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STANCU MODIFIED OPERATORS REVISITED

OCTAVIAN AGRATINI∗

Abstract. In this paper we construct a general positive approximation process
representing an integral form in Kantorovich sense of the Stancu operators. By
using K-functionals and some moduli of smoothness we give direct theorems for
pointwise approximation. Also, by using the contraction principle we reobtain
the convergence of the iterates of Stancu polynomials.
MSC 2000. 41A36, 41A60, 47H10.
Keywords. Kantorovich and Stancu operators, moduli of smoothness, K-functi-
onals, contraction principle, weakly Picard operators.

1. INTRODUCTION

It is well known that the Stancu operators [10] are defined by

(1) (S(α)
n f)(x) :=

n∑
k=0

w
(α)
n,k(x)f

(
k
n

)
, f ∈ C[0, 1], x ∈ [0, 1],

where w
(α)
n,k(x) :=

(n
k

)
x[k,−α](1 − x)[n−k,−α]/1[n,−α], k = 0, n, represent the

fundamental polynomials of Stancu of n degree. Here y[m,−α] stands for the
generalized factorial power with the step −α, y[0,−α] := 1 and y[m,−α] :=
y(y + α) . . . (y + (m− 1)α), m ∈ N.

Under the hypotheses that α is a non-negative real parameter depending
on the natural number n and α = αn → 0 as n → ∞, D.D. Stancu proved
that the sequence (S(α)

n )n≥1 converges to the identity operator on the space
C[0, 1]. We keep this assumption throughout the paper.

In 1989 Quasim Razi [8] modified the operator S(α)
n into integral form as

follows

(2) (K(α)
n f)(x) := (n+ 1)

n∑
k=0

w
(α)
n,k(x)

∫ (k+1)/(n+1)

k/(n+1)
f(t)dt, x ∈ [0, 1],

and f belongs to the space of real-valued integrable functions L1[0, 1].
Further approximation properties were examined in [3] and [1].
The present paper focuses on two approaches. Firstly we generalize the

operators defined by (2) and we study their degree of approximation in the
terms both of the weighted Totik-Ditzian modulus of smoothness and the
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integral moduli of high order. Secondly, coming back to the operators S(α)
n

we reobtain the convergence of the iterates by using a new proof based on the
contraction principle. This way it results that Stancu operators are weakly
Picard operators.

2. THE OPERATORS K(α)
n , n ∈ N

We consider two real sequences (an)n≥1, (bn)n≥1 verifying the following
conditions

(3) bn ≥ n+ 1, an ≤ 1, n ∈ N, and inf
n∈N

an > 0.

For every f belonging to L1[0, 1] we define the operators

(4) (K(α)
n f)(x) ≡ (K(α,an,bn)

n f)(x) := bn

n∑
k=0

w
(α)
n,k(anx)

∫ (k+1)/bn

k/bn
f(t)dt,

where x ∈ [0, 1] and n ∈ N.

Remarks. (i) The operators K(α,an,bn)
n , n ∈ N, are linear. Since the se-

quences (αn), (an), (bn) are positive, the operators are positive too and conse-
quently they become monotone.

(ii) In the particular case an = 1 and bn = n + 1 we reobtain the operator
K

(α)
n defined by (2) and consequently K(0,1,n+1)

n is the nth classical Kantorovich
operator. �

In what follows we denote by ej the Korovkin test functions, ej(x) = xj ,
x ∈ [0, 1], j ∈ {0, 1, 2}. Also we set µn,s(x) := K(α)

n ((e1 − xe0)s, x), x ∈ [0, 1],
the central moment of s order for K(α)

n operator. We present some identities
involving the mentioned test functions and moments.

