PHELPS TYPE DUALITY RESULTS IN BEST APPROXIMATION

STEFAN COBZAȘ

Abstract. The aim of the present paper is to show that many Phelps type duality result, relating the extension properties of various classes of functions (continuous, linear continuous, bounded bilinear, Hölder-Lipschitz) with the approximation properties of some annihilating spaces, can be derived in a unitary and simple way from a formula for the distance to the kernel of a linear operator, extending the well-known distance formula to hyperplanes in normed spaces. The case of spaces c_0 and l^∞ is treated in details.

Keywords. best approximation, Hahn-Banach extension, M-ideals.

THE DISTANCE FORMULA

Let X be a normed space (over \mathbb{R} or \mathbb{C}) and Y a closed subset of X. For $x \in X$ put

$$d(x,Y) = \inf \{ \|x - y\| : y \in Y \},$$

$$P_Y(x) = \{ y \in Y : \|x - y\| = d(x,Y) \}.$$

The quantity $d(x,Y)$ is the distance from x to Y and the elements in $P_Y(x)$ are called nearest points (or elements of best approximation) for x in Y. The set-valued map P_Y is called the metric projection. The subspace Y is called proximinal if $P_Y(x) \neq \emptyset$, for every $x \in X$, Chebyshevian if $P_Y(x)$ is a singleton for every $x \in X$, and antiproximinal if $P_Y(x) = \emptyset$, for every $x \in X \setminus Y$ (observe that $P_Y(y) = \{ y \}$, for $y \in Y$).

Denote by X^* the conjugate space of X and let

$$Y^\perp = \{ x^* \in X^* : x^*|_Y = 0 \}$$

be the annihilator of Y in X^*. In the seminal paper [38] R. R. Phelps initiated the study of the relations between the extension properties of the space Y and the approximation properties of its annihilator Y^\perp. Namely, Y^\perp is Chebyshevian if and only if every functional $y^* \in Y^*$ has a unique norm-preserving extension $x^* \in X^*$. It is known that, by Hahn-Banach theorem, every $y^* \in Y^*$ has at least one norm-preserving extension. Since then, there have been found a lot of situations in which similar duality results hold, corresponding to various extension results – Helly extension theorem for linear functionals, Tietze’s extension theorem for continuous functions, McShane’s extension theorem for

"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: scobzas@math.ubbcluj.ro.
Lipschitz functions, Nachbin’s extension theorem for continuous linear operators etc.

The aim of the present paper is to show that all these results follow immediately from a formula for the distance to the kernel of a continuous linear operator, inspired by the well-known distance formula to hyperplanes in normed spaces.

For a continuous linear operator \(A : X_1 \to X_2 \), between two normed spaces \(X_1, X_2 \), let

\[
Z = \{ x \in X_1 : Ax = 0 \}
\]

be its kernel. Also, for \(x \in X_1 \), put

\[
E(x) = \{ y \in X_1 : Ay = Ax \text{ and } \|y\| = \|Ax\| \|A\| \}
\]

1. \(d(x, Z) \geq \|Ax\| \|A\| \)
2. We have

\[
d(x, Z) = \frac{\|Ax\|}{\|A\|}
\]

if and only if there exists a sequence \((z_n)\) in \(Z\) such that

\[
\|x - z_n\| \to \|Ax\| \|A\|.
\]

3 (a). If (4) holds then

\[
P_Z(x) = x - E(x)
\]

(with the convention \(x - \emptyset = \emptyset\)).

3 (b). If there is \(z_0 \in Z\) such that

\[
\|x - z_0\| = \frac{\|Ax\|}{\|A\|}
\]

then \(z_0 \in P_Z(x)\) and the formulae (4) and (6) hold.

Proof. 1. For every \(z \in Z\), we have

\[
\|Ax\| = \|A(x - z)\| \leq \|A\| \|x - z\|
\]

showing that (5) holds.

2. Let \((z_n) \subset Z\) verifying (5). Then

\[
d(x, Z) \leq \|x - z_n\|, \forall n \in \mathbb{N},
\]

and, letting \(n \to \infty\), one obtains

\[
d(x, Z) \leq \frac{\|Ax\|}{\|A\|}
\]

which, combined with the point 1 of the theorem, yields (4).

