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AFFINE INVARIANT CONDITIONS

FOR THE INEXACT PERTURBED NEWTON METHOD∗

EMIL CĂTINAŞ†

Abstract. The high convergence orders of the inexact Newton iterates were
characterized by Ypma in terms of some affine invariant conditions. Using these
results, we obtain affine invariant characterizations for the convergence orders of
the inexact perturbed Newton iterates.

MSC 2000. 65H10.
Keywords. inexact and inexact perturbed Newton methods, affine invariant
conditions, convergence orders.

1. INTRODUCTION

Given a nonlinear mapping F : Rn → R
n, the inexact Newton (IN) method

for solving the system F (x) = 0 is given by the iterations:

F ′ (xk) sk = −F (xk) + rk

xk+1 = xk + sk, k = 0, 1, . . . , x0 ∈ R
n,

where rk represent the residuals of the approximate solutions sk of the linear
systems. The local convergence of these iterates to a solution x∗ ∈ R

n is
usually studied under the following assumptions, which we shall implicitly
assume throughout this paper:

- the mapping F is Fréchet differentiable on a neighborhood of x∗, with
F ′ continuous at x∗;

- the Jacobian F ′ (x∗) is invertible.

We recall that, given an arbitrary norm ‖·‖ on R
n, a sequence (xk)k≥0 ⊂ R

n

is said that converges (q-)superlinearly to its limit x̄ ∈ R
n if

lim
k→∞

‖xk+1 − x̄‖

‖xk − x̄‖
= 0, (assuming xk 6= x̄ for all k ≥ k0),

also denoted by ‖xk+1 − x̄‖ = o (‖xk − x̄‖), as k → ∞. For rigorous definitions
and results concerning the high convergence orders we refer the reader to
[11, ch. 9].

The high convergence orders of the IN iterates were characterized by Dembo,
Eisenstat and Steihaug.
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Theorem 1. [8]. Assume that the IN iterates converge to x∗. Then the

convergence is superlinear if and only if

‖rk‖ = o
(

‖F (xk)‖
)

, as k → ∞.

If, additionally, F ′ is Hölder continuous with exponent p ∈ (0, 1] at x∗, i.e.,
there exist L, ε > 0 such that

∥

∥F ′ (x)− F ′ (x∗)
∥

∥ ≤ L ‖x− x∗‖p , when ‖x− x∗‖ < ε,

then the convergence is with order 1 + p if and only if

‖rk‖ = O
(

‖F (xk)‖
1+p

)

, as k → ∞.

In the inexact perturbed Newton (IPN) method there is assumed that at
each step there appear different errors: the Jacobians are perturbed, the func-
tions evaluations are approximately performed, and the resulting linear sys-
tems are only approximately solved:

(

F ′ (xk) + ∆k

)

sk = (−F (xk) + δk) + r̂k

xk+1 = xk + sk, k = 0, 1, . . . , x0 ∈ D.

We have obtained the following characterizations for the convergence of
these iterates.

Theorem 2. [5]. Assume that the IPN iterates are uniquely defined (i.e.
the perturbations (∆k)k≥0 are such that the matrices F ′ (xk)+∆k are invertible

for k = 0, 1, . . .) and converge to x∗. Then the convergence is superlinear if

and only if
∥

∥∆k(F
′(xk) + ∆k)

−1F (xk) +
(

I −∆k(F
′(xk) + ∆k)

−1
)

(δk + r̂k)
∥

∥ =

= o
(

‖F (xk)‖
)

, as k → ∞.

If, additionally, F ′ is Hölder continuous with exponent p ∈ (0, 1] at x∗, then
the convergence is with order 1 + p if and only if

∥

∥∆k(F
′(xk) + ∆k)

−1F (xk) +
(

I −∆k(F
′(xk) + ∆k)

−1
)

(δk + r̂k)
∥

∥ =

= O
(

‖F (xk)‖
)

, as k → ∞.

Theorem 3. [7]. Assume that the IPN iterates are well defined (i.e. the

perturbed linear systems are compatible) and converge to x∗. Then the con-

vergence is superlinear if and only if

‖−∆ksk + δk + r̂k‖ = o
(

‖F (xk)‖
)

, as k → ∞.

If, additionally, F ′ is Hölder continuous with exponent p ∈ (0, 1] at x∗, then
the convergence is with order 1 + p if and only if

‖−∆ksk + δk + r̂k‖ = O
(

‖F (xk)‖
1+p

)

, as k → ∞.
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2. MAIN RESULTS

The affine invariant conditions are those conditions which do not change
when considering, instead of the original system, the modified system CF (x) =
0, where C ∈ R

n×n is nonsingular. The (exact) Newton iterates remain the
same under such transformation, such that the conditions on the convergence
of the iterates should also remain unchanged.

Ypma has obtained in [13] the following characterizations for the IN iterates,
which are affine invariant.

Theorem 4. [13]. Assume that the IN iterates converge to x∗. Then the

convergence is superlinear if and only if
∥

∥F ′(xk)
−1rk

∥

∥ = o
(

‖F ′(xk)
−1F (xk) ‖

)

, as k → ∞.

If, additionally, F ′ is Hölder continuous with exponent p ∈ (0, 1] at x∗, then
the convergence is with order 1 + p if and only if

∥

∥F ′(xk)
−1rk

∥

∥ = O
(

‖F ′(xk)
−1F (xk) ‖

1+p
)

as k → ∞.

Using this result, we obtain the following affine invariant results for the
inexact perturbed Newton method:

Theorem 5. Assume that the IPN iterates are uniquely defined and con-

verge to x∗. Then the convergence is superlinear if and only if
∥

∥F ′(xk)
−1

(

∆k(F
′(xk) + ∆k)

−1F (xk) +
(

I −∆k(F
′(xk) + ∆k)

−1
)

(δk + r̂k)
)
∥

∥ =

= o
(

‖F ′(xk)
−1F (xk)‖

)

, as k → ∞.

If, additionally, F ′ is Hölder continuous with exponent p ∈ (0, 1] at x∗, then
the convergence is with order 1 + p if and only if
∥

∥F ′(xk)
−1

(

∆k(F
′(xk) + ∆k)

−1F (xk) +
(

I −∆k(F
′(xk) + ∆k)

−1
)

(δk + r̂k)
)
∥

∥ =

= O
(

‖F ′(xk)
−1F (xk)‖

1+p
)

, as k → ∞.

Theorem 6. Assume that the IPN iterates are well defined and converge

to x∗. Then the convergence is superlinear if and only if
∥

∥F ′(xk)
−1(−∆ksk + δk + r̂k)

∥

∥ = o
(

‖F ′(xk)
−1F (xk)‖

)

, as k → ∞.

If, additionally, F ′ is Hölder continuous with exponent p ∈ (0, 1] at x∗, then
the convergence is with order 1 + p if and only if

∥

∥F ′(xk)
−1(−∆ksk + δk + r̂k)

∥

∥ = O
(

‖F ′(xk)
−1F (xk)‖

1+p
)

, as k → ∞.

The proofs are easily obtained by using the fact that the IPN iterates are
IN iterates having the residuals

rk = ∆k(F
′(xk) + ∆k)

−1F (xk) +
(

I −∆k(F
′(xk) + ∆k)

−1
)

(δk + r̂k)

= −∆ksk + δk + r̂k.
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