Lemma 1. Let K(α)
n be defined by (4). For every x ∈ [0, 1] and n ∈ N, the

following relations hold true

(K(α)
n e0)(x) = 1,(5)

(K(α)
n e1)(x) = βnx+ (2bn)−1,(6)

(K(α)
n e2)(x) = β2

n
α+1

((
1− 1

n

)
x2 +

(
α+ 1

n

)
a−1
n x

)
+ βnx

bn
+ 1

3b2
n
,(7)

µn,1(x) = (2bn)−1 − (1− βn)x,(8)
µn,2(x) = µ2

n,1(x) + β2
n
nα+1
n(α+1)x(a−1

n − x) + 1
12b2

n
,(9)

where

(10) βn := nan
bn
, n ∈ N.
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Proof. By a straightforward calculation we deduce

(K(α)
n e0)(x) = (S(α)

n e0)(anx), (K(α)
n e1)(x) =

(
n
bn
S

(α)
n e1 + 1

2bnS
(α)
n e0

)
(anx),

(K(α)
n e2)(x) = 1

b2
n

(
n2S

(α)
n e2 + nS

(α)
n e1 + 1

3S
(α)
n e0

)
(anx),

and taking into account the identities [10, Lemma 4.1]

S(α)
n ej = ej , j ∈ {0, 1}, and (S(α)

n e2)(x) = 1
α+1

(x(1−x)
n + x(x+ α)

)
,

our relations (5), (6), (7) follow. Consequently, the identities (8) and (9) hold
also true. �

Lemma 2. The second central moment of the operator K(α)
n verifies

(11) µn,2(x) ≤ β2
n
nα+1
n(α+1)ϕ

2
n(x) + (1− βn)2, x ∈ [0, 1],

where ϕn is the step-weight function associated to K(α)
n and defined by

(12) ϕn(x) =
√
x(a−1

n − x), x ∈ [0, 1].

Proof. By using relations (3) and (8), after some algebraic manipulations
we get

sup
x∈[0,1]

µ2
n,1(x) = max

{
1

4b2
n
,
(
1− βn − 1

2bn
)2} =

(
1− βn − 1

2bn
)2 := cn

≤ (1− βn)2 − 1
12b2

n
,(13)

and (9) implies the desired result. �

3. APPROXIMATION PROPERTIES OF K(α)
n

Theorem 1. Let K(α)
n be defined by (4). For every f ∈ C[0, 1] one has∣∣(K(α)

n f)(x)− f(x)
∣∣ ≤ 2ωf

(
βn
√

nα+1
n(α+1)ϕn(x) + 1− βn

)
,

where ωf is the first modulus of continuity of f and βn, ϕn are defined by (10)
respectively (12).

Proof. By virtue of the classical results regarding the local rate of conver-
gence, see e.g. the monograph [2, Th. 5.1.2], the identity (5) guarantees∣∣(K(α)

n f)(x)− f(x)
∣∣ ≤ (1 + 1

δ

√
µn,2(x)

)
ωf (δ), (∀) δ > 0.

We choose δ :=
√
µn,2(x) and knowing that ωf is a non-decreasing function,

with the help of (11) we obtain the claimed result. �

Remark. B. Lenze [6] introduced the Lipschitz type maximal function f̃β
of order β, β ∈ (0, 1], as follows

f̃β(x) = sup
x,t∈[0,1]
x 6=t

|f(x)− f(t)|
|x− t|β

, x ∈ [0, 1].
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From the estimate |f(x)− f(t)| ≤ f̃β(x)µβ/2n,2 (x) we get∣∣(K(α)
n f)(x)− f(x)

∣∣ ≤ f̃β(x)
(
βn
√

nα+1
n(α+1)ϕn(x) + 1− βn

)β/2
, x ∈ [0, 1],

for every f ∈ C[0, 1]. In particular case an = 1 the relation shows that the
order of approximation by K(α)

n increases near to the endpoint 0 of the interval
[0,1]. For K(α)

n operators defined by (2) this type of estimate already appeared
in [3, Eq. (1.12)]. �

Theorem 2. Let K(α)
n and βn be defined by (4) respectively by (10). If

(14) βn → 1 as n→∞,

then limn→∞K(α)
n f = f uniformly on [0, 1] for every f ∈ C[0, 1] as well as

limn→∞K(α)
n f = f in Lp[0, 1] for every f ∈ Lp[0, 1] and p ≥ 1.