Conversely, if the equality (1) holds and \((z_n)\) is a sequence in \(Z\) such that \(\|x - z_n\| \to d(x, Z)\), then the sequence \((z_n)\) verifies (5).
3. (a) Follows from the equivalences:
\[z \in P_Z(x) \iff z \in Z \quad \text{and} \quad \|x - z\| = d(x, Z) = \frac{\|Ax\|}{\|A\|} \]
\[\iff x - z \in E(x) \iff z \in x - E(x). \]

3. (b) Observe that the equality (7) implies that (5) holds with \(z_n = z_0, n = 1, 2, \ldots \), so that, by the point 2 of the theorem, (4) and (6) hold too. Since
\[\|x - z_0\| = \frac{\|Ax\|}{\|A\|} = d(x, Z) \]

it follows that \(z_0 \in P_Z(x) \).

Remark. If \(y \in X_1 \) is fixed and \(W := y + Z \) then
\[d(x, W) = d(x - y, Z) = \frac{\|Ax - Ay\|}{\|A\|}. \]

Examples

1. *The distance from a point to a hyperplane*

Let \(X \) be a normed space, \(x^* \in X^* \), \(x^* \neq 0 \), and \(Z = \ker x^* \). Take
\[A := x^* : X \to K \]
\((K = \mathbb{R} \text{ or } K = \mathbb{C})\).

Let \(x \in X \). First show that condition (5) is always fulfilled. Indeed, if \(u_n \in X, \|u_n\| = 1, n \in \mathbb{N} \), are such that \(|x^*(u_n)| \to ||x^*|| \), then
\[z_n := x - \frac{x^*(x)}{x^*(u_n)}u_n \in Z \quad \text{and} \quad \|x - z_n\| = \frac{|x^*(x)|}{|x^*(u_n)|} \to \frac{|x^*(x)|}{\|x^*\|}. \]

Therefore
\[d(x, Z) = \frac{|x^*(x)|}{\|x^*\|} \]

for every \(x \in X \).

Observe now that condition (7) holds if and only if \(x^* \) supports the closed unit ball \(B \) of \(X \). Indeed, if \(u_0 \in X, \|u_0\| = 1 \), is such that \(|x^*(u_0)| = ||x^*|| \), then \(z_0 := x - (x^*(x)/x^*(u_0))u_0 \) is in \(Z \) and
\[\|x - z_0\| = \frac{|x^*(x)|}{|x^*(u_0)|} = \frac{|x^*(x)|}{\|x^*\|}. \]

Conversely, if, for some \(x_0 \in X \), there is an element \(z_0 \in Z \) such that
\[\|x - z_0\| = \frac{|x^*(x)|}{\|x^*\|}, \]
then
\[|x^*(x_0 - z_0)| = |x^*(x)| = ||x^*||\|x_0 - z_0\|, \]

showing that \(x^* \) attains its norm on the element \(u_0 = (x_0 - z_0)/\|x_0 - z_0\| \) of \(B \).

In fact we have shown that if \(x^* \) supports the unit ball \(B \) of \(X \) then (7) holds for every \(x \in X \), and if (7) holds for a single element \(x_0 \in X \setminus Z \) then
x^* supports the unit ball B and, therefore, (7) holds for every $x \in X$. It follows
that the subspace $Z = \ker x^*$ is proximinal if x^* supports the unit ball of X, and antiproximinal if not.

If $h_0 \in X$ and $H = h_0 + Z = \{ x \in X : x^*(x) = a \}$ where $a = x^*(h_0)$, is a
closed hyperplane parallel to Z then, by (8),
\[
d(x, H) = \frac{|x^*(x) - a|}{\|x^*\|}
\]
a well-known formula.

2. Restriction operators

Let E be a normed space and S, T nonvoid sets with $S \subset T$. Consider
two normed spaces $X_1 = X_1(T, E)$ and $X_2 = X_2(S, E)$ of mappings from T
(respectively S) to E, the vector operations being defined pointwise. Suppose
that there are verified the following conditions
\[
x|_S \in X_2 \quad \text{and} \quad \|x|_S\| \leq \|x\|
\]
for every $x \in X_1$. For $y \in X_2$ denote by
\[
E(y) = \{ x \in X_1 : x|_S = y \quad \text{and} \quad \|x\| = \|y\| \}
\]
the (possibly empty) set of norm-preserving extensions of y in X_1. One says
that the space X_2 has the extension property with respect to X_1 if $E(y) \neq \emptyset$, for every $y \in X_2$. Let $A : X_1 \to X_2$ be the restriction operator defined by
\[
Ax = x|_S, \quad x \in X_1.
\]
By (9), A is well defined, linear, continuous, and
\[
\|A\| \leq 1.
\]
Put
\[
S^\perp = \{ x \in X_1 : x|_S = 0 \} = \ker A.
\]
From Theorem 1 one obtains:

Proposition 2. Let $x \in X_1$. If $E(x|_S) \neq \emptyset$ then $\|A\| = 1$,
\[
d(x, S^\perp) = \|Ax\| = \|x|_S\|
\]
and
\[
P_{S^\perp}(x) = x - E(Ax) = x - E(x|_S).
\]
Consequently, if X_2 has the extension property with respect to X_1 then
$\|A\| = 1$, the space S^\perp is proximinal in X_1 and the formulae (14), (15) hold.

Proof. Suppose $E(x|_S) \neq \emptyset$. Taking $y \in E(x|_S)$ we have $z_0 := x - y \in S^\perp$, and
\[
\|x - z_0\| = \|y\| = \|x|_S\| = \|Ax\| = \|A(x - z_0)\|
\]
showing that $\|A\| = 1$ and that condition (7) holds. By Theorem 1, $z_0 \in P_{S^\perp}(x)$ and (14) and (15) follow from (4) and (6), respectively. □
2.1. Hahn-Banach extensions

Let X be a normed space and Y a closed subspace of X. Put $X_1 = X^*$ and $X_2 = Y^*$. By Hahn-Banach theorem every $y^* \in Y^*$ has a norm preserving extension in X^*, i.e. the space Y^* has the extension property with respect to X^*. By Proposition 1, it follows that Y^\perp is proximinal in X^*,

(16) \quad d(x^*, Y^\perp) = \|x^*|_Y\| \quad \text{and} \quad P_{Y^\perp}(x^*) = x^* - E(x^*|_Y).

From the second formula in (16) follows Phelps’ result \[38\] that Y^\perp is Chebyshevian in X^* if and only if every $y^* \in Y^*$ has a unique norm-preserving extension in X^*, as well as the result of Xu Ji Hong \[20\], asserting that $P_{Y^\perp}(x^*)$ has affine dimension at most $k - 1$, for every $x^* \in X^*$, if and only if every $y^* \in Y^*$ has at most k linearly independent norm-preserving extensions in X^*. For other results concerning the unicity in Hahn-Banach extension theorem see E. Oja’s papers \[34, 36\] and the monograph \[35\].

If E is a Banach space with the binary intersection property then, by a result of L. Nachbin \[33\], the space $L(Y, E)$ has the extension property with respect to $L(X, E)$. Here X, Y are normed spaces with $Y \subset X$ and $L(X, E) (L(Y, E))$ denotes the space of all continuous linear operators from X (respectively Y) to E. It follows that the space $Y^\perp = \{ A \in L(X, E) : A|_Y = 0 \}$ is proximinal in $L(X, E)$ and the formulae (14) and (15) apply.

Using some extension results for bounded bilinear functionals and operators on 2-normed spaces one can prove similar duality results for spaces of bounded bilinear operators or functionals on 2-normed spaces (see \[6, 7\]). Let $(X, \| \cdot \|, \| \cdot \|)$ be a 2-normed space in the sense of S. Gähler \[16\] and let E be a normed space. A bilinear operator $A : X_1 \times X_2 \to E$, X_1, X_2 subspaces of X, is called bounded (or Lipschitz) if $\| A(x_1, x_2) \| \leq \| x_1, x_2 \|_{X_1 \times X_2}$, for some $L \geq 0$. Denote by $L_2(X_1 \times X_2, E)$ the space of bounded bilinear operators from $X_1 \times X_2$ to E, and let $L_2(X_1 \times X_2) = L_2(X_1 \times X_2, \mathbb{K})$ be the space of bounded bilinear functionals on $X_1 \times X_2$. If Z is a subspace of X and $|b| = \mathbb{K}b$ is the subspace generated by an element $b \in X$, $b \not= 0$, then every bilinear functional $f \in L_2(Z \times |b|)$ admits a norm-preserving extension $F \in L_2(X \times |b|)$. If E has the binary intersection property, then a similar extension result is valid for the spaces $L_2(Z \times |b|, E)$ and $L_2(X \times |b|, E)$ (see \[2\] or \[7\]). Denoting by $E(f)$ the set of all these extensions and by $Z^\perp = \{ F \in L_2(X \times |b|) : F|_{Z \times |b|} = 0 \}$ the annihilator of $Z \times |b|$ in $L_2(X \times |b|)$, it follows that Z^\perp is proximinal in $X \times |b|$ and that

$$
\begin{align*}
d(F, Z^\perp) &= \|F|_{Z \times |b|}\| \quad \text{and} \quad P_{Z^\perp}(F) = F - E(F|_{Z \times |b|})
\end{align*}
$$

