.

Suppose that f(0) = 0 and that the null solution x(t) ≡ 0 is asymptotically
stable. Let Ω be the asymptotic stability region of the origin and let Γ be its
boundary. Let Γ0 be an initial estimate of Γ and suppose that there exists a
function V0 : Rn → R, sufficiently smooth, such that V −1

0 (0) = Γ0. That is
Γ0 is the boundary of the zero level set of V0. Starting from Γ0 it can obtains
a new estimate Γ1 by the standard trajectory reversing technique: let x be
an arbitrary point of Γ0 and let x(t) be the reversing trajectory of (1) which
starts from x. Now, perform a reversing displacement along this trajectory
with the steplength h and repeat this procedure for all trajectories starting
from points on Γ0. This means that Γ0 is shifted along the trajectories in
reversing sense with the steplength h. The new position of Γ0 will be the next
estimate Γ1. Thus, we yield a sequence {Γk} of estimates which approximates
the boundary Γ of the true stability region.

The following problem arises: knowing V0 such that V −1
0 (0) = Γ0, deter-

mine V1 such that V −1
1 (0) = Γ1 or at least such that V −1

1 (0) ≈ Γ1. For this
last purpose, we consider the following slight modification of the procedure:
the displacement are performed not just along the trajectories, but along the
tangencies of the trajectories. It results the estimate Γt1, close to Γ1.

The transformation of Γ0 into Γt1 is given by

(2) X = x− hf(x),

which is just a step of backward numerical integration via Euler method.
Let 〈., .〉 , ‖.‖ denote the usual inner product and the corresponding (Eu-

clidean) norm on Rn respectively. Throughout this paper we will consider that
f will satisfies the following two basic conditions:

(a) f is F-differentiable on a convex and bounded set D0 ⊂ D;
(b) ‖f ′(u)− f ′(v)‖ ≤ k‖u− v‖, ∀u, v ∈ D0.
These conditions and the boundedness of D0 ensure that both f and f ′ are

bounded on D0; let m, M be these boundaries, that is

‖f(x)‖ ≤ m, ‖f ′(x)‖ ≤M, ∀x ∈ D0.

Suppose now that h < 1/M . Then, using perturbation lemma, it results
that I − hf ′(x) is invertible and∥∥[I − hf ′(x)]−1∥∥ ≤ 1

1− hM , ∀x ∈ D0.

Define the function ϕ : D0 → Rn by

ϕ(x) = x− h[I − hf ′(x)]−1f(x).



92 Ştefan Mǎruşter 92

Theorem 1. Let x be a given point in D0 and let X be given by (2). Suppose
that h satisfies the condition

0 < h ≤ min
{ 1

2M ,
1

M+
√
km

}
,

and that S(X, r) ⊂ D0, where r ≤ 4mh.
Then

(3) ‖x− ϕ(X)‖ ≤ 8km2

3 h3.

Proof. Consider the function F : S(X, r)→ Rn given by

F (x̄) = x̄− hf(x̄)−X.

Clearly, x̄ = x is a solution of the equation F (x̄) = 0. Perform one step with
the Newton method starting from the point x̄0 = X. It results

x̄1 = x̄0 − [I − hf ′(x̄0)]−1(x̄0 − hf(x̄0)−X) = ϕ(X).

Now, apply Mysovskii theorem [12] in order to estimate the error, that is the
quantity ‖x̄1 − x‖.

We have

‖F ′(u)− F ′(v)‖ ≤ γ‖u− v‖, ‖F ′(u)−1‖ ≤ β, ∀u, v ∈ D0,

where γ = hk and β = 1/(1 − hm), which are the first two conditions of
Mysovskii. Also, ‖F ′(x̄0)−1F (x̄0)‖ ≤ η = hm/(1−hM), therefore the constant
α from Mysovskii theorem is

α = 1
2γβη = km

2
h

1−hM ,

and α < 1/2. Further, because
∑∞
j=0 α

2j−1 < 2 and h/(1+hM) ≤ 2h, it results
r = η

∑∞
j=0 α

2j−1 < 4mh and the condition S(X, r) ⊂ D0 is also satisfied.
Therefore, the Mysovskii theorem can be applied. We have

ε1 = α
η(1−α2) <

4α
3η = k

3
h

1−hM < 2kh
3 ,

‖x̄1 − x̄0‖ = h‖[I − hf ′(X)]−1f(X)‖ ≤ h m
1−hM ≤ 2mh.