Proof. Under our assumption (14), the relations (5), (6), (7) imply
lim
n→∞

K(α)
n ej = ej , j ∈ {0, 1, 2}. By Bohman-Korovkin’s theorem and knowing

that C[0, 1] is dense in every Banach space Lp[0, 1] ⊂ L1[0, 1], p ≥ 1, the proof
is complete. �

Further on, C denotes a constant independent of n and x, which is not
necessarily the same at each occurrence. In concordance with the results due
to Z. Ditzian and V. Totik [4, pp. 10–11, 24] we set

ω2
ϕλ(f, t) := sup

0<h≤t
sup

x±hϕλ∈[0,1]
|∆2

hϕλf(x)|,(15)

Yλ :=
{
g ∈ C[0, 1] : g′ ∈ A.C.loc, ‖ϕ2λg′′‖ <∞

}
,

Kϕλ(f, t2) := inf
g∈Yλ

{
‖f − g‖+ t2‖ϕ2λg′′‖

}
,

Ȳλ :=
{
g ∈ Yλ : ‖g′′‖ <∞

}
,

K̄ϕλ(f, t2) := inf
g∈Ȳλ

{
‖f − g‖+ t2‖ϕ2λg′′‖+ t4/(2−λ)‖g′′‖

}
,(16)

where ϕ(x) =
√
x(1− x), 0 ≤ λ ≤ 1, and g′ ∈ A.C.loc means that g is

differentiable and g′ is absolutely continuous on [0, 1].
Regarding the above maps we have the following connections

(17) ω2
ϕλ(f, t) ∼ Kϕλ(f, t2) ∼ K̄ϕλ(f, t2), 0 < t ≤ t0,

established in [4, Th. 2.1.1 & 3.1.2] for the particular case f ∈ C[0, 1]. Here
u ∼ v means that a constant C > 0 exists with the property C−1u ≤ v ≤ Cu.

Theorem 3. Let K(α)
n be defined by (4) such that an = 1 and bn(α+n−1) =

O(1), as n→∞. For f ∈ C[0, 1] and 0 ≤ λ ≤ 1, one has∣∣(K(α)
n f)(x)− f(x)

∣∣ ≤ Cω2
ϕλ
(
f,∆n,λ(x)

)
+ ωf

(
1− 2n+1

2bn
)
,
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where ω2
ϕλ

is given at (15),

(18) ∆n,λ(x) := b−1/2
n δ1−λ

n (x) and δn(x) := ϕ(x) + b−1/2
n .

Proof. Since 0 ≤ x + µn,1(x) ≤ 1, x ∈ [0, 1], for every f ∈ C[0, 1] we can
define

(19) (Lnf)(x) := f(x)− f(x+ µn,1(x)), (K̃(α)
n f)(x) := (K(α)

n + Ln)(f, x).

From (5) and (6) we easily obtain K̃(α)
n ej = ej , j ∈ {0, 1}. At the same time

K̃(α)
n ((e1−xe0)2, x) = µn,2(x)−µ2

n,1(x) and gathering both (7), the additional
assumption bn(α+ n−1) = O(1), as n→∞, and (18) one obtains

(20) K̃(α)
n

(
(e1 − xe0)2, x

)
≤ (α+ n−1)ϕ2(x) + b−2

n ≤ C
bn
δ2
n(x).

On the other hand, for u between t and x we have

(21) |t−u|
ϕ2λ(u) ≤

|t−x|
ϕ2λ(x) and |t−u|

δ2λ
n (u) ≤

|t−x|
δ2λ
n (x) .

Indeed, if a function θ2 ∈ R[0,1] is concave then θ2λ, λ ∈ [0, 1], has the
same property and for every u = (1 − η)t + ηx, η ∈ [0, 1], we get θ2(u) ≥
(1 − η)θ2(t) + ηθ2(x) ≥ ηθ2(x). Choosing θ2 = ϕ2 respectively θ2 = δ2

n we
obtain (21).

