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USE OF AN IDENTITY OF A. HURWITZ FOR CONSTRUCTION OF
A LINEAR POSITIVE OPERATOR OF APPROXIMATION

DIMITRIE D. STANCU∗

Abstract. By using a general algebraic identity of Adolf Hurwitz [1], which ge-
neralizes an important identity of Abel, we construct a new operator S

(β1,...,βm)
m

approximating the functions. A special case of this is the operator Qβ
m of Cheney-

Sharma.
We show that this new operator, applied to a function f ∈ C[0, 1], is interpo-

latory at both sides of the interval [0, 1], and reproduces the linear functions.
We also give an integral representation of the remainder of the approximation

formula of the function f by means of this operator. By applying a criterion of T.
Popoviciu [2], is also given an expression of this remainder by means of divided
difference of second order.
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1. INTRODUCTION

In 1902 A. Hurwitz [1] has given the following identity

(u+ v)(u+ v + β1 + . . .+ βm)m−1 =(1)

=
∑

u(u+ βi1 + . . .+ βik)k−1v(v + βj1 + . . .+ βjm−k)m−k−1.

In the special case β1 = β2 = . . . = βm = β it reduces to an identity of
Abel-Jensen

(u+ v)(u+ v +mβ)m−1 =
m∑
k=0

(m
k

)
u(u+ kβ)k−1v(v + (m− k)β)m−k−1.

If we replace in (1) u = x and v = 1− x, we obtain the equality∑
x(x+ βi1 + . . .+ βik)k−1(1− x)(1− x+ βj1 + . . .+ βjm−k)m−k−1 =

= (1 + β1 + . . .+ βm)m−1.

By using this relation we can construct a linear positive operator, depending
on m nonnegative parameters, defined for any function f ∈ C[0, 1], by the
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following formula

(2) (1 + β1 + . . .+ βm)m−1(S(β1,...,βm)
m f)(x) =

m∑
k=0

w
(β1,...,βm)
m,k (x)f( km),

where
w

(β1,...,βm)
m,k (x) =(3)

=
∑

x(x+ β1 + . . .+ βik)k−1(1− x)(1− x+ βj1 + . . .+ βjm−k)m−k−1.

It is easy to see that we can write

(1 + β1 + . . .+ βm)m−1(S(β1,...,βm)
m f)(x) =

= (1− x)(1− x+ β1 + . . .+ βm)m−1f(0)+

+ x(1− x)
m−1∑
k=1

w
(β1,...,βm)
m,k (x)f( km) + x(x+ β1 + . . .+ βm)m−1f(1).

Now we can observe that the polynomial (S(β1,...,βm)
m f)(x) is interpolatory

at both sides of the interval [0, 1], for any nonnegative values of the parameters
β1, . . . , βm.

Hence
(4) (S(β1,...,βm)

m f)(0) = f(0), (S(β1,...,βm)
m f)(1) = f(1).

It follows that our operator reproduces the linear functions.
Consequently, the approximation formula

(5) f(x) = (S(β1,...,βm)
m f)(x) + (R(β1,...,βm)

m f)(x)
has the degree of exactness one.

By using a known theorem of Peano we can give an integral representation
for the remainder of the formula (5).

Theorem 1. If f ∈ C2[0, 1] then the remainder term of the approximation
formula (5) can be represented under the following integral form

(6) (R(β1,...,βm)
m f)(x) =

∫ 1

0
G(β1,...,βm)
m (t;x)f ′′(t)dt,

where the Peano kernel is
G(β1,...,βm)
m (t;x) = (R(β1,...,βm)

m ϕx)(t),
with

ϕx(t) = x− t+ |x− t|
2 = (x− t)+.

Proof. We have

G(β1,...,βm)
m (t;x) = (x− t)+ −

m∑
k=0

w
(β1,...,βm)
m,k (x)

(
k
m − t

)
+
.
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By writing the explicit expression for the Peano kernel we can observe that
this kernel represents a polygonal line situated beneath the t-axis, which joins
the points (0, 0) and (0, 1).

If we apply the first law of the mean to the integral, we get

(R(β1,...,βm)
m f)(x) = f ′′(ξ)

∫ 1

0
G(β1,...,βm)
m (t;x)dt

and the formula (5) becomes

(7) f(x) = (S(β1,...,βm)
m f)(x) + f ′′(ξ)

∫ 1

0
G(β1,...,βm)
m (t;x)dt.

If we now replace here f(x) = e2(x) = x2, we find

x2 = (S(β1,...,βm)
m e2)(x) = 2

∫ 1

0
G(β1,...,βm)
m (t;x)dt.

Consequently, we can write∫ 1

0
G(β1,...,βm)
m (t;x)dt = 1

2

[
x2 − (S(β1,...,βm)

m e2)(x)
]

= 1
2(R(β1,...,βm)

m e2)(x). �

Theorem 2. If f ∈ C2[0, 1] then we can give the following expression for
the remainder of formula (5):

(8) (R(β1,...,βm)
m f)(x) = 1

2(R(β1,...,βm)
m e2)(x)f ′′(ξ),

where ξ ∈ (0, 1).

Proof. Since R(β1,...,βm)
m f = 0 if f is a linear function and it is different from

zero for any convex function of the first order, we can apply a criterion of T.
Popoviciu [2] and we can conclude that this remainder is of simple form and
we can state the following result. �

Theorem 3. If the second-order divided differences of the function f are
bounded on the interval [0, 1], then there exist three distinct points tm,1, tm,2,
tm,3 in [0, 1], such that the remainder can be represented under the form

(9) (R(β1,...,βm)
m f)(x) = (R(β1,...,βm)

m e2)(x)[tm,1, tm,2, tm,3; f ]

Proof. It is clear that if f ∈ C2[0, 1] we can apply the mean-value theorem
of divided differences and we can obtain formula (8). �
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