(see \[7\]). If E has the binary intersection property then the above results hold for the spaces of bounded bilinear operators $L_2(Z \times |b|, E)$ and $L_2(X \times |b|, E)$ (see \[6\]).
2.2. Helly extensions

Let X be a real normed space and $J : X \to X^{**}$ the canonical embedding operator of X in its bidual, defined by

$$J(x)(x^*) = x^*(x), \ x^* \in X^*.$$

Put $\hat{x} = J(x)$.

Let Y be a closed subspace of X and Y^\perp its annihilator in X^*. For $x^{**} \in X^{**}$ define the set of Helly extensions of x^{**} by

$$E(x^{**}|Y) = \left\{ y \in X : \hat{y}|Y = x^{**}|Y \quad \text{and} \quad \|\hat{y}\| = \|x^{**}|Y\| \right\}.$$

Helly extensions can not exist, i.e. it is possible that $E(x^{**}|Y) = \emptyset$. If $x_1^{**}, \ldots, x_n^{**}$ are in X^{**} and $\epsilon > 0$ then there is $x \in X$ such that $\|x\| < \|x^{**}\| + \epsilon$ and $x_i^{**}(x) = x^{**}(x_i^*)$, $i = 1, \ldots, n$. This is Helly’s theorem (see [13, p. 86]) justifying the denomination “Helly extension”. Restricting to $J(X)$ we have

$$E(\hat{x}|Y) = \left\{ y \in X : \hat{y}|Y = \hat{x}|Y \quad \text{and} \quad \|\hat{y}\| = \|\hat{x}|Y\| \right\}$$

for $x \in X$.

Observe that if $x \in X$ is fixed and $y \in Y$ is arbitrary then, denoting by B^* the closed unit ball of X^*, we have

$$\|x - y\| = \|\hat{x} - \hat{y}\| = \sup\{|x^*(x - y)| : x^* \in B^*\}$$

$$\geq \sup\{|y^*(x - y)| : y^* \in B^* \cap Y^\perp\}$$

$$= \sup\{|y^*(x)| : y^* \in B^* \cap Y^\perp\} = \|\hat{x}|Y\|,$$

showing that

$$d(x, Y) \geq \|\hat{x}|Y\|.$$

By a theorem of Hahn (see [13, Lemma II.3.12]), there exists $y_0^* \in Y^\perp$ such that $\|y_0^*\| = 1$ and $y_0^*(x) = d(x, Y)$, implying

$$d(x, Y) = y_0^*(x) = \hat{x}(y_0^*) \leq \|\hat{x}\|.$$

Consequently

(17) \quad $$d(x, Y) = \|\hat{x}|Y\|$$

for every $x \in X$.

Let $W := \{\hat{x}|Y : x \in X\}$ and let $A : J(X) \to W$ be the restriction operator, defined by $A\hat{x} = \hat{x}|Y$, \quad $x \in X$.

Since Y is a closed subspace of X, it follows that for every $x \in X \setminus Y$ there exists $y^* \in Y^\perp$ such that $y^*(x) = 1$ (see [13, Consequence II.3.13]), implying

$$\ker A = \{x \in X : \hat{x}|Y = 0\} = \{x \in X : y^*(x) = 0, \ \forall y^* \in Y^\perp\} = Y.$$

Also, by (17) and Proposition 1,

$$d(x, \ker A) = d(x, Y) = \|\hat{x}|Y\| = \|Ax\|.$$

It follows that

$$P_Y(x) = x - E(\hat{x}|Y)$$
and that \(Y \) is proximinal if and only if every element \(x \in X \) admits a Helly extension. For results of this kind see \([37, 11]\).

2.3. The spaces \(c_0 \) and \(l_\infty \)

We illustrate the above considerations on the case of spaces \(c_0 \) and \(l_\infty \). As usual, denote by \(c_0 \) (\(l_\infty \)) the space of all converging to zero (respectively bounded) sequences of real numbers. Equipped with the sup-norms they are Banach spaces and \(c_0 \subseteq l_\infty \).