Finally, it obtains

‖x̄1 − x̄‖ ≤ ε1‖x̄1 − x̄0‖2 ≤ 2km2

3 h3. �

Note that 2km2/3 depends, generally, of the magnitude of D0 and the qual-
ity of the approximation (3) depends of the size of x. For instance, consider
the function

f(x) =
[

−x2
x1 − x2 + x2

1x2

]
,

which is the right side of the Van der Pol equation. Let h = 0.01. If x =
(1, 0.5)T then ϕ(X) = (0.99999999, 0.50000088)T , which is in accordance
with (3), while if x = (5, 4)T then ϕ(X) = (4.99994720, 400528037)T . Note
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also that if the stability region is bounded then D0 may be chosen to covers
this region and we can dispose of h that the approximation be suitable.

Based on theorem 1, various expansion schemes can be obtained. Since,
from (4), x ≈ ϕ(X), we have

V0(ϕ(X)) ≈ V0(x) = 0, ∀x ∈ Γ0,

which means that X ∈ Γt1 ⇔ V0(ϕ(X)) ≈ 0 and we can takes V1 = V0 ◦ ϕ.
Therefore, it results the following expansion schemes.
1. This scheme is just the above recurrence formula, that is

(4) Vk+1(x) = Vk(ϕ(x)).
2. For h sufficiently small, the function ϕ may be approximated by ϕ(x) ≈

x+ hf(x) and (4) becomes
(5) Vk+1(x) = Vk(x+ hf(x)).

3. If V is a real function defined on Rn, sufficiently smooth, and if h is
sufficiently small, we can write

V (x+ hf(x)) ≈ V (x) + h〈V ′(x), f(x)〉,
where V ′ is the gradient of V . The expansion scheme is
(6) Vk+1 = Vk + h〈V ′k, f〉.

Remark 1. If Th is the operator defined by Th(V ) = V +h〈V ′, f〉, then the
third expansion scheme may be written as Vk+1 = Th(Vk). It is remarkable the
fact that this operator is defined by the linear part of the Taylor development
of V (x+ hf(x)). �

4. This scheme is just the third scheme for the case of the explicit second
order system. In this case, we will written the system as

ẋ = f(x, y),
ẏ = g(x, y),

and we search for the function V : R2 → R in the explicit form V (x, y) = y −
v(x). Note that, if we takes the operator Th also in explicit form, Th(V (x, y)) =
y − th(v(x)), then T

(k)
h (V ) = y − ht

(k)
h (v), where the superscript indicate

the iteration number, and the sequence {vk} will be generates by th. This
operator results by a simple computation, taking into account that, in this
case, V ′(x, y) = (−v(x), 1)T . It obtains th(v) = v − hF (v) where F (v(x)) =
g(x, v(x))− v′(x)f(x, v(x)). The expansion scheme is
(7) vk+1 = vk − hF (vk).

In the paper [10] the schemes (5) and (6) were considered in somewhat
different form and some numerical experiments concerning the possibility of
the estimation of stability regions by these schemes were made. The second
expansion scheme (6) was also considered by Chiang and Thorp [3] who have
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shown that if V0 is a Lyapunov function then for a finite number of iteration
Vk are also Lyapunov functions and the critical level sets of Vk are strictly
increasing estimates and remain inside of the true stability region.

In the same manner (using certain formulas for reverse displacement, per-
forming one step with the Newton method and using Mysovskii theorem),
it can obtain various other expansion schemes. For example, in the case of
explicit second order systems, it can obtain the expansion scheme

(8) vk+1 = vk ◦ ϕ− hg(ϕ, vk ◦ ϕ),

where the function ϕ is defined by ϕ(x) = x+ h[1 + hf ′(x, v(x))]f(x, v(x)).

