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ON THE EXTREMAL SEMI-LIPSCHITZ FUNCTIONS

COSTICĂ MUSTĂŢA∗

Abstract. The extremal elements of the unit balls of Banach spaces play an
important role in the study of the geometry of the space as well in various
applications. For Banach spaces of Lipschitz real functions the extremal elements
of the unit ball are investigates in numerous papers (S. Cobzas 1989, J. D. Farmer
1994, N. V. Rao and A. C. Roy 1970, Roy 1968 and in the references therein).
In this note we shall present a procedure to obtain extremal elements of the unit
ball of the quasi-normed semilinear space of real-valued semi-Lipschitz functions
defined on a quasi-metric space.
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1. INTRODUCTION

Let X be a nonvoid set. A function d : X → [0,∞] is called a
quasi - metric if it satisfies the conditions:

(i) d (x, y) = d (y, x) = 0⇐⇒ x = y
(ii) d (x, y) ≤ d (x, z) + d (z, y)

or
(i′) d (x, y) = 0 ⇐⇒ x = y

and (ii), for all x, y, z ∈ X. The pair (X, d) is called a quasi - metric space.
Remark that d is not a symmetric function, i.e., it is possible that d (x, y) 6=

d (y, x) for x, y ∈ X.
A function f : X → R, defined on a quasi - metric space (X, d) is called

semi-Lipschitz if there exists K ≥ 0 such that

(1) f (x)− f (y) ≤ K · d (x, y) ,

for all x, y ∈ X.
A function f : X → R is called ≤d- increasing if
a) d (x, y) = 0 implies f (x)− f (y) ≤ 0

or, equivalently
a′) f (x)− f (y) > 0 implies d (x, y) > 0, for all x, y ∈ X.
Let

(2) SLipX =
{
f : X → R | f is ≤d -increasing and ‖f‖X <∞

}
,
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(see [12]), where

(3) ‖f‖X = sup
{(f (x)− f (y)) ∨ 0

d (x, y) : x, y ∈ X, d (x, y) 6= 0
}
.

The set SLipX defined in (2) is exactly the set of all semi-Lipschitz functions
on (X, d), and ‖f‖X defined by (3) is the least semi-Lipschitz constant for f ,
i.e.

(4) f (x)− f (y) ≤ ‖f‖X · d (x, y) , x, y ∈ X,

and every K ≥ 0, for which the inequality (1) holds, satisfies K ≥ ‖f‖X (see
[9] and [12]).

For x0 ∈ X be fixed, denote by

(5) SLip0X =
{
f ∈ SLipX : f (x0) = 0

}
the set of all real-valued semi-Lipschitz functions defined on the quasi-metric
space X which vanish at the fixed point x0 ∈ X.

Let V be a nonvoid set and R+ = [0,∞). Suppose that on V is defined an
operation

+ : V × V → V

such that (V,+) is an Abelian semigroup, i.e. + satisfies the conditions
(i) (x+ y) + z = x+ (y + z)
(ii) x+ y = y + x

(iii) 0 + x = x (0 is the neutral element of semigroup (V,+))
for all x, y, z ∈ V , and an operation

· : R+ × V → V

having the properties
(i) a · (b · x) = (a · b) · x, a, b ∈ R+; x ∈ V
(ii) (a+ b) · x = (a · x) + (b · x) , a, b ∈ R+; x ∈ V

(iii) a · (x+ y) = a · x+ a · y, a ∈ R+; x, y ∈ V
(iv) 1 · x = x, 1 ∈ R+, x ∈ V.
The system

(
V,+, ·,R+)

is called a semi linear space.
The opposite element (if exists) of x ∈ V is denoted by −x.
A functional ‖·‖V : V → [0,∞) defined on a semilinear space

(
V,+, ·,R+)

is called a quasi-norm on V if it satisfies the conditions:
(i) x,−x ∈ V and ‖x‖V = ‖−x‖V = 0⇐⇒ x = 0

(ii) ‖ax‖V = a ‖x‖V , a ∈ R+, x ∈ V
(iii) ‖x+ y‖V ≤ ‖x‖V + ‖y‖V , x, y ∈ V.
The pair (V, ‖·‖V ) is called a quasi-normed semilinear space (see [5] and

[12]).
If X is a linear space then a functional ‖·‖X : X → [0,∞) satisfying the

axioms of a quasi-norm is called an asymmetric norm on X (see [4]).
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It is immediate that the functional defined by (3) is a quasi-norm on SLip0X,
i.e. the pair (SLip0X, ‖·‖X) is a quasi-normed semilinear space.