Proposition 3.

1. The subspace \(c_0 \) is proximinal in \(l_\infty \) and the distance of an element \(x \in l_\infty \) to \(c_0 \) is given by the formula

\[
d(x, c_0) = \limsup |x(n)|.
\]

2. Every continuous linear functional \(y^* \in c_0^* \) has a unique norm-preserving extension \(x^* \in l_\infty^* \).

3. The annihilator \(c_0^\perp \) of \(c_0 \) is a Chebyshev subspace of \(l_\infty^* \) and

\[
d(x^*, c_0^\perp) = \|x^*|_{c_0}\|
\]

for every \(x^* \in l_\infty^* \).

Proof. 1. The proof is immediate (see e.g. [4] for this result as well as for other distance formulae and proximinality results in Banach spaces of vector-valued sequences).

2. Let \(y^* \in c_0^* \), \(y^* \neq 0 \). Since \(c_0^* = l_1 \) there exists \((a_n) \in l_1 \) such that

\[
y^*(y) = \sum_{i=1}^{\infty} a_i y(i), \forall y \in c_0, \quad \text{and} \quad \|y^*\| = \sum_{i=1}^{\infty} |a_i|.
\]

Let \(x^* \in l_\infty^* \) be such that

\[
x^*|_{c_0} = y^* \quad \text{and} \quad \|x^*\| = \|y^*\|.
\]

To prove the unicity of \(x^* \) we shall follow the ideas in the proof of Helly’s one step extension theorem (see the proof of Theorem II.3.20 in [13]).

Let \(x \in l_\infty \setminus c_0 \). For \(z \in c_0 \) we have

\[
x^*(x) - y^*(z) = x^*(x - z) \leq \|x^*\| \|x - z\| = \|y^*\| \|x - z\|
\]

implying

\[
x^*(x) \leq y^*(z) + \|x - z\|, \quad \forall z \in c_0.
\]

Similarly

\[
y^*(y) - x^*(x) = x^*(x - y) \leq \|x^*\| \|x - y\| = \|y^*\| \|x - y\|
\]

implies

\[
y^*(y) - \|y^*\| \|x - y\| \leq x^*(x), \quad \forall y \in c_0.
\]
The inequalities (22) and (23) yield
\[(24) \quad \sup_{y \in c_0} \left[y^*(y) - \|y^*\| \|x - y\| \right] \leq x^*(x) \leq \inf_{z \in c_0} \left[y^*(z) + \|y^*\| \|x - z\| \right].\]

Now, by (20), the inequalities (22) and (23) give
\[\sum_{i=1}^{\infty} a_i y(i) - \|x - y\| \leq \sum_{i=1}^{\infty} a_i z(i) + \|x - z\| \sum_{i=1}^{\infty} |a_i|.
\]

Writing \(|a_i| = a_i \epsilon_i\), one obtains
\[\sum_{i=1}^{\infty} |a_i| (\epsilon_i y(i) - \|x - y\|) \leq \sum_{i=1}^{\infty} |a_i| (\epsilon_i z(i) + \|x - z\|)
\]
or equivalently
\[(25) \quad \sum_{i=1}^{\infty} |a_i| \left(\epsilon_i [y(i) - x(i)] - \|x - y\| \right) \leq \sum_{i=1}^{\infty} |a_i| \left(\epsilon_i [z(i) - x(i)] + \|x - z\| \right)
\]
for all \(y, z \in c_0\). Since \(\epsilon_i [y(i) - x(i)] - \|x - y\| \leq 0\), for all \(i \in \mathbb{N}\), it follows that the supremum for \(y \in c_0\) in the left-hand side of (25) is \(\leq 0\).