3. THE ASYMPTOTICAL BEHAVIOR

The successive estimates must be ”close” to the boundary of the stability
region; this means that we need a suitable topology in the space of surfaces
from Rn. For example, we can use the ”distance” between two surfaces as is
defined in [1].

The sequence of the functions Vk, given by any expansion schemes (4), (5) or
(6), generally, do not have a punctual convergence. But the sequence {V −1

k (0)}
may be convergent to a surface Γh which must have the following important
property:

The limit surface Γh is invariant to the transformation (2) that is, if x ∈ Γh
then also X ∈ Γh. Moreover, Γh approximates arbitrarily well the boundary of
the true stability region as h→ 0.

This remarkable property will be pointed out for the scheme 3 by the next
example; for the scheme (7) we will give a convergence theorem (theorem 2 in
this section). First of all we will verify this property for the scheme (8) and
for the nonlinear system considered in example 1 (Section 4).

By a simple computation it result that the function v∗(x) = a/x, where
a = (−1 + 2h +

√
1 + 4h)/4h is a fixed point of the iteration (8), that is

Γh = {(x, y) : xy = a}. The invariance property of Γh to the transformation
(2) can be also verified. Moreover, if h → 0 then a → 1 and Γh tend to the
true stability region of the system (Γ = {(x, y) : xy = 1}.

An example for the scheme 3. Consider again the system from example
(2). The first five terms of the sequence Vk given by the expansion scheme 3,



95 On the expansion schemes 95

starting with V0(x, y) = x2 + y2 − 0.25 and h = 0.2, are

V1(x, y) =0.6x2 + 0.6y2 + 0.8x3y − 0.25,
V2(x, y) =0.36x2 + 0.36y2 + 0.64x3y + 0.96x4y2 − 0.25,
V3(x, y) =0.216x2 + 0.216y2 + 0.46x3y + 0.567x4y2 + 1.536x5y3 − 0.25,
V4(x, y) =0.1296x2 + 0.1296y2 + 0.256x3y + 0.384x4y2 + 3.072x6y4 − 0.25,
V5(x, y) =0.07776x2 + 0.07776y2 + 0.15488x3y + 0.2304x4y2 − 3.072x6y4

+ 0.6144x5y3 + 7.3728x7y5 − 0.25

It seems that this sequence of functions does not have a punctual convergen-
ce; indeed, for instance, if x = y = 1 then the corresponding numerical sequen-
ce is 1.75, 1.75, 2.07, 2.71, 3.721, 5.206, . . .; if x = y = 2 then the correspond-
ing numerical sequence is 7.75, 17.35, 74.31, 438.214, 3175, 27230, . . . But the
sequence of curves V −1

0 (0), V −1
1 (0), V −1

2 (0), V −1
3 (0), V −1

4 (0), V −1
5 (0), . . . seems

to converge to a limit curve which approximates the boundary of stability re-
gion. In the fig. 1 the initial curve and the second, the forth and the fifth
curves are drawn.

Fig. 1. Expansion scheme 3.

Convergence analysis for the scheme 3. Let L2(I) be the Hilbert space of the
square summable real functions on the interval I, endowed with the usual inner
product and corresponding norm and let L2

d(I) the subset of L2(I) consisting
of derivable functions. Let Y be a bounded, convex and closed subset of L2

d(I).
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Theorem 2. Suppose that the the operator th maps Y into itself, th : Y →
Y , and that the function F , defined in scheme 4, satisfies the condition

(9) F (u)− F (v) = δ(u− v), ∀u, v ∈ Y,

where δ is a real function such that 0 < d ≤ δ(x) ≤ D. Also, suppose that
h ≤ 1/2.

Then the operator th has a fixed point v∗.

Proof. Using (9) and the boundedness of δ, we have

〈F (u)− F (v), u− v〉 = 〈δ(x)(u− v), u− v〉 ≥ d‖u− v‖2,
‖F (u)− F (v)‖2 = ‖δ(x)(u− v)‖2 ≤ D2‖u− v‖2.

If h < 2d/D2 then

2〈F (u)− F (v), u− v〉 > h‖F (u)− F (v)‖2.