For a given (x, λ) ∈ [0, 1]× [0, 1], relations (16) and (17) allow us to choose
g ∈ Ȳλ such that

‖f − g‖ ≤ Cω2
ϕλ(f,∆n,λ(x)),

∆2
n,λ(x)‖ϕ2λg′′‖ ≤ Cω2

ϕλ(f,∆n,λ(x)),

∆4/(2−λ)
n,λ (x)‖g′′‖ ≤ Cω2

ϕλ(f,∆n,λ(x)),

where ∆n,λ(x) is given at (18). Since ‖K̃(α)
n ‖ ≤ 3 we can write

|(K̃(α)
n f)(x)− f(x)| ≤ |K̃(α)

n (f − g, x)|+ |(K̃(α)
n g)(x)− g(x)|+ |g(x)− f(x)|

≤ 4‖f − g‖+ |(K̃(α)
n g)(x)− g(x)|.(22)

Also, applying (21) we have∣∣∣∣∫ t

x
(t− u)g′′(u)du

∣∣∣∣ ≤ ‖δ2λ
n g
′′‖
∣∣∣∣∫ t

x

t− u
δ2λ
n (u)du

∣∣∣∣ ≤ ‖δ2λ
n g
′′‖δ−2λ

n (x)(t− x)2,

∣∣∣∣ ∫ x+µn,1(x)

x
(x+ µn,1(x)− u)g′′(u)du

∣∣∣∣ ≤ ‖δ2λ
n g
′′‖
∣∣∣∣ ∫ x+µn,1(x)

x

|x+µn,1(x)−u|
δ2λ
n (u) du

∣∣∣∣
≤ ‖δ2λ

n g
′′‖|µn,1(x)|

δ2λ
n (x)

∣∣∣∣ ∫ x+µn,1(x)

x
du
∣∣∣∣

= ‖δ2λ
n g
′′‖δ−2λ

n µ2
n,1(x).
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Using (19), the above two inequalities as well as (20) we have∣∣(K̃(α)
n g)(x)− g(x)

∣∣ =
∣∣∣∣K̃(α)

n

( ∫ e1

xe0
(e1 − u)g′′(u)du, x

)∣∣∣∣
≤
∣∣∣∣K(α)

n

( ∫ e1

xe0
(e1 − u)g′′(u)du, x

)∣∣∣∣
+
∣∣∣∣ ∫ x+µn,1(x)

x

(
x+ µn,1(x)− u

)
g′′(u)du

∣∣∣∣
≤ ‖δ2λ

n g
′′‖δ−2λ

n (x)µn,2(x) + ‖δ2λ
n g
′′‖δ−2λ

n (x)µ2
n,1(x)

≤ ‖δ2λ
n g
′′‖δ−2λ

n (x)
{
2µ2

n,1(x) + K̃(α)
n ((e1 − xe0)2, x)

}
≤ C∆2

n,λ(x)‖δ2λ
n g
′′‖.

In the same manner we establish∣∣(K̃(α)
n g)(x)− g(x)

∣∣ ≤ C δ2
n(x)
bn

ϕ−2λ(x)‖ϕ2λg′′‖.

We split I := [0, 1] in two parts: En and I \En where En :=
[
A
n , 1−

A
n

]
, A

being a fixed positive number.
For x ∈ En we have δn(x) ∼ ϕ(x). By using (22) and (17) we get∣∣(K̃(α)
n f)(x)− f(x)

∣∣ ≤ 4‖f − g‖+ C
bn
δ

2(1−λ)
n (x)‖ϕ2λg′′‖ ≤ Cω2

ϕλ
(f,∆n,λ(x)).

For x ∈ I \ En we have δn(x) ∼ b−1/2
n , therefore

(δ2(1−λ)
n (x)/bλ+1

n ) ∼ (δ4(1−λ)/(2−λ)
n (x)/b2/(2−λ)

n ).

Based on the previous increases, we get∣∣(K̃(α)
n f)(x)− f(x)

∣∣ ≤ 4‖f − g‖+ C
bn
δ2(1−λ)
n (x)

{
‖ϕ2λg′′‖+ 1

bλn
‖g′′‖

}
≤ C

{
‖f − g‖+ ∆2

n,λ(x)‖ϕ2λg′′‖+ ∆4/(2−λ)
n,λ (x)‖g′′‖

}
≤ Cω2

ϕλ
(
f,∆n,λ(x)

)
.