If Y ⊂ X and x0 ∈ Y then one considers the semi-Lipschitz functions on
Y which vanish at x0 and the quasi-normed semilinear space (S Lip0 Y, ‖·‖Y ),
where ‖·‖Y is defined like in (3) with Y instead of X.

The following extension theorem for semi-Lipschitz functions is similar to
Mc Shane’s [6] extension theorem for Lipschitz functions.

Theorem 1. [9]. Let (X, d) be a quasi-metric space, x0 ∈ X fixed and
Y ⊂ X such that x0 ∈ Y . Then every function f ∈ SLip0 Y admits at least
one extension in SLip0X, i.e. there exists H ∈ SLip0X such that
(6) H|Y = f and ‖H‖X = ‖f‖Y .

Denote by
(7) EY (f) = {H ∈ SLip0X : H|Y = f and ‖H‖X = ‖f‖Y }
the nonvoid set of all extensions of f ∈ SLip0Y which preserve the quasi-norm
of f .

We have shown in [9] that the functions
(8) F (x) = inf

y∈Y
{f(y) + ‖f‖Y d (x, y)} , x ∈ X,

and
(9) G (x) = sup

y∈Y
{f (y)− ‖f‖Y d (y, x)} , x ∈ X,

belong to EY (f).
Let

(10) BY = {f ∈ SLip0 Y : ‖f‖Y ≤ 1}
be the unit ball of the quasi-normed semilinear space (SLip0 Y, ‖·‖Y ) and let
BX be the corresponding unit ball of (SLip0 Y, ‖·‖X).

Obviously that f ∈ BY implies EY (f) ⊂ BX .
A subset C of a semi-linear space

(
V,+, ·,R+)

is called convex if αx +
(1− α) y ∈ C whenever x, y ∈ C and α ∈ [0, 1].

A subset M of C is called a face of C if λx+(1− λ) y ∈M for x, y ∈ C and
some λ ∈ (0, 1) implies x, y ∈ M . A one-point face of C is called an extremal
element of C, and the set of all extremal elements of C is denoted by extC.

It is obvious that BY (respectively BX) is a convex subset of SLip0 Y (re-
spectively SLip0X), and if M ⊂ BX is a face, then ‖f‖X = 1 for any f ∈M.

Theorem 2. Let (X, d) be a quasi-metric space, x0 a fixed point in X, and
Y ⊂ X such that x0 ∈ Y . Then:

a) For every f ∈ SLip0 Y the set EY (f) ⊂ SLip0X is convex;
b) For every H ∈ EY (f) the inequalities

(11) F (x) ≥ H (x) ≥ G (x) ,
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hold for all x ∈ X, where the functions F and G are defined by (8)
and (9), respectively;

c) If f ∈ extBY then EY (f) is a face of BX and the functions F,G
(defined by (8) and (9)) are extremal elements of BX .

Proof. a) Let F1, F2 ∈ EY (f) and α ∈ (0, 1) . We have

(αF1 + (1− α)F2) |Y = αf + (1− α) f = f

and

‖αF1 + (1− α)F2‖X ≤ α ‖F1‖X + (1− α) ‖F2‖X
= α ‖f‖Y + (1− α) ‖f‖Y = ‖f‖Y .

On the other hand

‖f‖Y = ‖αf + (1− α) f‖Y
= ‖αF1|Y + (1− α)F2|Y ‖ ≤ ‖αF1 + (1− α)F2‖X

showing that ‖αF1 + (1− α)F2‖X = ‖f‖Y . It follows αF1 + (1− α)F2 ∈
EY (f).

b) Let H ∈ EY (f) and x ∈ X. We have, for any y ∈ Y, H (x) − f (y) =
H (x)−H (y) ≤ ‖H‖X · d (x, y) = ‖f‖Y · d (x, y) so that

H (x) ≤ f (y) + ‖f‖Y d (x, y) .

Taking the infimum with respect to y ∈ Y we find

H (x) ≤ F (x) , for all x ∈ X.

Also, we have

H (y)−H (x) ≤ ‖H‖X · d (y, x) = ‖f‖Y · d (y, x)

which implies

H (x) ≥ H (y)− ‖f‖Y · d (y, x) = f (y)− ‖f‖Y · d (y, x) .