So, it results

‖th(u)− th(v)‖2 = ‖u− v − h(F (u)− F (v)‖2

= | u− v‖2 − 2h〈F (u)− F (v), u− v〉+ h2‖F (u)− F (v)‖2

< ‖u− v‖2,

and th is nonexpansive. Using the fixed point theorem of Browder-Gäbel-Kirk
(see, for example, [13, pp. 62]), it follows that th has at least one fixed point
v∗. �

Application. Consider again the system from example 2, that is the right
side of the considered system is f(x, y) = −x + 2x2y, g(x, y) = −y. Let
the interval from theorem 2 be I = (−∞,−ε] ∪ [ε,∞) and let Y be the set
{ax , a < 1, x ∈ I}. It can shown that Y ⊆ L2

d(I) and that it is a bounded,
convex and closed set. Let u, v ∈ Y given by u(x) = a/x, v(x) = b/x. By a
simple computation, it results

F (u)− F (v) = 2(a+ b− 1)(u− v),

and d = D = 2(a+b−1), which is the condition (9). The condition h ≤ 2d/D2,
which is also required by theorem 2, involves h ≤ 1/(a+b−1) which is satisfied
for any u, v because h ≤ 1/2. Finally, if v ∈ Y then th(v) ∈ Y , because

th(v) = v − hF (v) = −2ha2+(1+2h)a
x ,

and 0 < −2ha2+(1+2h)a < 1. This means that th : Y → Y and all conditions
of theorem 2 are satisfied.

It results that the operator th has a fixed point in Y , v ∗ (x) = 1/x; the
graph of this function is just the boundary oh the true stability region of the
system. Observe that this curve is invariant with respect to the mapping (9)
and that in this particular case it does not depends of h.
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Remark 2. In fact, the convergence of the sequence {vk} is equivalent to
the convergence of the numerical sequence {ak}, given by ak+1 = −2ha2

k +
(1 + 2h)ak, which converges to the value one for all 0 < a0 < 1. �

4. AN ALGORITHM AND ILLUSTRATIVE EXAMPLES

Based on the expansion schemes (1-5) some algorithms for estimating the
boundary of the stability regions can be developed. The simplest are just the
recurrence formulas (4-8). In [10] some of such algorithms are presented and
numerical experiment concerning the efficiency and accuracy of the algorithms
are given.

The algorithm we present uses the expansion scheme 3, formula (6).
Let 〈V ′, f〉 : Rn → R be the function defined by 〈V ′, f〉(x) = 〈V ′(x), f(x)〉.

Suppose that V is a function which satisfies the condition
(10) V (0)−1 = 〈V ′, f〉(0)−1.

This means that Th(V )(0)−1 = V (0)−1, that is the function V is invariant
to the transformation Th and the property of previous section, ensures that
V (0)−1 will approximates the boundary of the stability region. The computa-
tion of V which satisfies the condition (11) is the main idea of the algorithm.
We search for a function V as a polynomial of degree p, in several variables:

V (a, x) =
∑
i

α1+...+αn≤p

ai x
α1
1 ...xαn

n

where a = (a1, a2, ...) are the coefficients of polynomial and x = (x1, ..., xn)
are independent variables. Generally, such a polynomial function cannot be
a solution of (11), that is,generally, it can’t find a such that (11) be satisfied.
Therefore, we determine the polynomial V such that the condition (11) will
be best satisfied. For example, it can determine a and a set of points Xj , j =
1, ...,m as the solution of the following constraint optimization problem

min
a,Xj

n∑
j=1
〈V ′(a,Xj), f(Xj)〉2, V (Xj) = 0, j = 1, ...,m.

In a concrete implementation, the set of points Xj , j = 1, ...,m may be
chosen as follows. Let the point Xj be of the form Xj = (x0

1,j , ..., x
0
n−1,j , xn,j),

where the components x0
1,j , ..., x

0
n−1,j are given and xn,j is unknown. The

fixed components must be chosen such that the point Xj = (x0
1,j , ..., x

0
n−1,j , 0)

belongs to the stability region. Thus, the constraint optimization problem
involves as scalar unknowns the components of a and xn,1, ..., xn,m.