Let \(\beta = \|x\| > 0\), and let \(y_n(i) = x(i) + \epsilon_i (\beta + 1)\), for \(1 \leq i \leq n\), and \(y_n(i) = 0\), for \(i > n\), \(n \in \mathbb{N}\). Then \(\|x - y_n\| = \beta + 1\) for \(n\) sufficiently large (such that at least one \(a_i, 1 \leq i \leq n\), be different from zero), so that the expression in the left-hand side of (25) becomes
\[\left| \sum_{i=1}^{\infty} |a_i| (\epsilon_i [y_n(i) - x(i)] - \|x - y_n\|) \right| \leq \sum_{i>n} |\epsilon_i x(i) + \beta + 1| \leq (2\beta + 1) \sum_{i>n} |a_i| \to 0, \quad n \to \infty.
\]

It follows that
\[\sup_{y \in c_0} \left\{ \sum_{i=1}^{\infty} (\epsilon_i [y(i) - x(i)] - \|x - y\|) \right\} = 0
\]
or equivalently
\[\sup_{y \in c_0} \left\{ \sum_{i=1}^{\infty} |a_i| (\epsilon_i y(i) - \|x - y\|) \right\} = \sum_{i=1}^{\infty} |a_i| \epsilon_i x(i) = \sum_{i=1}^{\infty} a_i x(i).
\]

Reasoning similarly, one obtains
\[\inf_{z \in c_0} \left\{ \sum_{i=1}^{\infty} |a_i| (\epsilon_i z(i) + \|x - z\|) \right\} = \sum_{i=1}^{\infty} a_i x(i).
\]

Taking into account the inequalities (24) and the fact that \(x \in l_\infty\) was arbitrarily chosen, it follows
\[x^*(x) = \sum_{i=1}^{\infty} a_i x(i)\]
for all \(x \in l_\infty \), proving the unicity of the extension \(x^* \).

\[\square \]

Remark. The above proof of the unicity of the extension of linear functionals on \(c_0 \) is suggested in [22] Problem 12.20.

\[\square \]

Using the representation of continuous linear functionals on \(l_\infty \) we can obtain more information on the behavior of \(c_0^\perp \) in \(l_\infty^* \). It is known that the dual space of \(l_\infty \) can be identified with the space \(ba(\mathcal{P}(N)) \) of all finitely additive bounded measures on \(\mathcal{P}(N) \) (see [13, Th.IV.8.16] or [2, C. 4.7.11]). Following [2] we shall call the elements of \(ba(\mathcal{P}(N)) \) charges. The variation of a charge \(\mu \in ba(\mathcal{P}(N)) \) is defined by

\[
|\mu|(A) = \sup \left\{ \sum_{i=1}^{n} |\mu(A_i)| : n \in N, A = \bigcup_{i=1}^{n} A_i, \text{ with } A_i \text{ pairwise disjoint} \right\}.
\]

One shows that \(|\mu| \) is in \(ba(\mathcal{P}(N)) \) too, and

\[
\|\mu\| = |\mu|(N)
\]

is a norm on \(ba(\mathcal{P}(N)) \) with respect to which \(ba(\mathcal{P}(N)) \) is a Banach space. The space \(ca(\mathcal{P}(N)) \) of countably additive finite measures on \(\mathcal{P}(N) \) is a closed subspace of \(ba((N)) \) and the correspondence

\[
\lambda \mapsto \left(\lambda(\{i\}) ; i \in \mathbb{N} \right), \quad \lambda \in ca(\mathcal{P}(N)),
\]

is an isometric isomorphism between the Banach spaces \(ca(\mathcal{P}(N)) \) and \(l_1 \).

For \(\mu \in ba(\mathcal{P}(N)) \) the formula

\[
x^*_\mu(x) = \int x \cdot d\mu, \quad x \in l_\infty
\]

defines a continuous linear functional \(x^*_\mu \) on \(l_\infty \) with \(\|x^*_\mu\| = \|\mu\| \). We shall denote this functional simply by \(\mu \). If \(x \in c_0 \) then the sequence \(x_n = (x(1), \ldots, x(n), 0, \ldots) \), \(n \in \mathbb{N} \), converges uniformly to \(x \) so that, by the definition of the integral with respect to \(\mu \),

\[
\mu(x) = \lim_{n \to \infty} \mu(x_n) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(\{i\})x(i)
\]

i.e.

\[
\mu(x) = \sum_{i=1}^{\infty} \mu(\{i\})x(i), \quad \forall x \in c_0.
\]

(26)

A charge \(\mu \in ba(\mathcal{P}(N)) \) is called purely finitely additive (or a pure charge) if \(0 \leq \lambda \leq |\mu| \) implies \(\lambda = 0 \), for every \(\lambda \in ca(\mathcal{P}(N)) \). Denote by \(pba(\mathcal{P}(N)) \) the set of all purely finitely additive measures. By Yosida-Hewitt theorem (see [13] or [2, p. 240]), every charge \(\mu \in ba(\mathcal{P}(N)) \) admits a unique decomposition, called Yosida-Hewitt decomposition, of the form

\[
\mu = \mu_c + \mu_p
\]