Taking the supremum with respect to y ∈ Y we get

H (x) ≥ G (x) , x ∈ X.

c) Let f ∈ ext BY . If F1, F2 ∈ BX and λ ∈ (0, 1) are such that λF1 +
(1− λ)F2 ∈ EY (f) then λF1|Y + (1− λ)F2|Y = f. Since f ∈ extBY this
implies F1|Y = F2|Y = f . Obviously that ‖F1‖X = ‖F2‖X = ‖f‖Y = 1,
showing that F1, F2 ∈ EY (f). It follows that EY (f) is a face of BX .

We remark that F,G defined by (8), (9)are extremal elements of EY (f).
Indeed, if H1, H2 ∈ EY (f) and λ ∈ (0, 1) are such that λH1 + (1− λ)H2 =

F then λH1|Y + (1− λ)H2|Y = f and because f ∈ extBY it follows H1|Y =
H2|Y = f = F |Y .

On the other hand λH1 (x) + (1− λ)H2 (x) = F (x) , x ∈ X implies

λ (H1 (x)− F (x)) + (1− λ) (H2 (x)− F (x)) = 0, x ∈ X
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and because H1 (x) ≤ F (x) , H2 (x) ≤ F (x), x ∈ X and λ ∈ (0, 1) it follows
H1 (x) = F (x) , x ∈ X,
H2 (x) = F (x) , x ∈ X.

Consequently F ∈ extEY (f). Analogously one obtains G ∈ extEY (f) .
Now let be given U1, U2 ∈ BX and λ ∈ (0, 1) such that λU1+(1− λ)U2 = F .

Then λU1|Y + (1− λ)U2|Y = F |Y = f ∈ extBY implies U1|Y = U2|Y = f and
‖U1|Y ‖Y = ‖U2|Y ‖Y = ‖f‖ = 1 implies ‖U1‖X = ‖U2‖X = 1.

It follows that U1, U2 ∈ EY (f) and because F ∈ extEY (f) one obtains
U1 = U2 = F . It follows that F ∈ extBX and, analogously G ∈ extBX . �

Remarks. 1◦. The reverse implication in c) is also true: if EY (f) is a face
of BX then f ∈ BY .

Indeed, if ‖f‖Y = 1 but f /∈ extBY , then there exist f1, f2 ∈ BY , f1 6= f2,
and λ ∈ (0, 1) such that λf1 + (1− λ) f2 = f.

Let F ′1 ∈ EY (f1) and F ′2 ∈ EY (f2). Because
λF ′1|Y + (1− λ)F ′2|Y = f

and
1 =

∥∥λF ′1|Y + (1− λ)F ′2|Y
∥∥ ≤ ∥∥λF ′1 + (1− λ)F ′2

∥∥
X ≤ 1

we have ∥∥λF ′1 + (1− λ)F ′2
∥∥

X = 1,
showing that λF ′1 + (1− λ)F ′2 ∈ EY (f). Since F ′1|Y = f1 6= f2 = F ′2|Y it
follows that EY (f) is not a face of BX .

2◦. The assertion c) from Theorem 2 gives us a way to obtain extremal
elements of BX , namely as the extensions (8) and (9) of extremal elements of
BY . �

Example. Consider the quasi metric space (R, d), where R is the set of real
numbers and

d (x, y) =
{
x− y if x ≥ y

1 if x < y.

For Y = {0, 1, 2} and x0 = 0 consider the semilinear spaces SLip0 Y and
SLip0X equipped with the quasi-norms of the type (3).

The function f (y) = y, y ∈ {0, 1, 2} = Y is an extremal element of BY .
Observe that for any h ∈ BY we have h (1) ≤ f (1) = 1 and h (2) ≤ f (2) = 2,
because, if contrary, i.e. h (1) > f (1) or h (2) > f (2), then ‖h‖Y > 1. If
f1, f2 ∈ BY and α ∈ (0, 1) are such that αf1 +(1− α) f2 = f then, taking into
account the relations fi (0) = f (0) = 0, fi (1) ≤ f (1), fi (2) ≤ f (2), i = 1, 2,
we get α (f1 − f) + (1− α) (f2 − f) = 0 implying f1 = f2 = f.

In this case the extensions F and G, given by (8) and (9), are

F (x) =
{

1, for x ∈ (−∞, 0)
x, for x ∈ [0,+∞) respectively G (x) =

{
x, for x ∈ (−∞, 2]
1, for x ∈ (2,+∞)

and they are extremal elements of BX . �
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