Algorithm 3. Step 0. (Initializations) a = (a0
1, a0

2,. . . ), xi,j = x0
i,j, i =

1, n, j = 1,m;
Step 1. Compute xn,j, j = 1, ...,m from conditions:

V (a,Xj) = 0, where Xj = (x0
1,j , ..., x

0
n−1,j , xn,j);



98 Ştefan Mǎruşter 98

Step 2. Compute a = (a1
1, a

2
2, ...) such that∑

j

〈V ′(a,Xj), f(Xj)〉2 = minimum;

Step 3. Go to Step 1.
This algorithm has been applied to some examples we have found in the

literature; in the following a part of them is presented to illustrate the pos-
sibility of estimation the stability region. In each example we have used 20
equidistant points (m = 20) on the horizontal axis, bounded by two given
numbers, a and b, inside of the true stability region. The boundary of the true
stability regions was drawn by a continue lines, while the computed estimates,
by dotted lines.

Example 1. This is a famous example studied in [7], [4], [3], [11]
ẋ = −x+ 2x2y,

ẏ = −y.
Note that the boundary of the stability region of this equation have two

branches which runs to infinity (the boundary of stability region is Γ = {(x, y) :
xy = 1})

The polynomial of degree 2 in two variables, for a = −4, b = 4 is
V (x, y) = −5 · 10−5x2 + 0.999999xy + 8 · 10−9y2 − 1 · 10−7x+ 8 · 10−9y − 1,

and, with the computer round of error, V (0, 0)−1 = Γ. �

Example 2. The Van der Pol equations (studied in many papers)
ẋ = −y,
ẏ = x− y + x2y.

The boundary of stability region is an unstable closed orbit. In the first
two experiment (Fig. 2), two polynomials of degree two were computed for
a = −1, b = 1 and a = −1.3, b = 1.3 respectively. The polynomials are

(a) V (x, y) = 0.918x2
0.731xy + 0.385y2 − 1,

(b) V (x, y) = 0.5367x2 − 0.3677xy + 0.226y2 − 1. �

The next two experiments presents two polynomials of degree four computed
for a = −1, b = 1 and a = −1.95, b = 1.95 respectively (Fig. 3). The
polynomials are

(a) V (x, y) = −0.0263x4 + 0.121x3y + 0.006x2y2 + 0.002xy3 + 0.0038y4

+ 0.4254x2 − 0.5375xy + 0.2339y2 − 1.,
(b) V (x, y) = −0.019x4 + 0.109x3y + 0.006x2y2 + 0.0022xy3 + 0.0026y4

+ 0.322x2 − 0.45xy + 0.195y2 − 1.
In the Fig. 4 is drawn the graph of a polynomial of degree two for a =

−1.95, b = 1.95.
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Fig. 2. The estimation of the boundary for example 2 by polynomials of degree two.

Fig. 3. The estimation of the boundary for example 2 by polynomials of degree four.

Example 3. This is an example studied in [2], [5]

ẋ = −2x+ xy,
ẏ = −y + xy.

Note that the boundary contains a saddle point of coordinate (1, 2). The
computed polynomials are

(a) V (x, y) = 0.1106x2y + 0.144xy + 0.2y − 1,
(b) V (x, y) = 0.0048x4y2 − 0.0433x3y2 + 0.1051x2y + 0.3127xy + 0.1591y − 1,

and the estimates are drawn in Fig. 5. �
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Fig. 4. The estimation of the boundary for example 2 by polynomials of degree two.

Fig. 5. The estimation of the boundary for example 3 by polynomials of degree three and
six, respectively.

5. CONCLUSIONS

The results of experiments are encouraging. If the boundary is given just
by a polynomial, then our algorithm gives this polynomial (example 1). In
other cases, the estimates have a suitable accuracy for a moderate degree of
polynomials (Example 2, Fig. 4b and example 3, Fig. 5b).

The estimates do not depend essentially of the particular characteristics of
the boundary; the boundaries of considered examples have totally different
shapes (branches which run to infinity, closed orbit, saddle point).

The computed estimates are not always inside of the true stability regions
(example 2, Fig. 4); this undesirable situation seems to appears if the given
points Xj are far to the stable point and they pack near the boundary.
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