(27)

with \(\mu_c \) countably additive and \(\mu_p \) purely finitely additive.
In our case
\begin{equation}
\mu_c(A) = \sum_{i \in A} \mu(\{i\})
\end{equation}
and
\begin{equation}
\mu_p(A) = \mu(A) - \sum_{i \in A} \mu(\{i\})
\end{equation}
for every $A \subset \mathbb{N}$. It follows that $\mu_p(A) = 0$ for every finite subset A of \mathbb{N}. In particular $\mu(\{i\}) = 0$, $i \in \mathbb{N}$, so that, by (28), $\mu_p(x) = 0$, $x \in c_0$, showing that
\[pba(\mathcal{P}(\mathbb{N})) \subset c_0. \]
Conversely, if $\mu \in c_0$ then, by (26),
\[\sum_{i=1}^{\infty} \mu(\{i\})x(i) = \mu(x) = 0, \quad \forall x \in c_0, \]
implying $\mu(\{i\}) = 0$, $i \in \mathbb{N}$, which by (28) yields $\mu_c = 0$ and $\mu = \mu_p \in pba(\mathcal{P}(\mathbb{N}))$, i.e. $c_0^\perp \subset pba(\mathcal{P}(\mathbb{N}))$.
Consequently
\begin{equation}
\frac{c_0}{\mu_c} = pba(\mathcal{P}(\mathbb{N})).
\end{equation}
If $\mu = \mu_c + \mu_p$ then, by (28),
\[\|\mu_c\| = \sum_{i=1}^{\infty} |\mu(\{i\})|. \]
By (29)
\[|\mu_p(A_1)| + \ldots + |\mu_p(A_k)| = |\mu(A_1)| + \ldots + |\mu_p(A_k)| - \sum_{i=1}^{\infty} |\mu(\{i\})| \]
for every decomposition $\mathbb{N} = A_1 \cup \ldots \cup A_k$ of \mathbb{N} into pairwise disjoint sets. It follows $\|\mu_p\| = |\mu| - |\mu_c|$ or, equivalently,
\begin{equation}
\|\mu\| = |\mu_c| + |\mu_p|.
\end{equation}
Consequently
\begin{equation}
\text{ba}(\mathcal{P}(\mathbb{N})) = \text{ca}(\mathcal{P}(\mathbb{N})) \oplus \text{pba}(\mathcal{P}(\mathbb{N})) = \text{ca}(\mathcal{P}(\mathbb{N})) \oplus c_0^\perp.
\end{equation}
A closed subspace Y of a Banach space X is called an M-ideal if X^* can be decomposed into a direct sum
\[X^* = Y^\perp \oplus \hat{Y} \]
with $\|x^*\| = \|y^*\| + \|z^*\|$, for every $(x^*, y^*, z^*) \in X^* \times Y^\perp \times \hat{Y}$, such that $x^* = y^* + z^*$. M-ideals were considered first by E. Alfsen and Efros [1]. For a thorough exposition of the present day situation in M-ideals theory we recommend the monograph [17] (see also [35]). In this language, the relations (31) and (32) tell us that c_0 is an M-ideal in l_∞. From the general theory
of M-ideals it follows that the space c_0 is proximinal in l_∞ and that every continuous linear functional on c_0 has a unique norm-preserving extension to l_∞. Since $\mu_p|c_0 = 0$, for $\mu \in ba(P(\mathbb{N}))$, the formulae (16) become

$$d(\mu, c_0^\perp) = \|\mu|c_0\| = \|\mu_c\| = \sum_{i=1}^{\infty} |\mu(\{i\})|$$

and

$$P_{c_0^\perp}(\mu) = \{\mu_p\}.$$

This is another way to obtain the results in Proposition 2.

Since c_0 is proximinal in l_∞ it follows that every $x \in l_\infty$ admits a Helly extension with respect to c_0. To obtain concrete representations in this situation we have to work with the bidual $l_\infty^{**} = ba^*(P(\mathbb{N}))$. But, as it is asserted in [2, p. 231], no satisfactory representation for the elements of $ba^*(P(\mathbb{N}))$ is known.