Consequently, for every f ∈ C[0, 1] and x ∈ [0, 1] we have∣∣(K(α)f)(x)− f(x)
∣∣ ≤ ∣∣(K̃(α)

n f)(x)− f(x)
∣∣+ ∣∣(Lnf)(x)

∣∣
≤ Cω2

ϕλ
(
f,∆n,λ(x)

)
+ ωf

(
|µn,1(x)|

)
and (13) finished the proof. �

We notice that the above theorem generalizes a result which was recently ob-
tained for the Bernstein-Kantorovich operatorsK(0,1,n+1)

n = K
(0)
n , see [5, Th. 3].

We end this section going to study the degree of approximation for f be-
longing to Lp[0, 1], p ≥ 1, by using the integral modulus of smoothness of high
order ωr(f, t)p := sup0<|h|≤t ‖(Th − I)rf‖p, Th being the translation operator.
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According to (13) it is clear that ‖µn,1‖p ≤
√
cn. Further on, by using

Minkowski inequality from (11) we deduce

(23) ‖µn,2‖p ≤ βn
√
α+ n−1

(∫ 1

0
ϕpn(x)dx

)1/p
+ 1− βn := γn,p.

Theorem 4. Let K(α)
n be defined by (4). For every f ∈ Lp[0, 1], p ≥ 1, the

following inequalities

(24) ‖K(α)
n f − f‖p ≤ Cp,r

(
γn,p‖f‖p + ωr(f, 2rγ1/r

n,p )p
)
, n ≥ n0,

hold, where Cp,r is a constant independent of f and n, γn,p is given at (23)
and r ≥ 3 is an integer.

Proof. Since γn,p = o(1), as n → ∞, for an integer r ≥ 3 a rank n0 exists
such that 2rγ1/r

n,p ≤ 1 for every n ≥ n0. The proof of (24) follows the same
steps like those established in [1, Th. 1], so we overlook it. �

4. THE ITERATES OF S
(α)
n VIA CONTRACTION PRINCIPLE

In [7] the iterates mS
(α)
n , m ≥ 0, of Stancu operators have been introduced

and investigated. We recall

0S(α)
n = 1, 1S(α)

n = S(α)
n , mS(α)

n = S(α)
n

( m−1S(α)
n

)
, m > 1.

The authors proved the following limiting relation

(25) lim
m→∞

mS(α)
n (f, x) = f(0) + (f(1)− f(0))x,

uniformly on [0, 1] for any α ≥ 0.
The aim of this section is to give a new proof of (25). Our approach is

motivated by the results due to I.A. Rus [9].
At first we define

Xα,β :=
{
f ∈ C[0, 1] : f(0) = α, f(1) = β

}
,

for every real parameter α and β. It is easy to observe that Xα,β is a closed
subset of C[0, 1], it is an invariant subset of S(α)

n for all n ∈ N, and Xα,β,
(α, β) ∈ R× R, form a partition of C[0, 1].

The next step we prove that S(α)
n |Xα,β : Xα,β → Xα,β is a contraction for

every (α, β) ∈ R × R and n ∈ N. Considering f, g ∈ Xα,β and knowing that
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S
(α)
n h interpolates the function h in 0 and 1, from (1) we can write∣∣(S(α)

n f)(x)− (S(α)
n g)(x)

∣∣ =
∣∣∣∣∣
n−1∑
k=1

w
(α)
n,k(x)(f − g)

(
k
n

)∣∣∣∣∣
≤

(
1− w(α)

n,0(x)− w(α)
n,n(x)

)
‖f − g‖

≤
(
1− (1−x)n+xn

1[n,−α]

)
‖f − g‖

≤
(
1− 21−n

1[n,−α]

)
‖f − g‖.

Since S(α)
n has the exactness degree 1, obviously αe0 + (β − α)e1 is a fixed

point of S(α)
n |Xα,β .

If f ∈ C[0, 1] then f ∈ Xf(0),f(1) and from the contraction principle we
obtain (25). �

Remark. According to [9, Th. 1’] the above used trend allow us to state
that Stancu operator S(α)

n is a weakly Picard operator. �
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