2.4. Tietze extensions

Let T be a locally compact Hausdorff topological space and S a nonvoid closed subset of T. Denote by $C_0(T)$ ($C_0(S)$) the space of all real-valued continuous functions on T (respectively S) vanishing at infinity. Equipped with the sup-norms $C_0(T)$ and $C_0(S)$ are Banach algebras and

$$Z(S) = \{ F \in C_0(T) : F|S = 0 \}$$

is a closed ideal in $C_0(T)$. By Tietze extension theorem (see [14]) every $f \in C_0(S)$ admits a norm-preserving extension $F \in C_0(T)$. It follows that Proposition 1 can be applied to deduce that $Z(S)$ is a proximinal subspace of $C_0(T)$ and that the formulae (33)

$$d(F, Z(S)) = \|F|S\| \quad \text{and} \quad P_{Z(S)}(F) = F - E(F|S)$$

hold.

Results of this kind have been obtained in [10, 37].

Using Dugundji’s [12] vector-version of Tietze extension theorem one obtains the validity of the formulae (33) for $C_0(T, E)$, $C_0(S, E)$, with E a Banach space.

2.5. Spaces of Lipschitz and Hölder functions

Let (X, d) be a metric space. A function $F : X \to \mathbb{R}$ is called Lipschitz if

$$(34) \quad \|F\| := \sup \left\{ \frac{|F(x_1) - F(x_2)|}{d(x_1, x_2)} : x_1, x_2 \in X, \ x_1 \neq x_2 \right\} < \infty.$$

The quantity $\|F\|$ is called the Lipschitz norm of the function F and the space of all real-valued Lipschitz functions on X is denoted by Lip(X). Since $\|F\| = 0$ for constant functions, (34) is in fact only a semi-norm on Lip(X). There are several ways to transform Lip(X) into a Banach space. One consists in fixing a point $x_0 \in X$ and consider the space Lip$0(X)$ of all functions in Lip(X) vanishing at x_0. Other way consists in considering the space BLip(X).
of all bounded functions in \(\text{Lip}(X) \), normed by
\[
\|F\|_1 = \|F\| + \|F\|_\infty
\]
or by
\[
\|F\|_2 = \max\{\|F\|, \|F\|_\infty\},
\]
where \(\|F\| \) is given by (34) and \(\|F\|_\infty \) is the sup-norm.

McShane [25] proved that every Lipschitz functions \(f \), defined on a subset \(Y \) of \(X \), admits a norm preserving extension to \(X \) (see also [8, 26]). The case \(X = \mathbb{R}^n \) was considered by M. Kirszbraun [22]. Based on this result one can show that the space \(\text{Lip}_0(Y) \) has the extension property in \(\text{Lip}_0(X) \) so that, by Proposition 1,
\[
d(F, Y^\perp) = \|f|_Y\| \quad \text{and} \quad P_{Y^\perp}(F) = F - E(F|_Y)
\]
for every \(F \in \text{Lip}_0(X) \), where
\[
Y^\perp = \{ F \in \text{Lip}_0(X) : F|_Y = 0 \}.
\]
Here \(Y \) is a subset of \(X \) containing the fixed point \(x_0 \).

Similar results hold for the spaces \(\text{BLip}(Y) \) and \(\text{BLip}(X) \) with respect to the norms (35) or (36) (see [29]). In this case one can show that every \(f \in \text{BLip}(Y) \) has an extension \(F \in \text{BLip}(X) \) preserving both the Lipschitz and uniform norms, implying that the space \(\text{BLip}(Y) \) have the extension property with respect to \(\text{BLip}(X) \) for both of the norms (35) and (36).

For \(0 < \alpha \leq 1 \), a function \(F : X \to \mathbb{R} \) is called \textit{Hölder of order} \(\alpha \) if
\[
\|F\|_\alpha := \sup \left\{ \frac{|F(x_1) - F(x_2)|}{d^\alpha(x_1, x_2)} : x_1, x_2 \in X, \ x_1 \neq x_2 \right\} < \infty.
\]
Denote by \(\Lambda^\alpha(X) \) the space of all Hölder functions on \(X \). To obtain Banach spaces of Hölder functions one can proceed like above, by considering the space \(\Lambda^\alpha_0(X) \) of Hölder functions vanishing at a fixed point \(x_0 \) or the space \(\Lambda^\alpha(X) \) of bounded Hölder functions on \(X \). Duality results for these spaces have been obtained by C. Mustaţa [31, 32].

REFERENCES

13 Phelps type duality results in best approximation

Received by the editors: November 8, 1999.