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PHELPS TYPE DUALITY RESULTS IN BEST APPROXIMATION

STEFAN COBZAŞ∗

Abstract. The aim of the present paper is to show that many Phelps type
duality result, relating the extension properties of various classes of functions
(continuous, linear continuous, bounded bilinear, Hölder-Lipschitz) with the ap-
proximation properties of some annihilating spaces, can be derived in a unitary
and simple way from a formula for the distance to the kernel of a linear opera-
tor, extending the well-known distance formula to hyperplanes in normed spaces.
The case of spaces c0 and l∞ is treated in details.
MSC 2000. 41A65, 46B20.
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THE DISTANCE FORMULA

Let X be a normed space (over R or C) and Y a closed subset of X. For
x ∈ X put

d(x, Y ) = inf{‖x− y‖ : y ∈ Y },
PY (x) = {y ∈ Y : ‖x− y‖ = d(x, Y )}.

The quantity d(x, Y ) is the distance from x to Y and the elements in PY (x)
are called nearest points (or elements of best approximation) for x in Y . The
set-valued map PY is called the metric projection. The subspace Y is called
proximinal if PY (x) 6= ∅, for every x ∈ X, Chebyshevian if PY (x) is a singleton
for every x ∈ X, and antiproximinal if PY (x) = ∅, for every x ∈ X\Y (observe
that PY (y) = {y}, for y ∈ Y ).

Denote by X∗ the conjugate space of X and let
(1) Y ⊥ = {x∗ ∈ X∗ : x∗|Y = 0}
be the annihilator of Y in X∗. In the seminal paper [38] R. R. Phelps initiated
the study of the relations between the extension properties of the space Y and
the approximation properties of its annihilator Y ⊥. Namely, Y ⊥ is Cheby-
shevian if and only if every functional y∗ ∈ Y ∗ has a unique norm-preserving
extension x∗ ∈ X∗. It is known that, by Hahn-Banach theorem, every y∗ ∈ Y ∗
has at least one norm-preserving extension. Since then, there have been found
a lot of situations in which similar duality results hold, corresponding to vari-
uos extension results – Helly extension theorem for linear functionals, Tietze’s
extension theorem for continuous functions, McShane’s extension theorem for
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Lipschitz functions, Nachbin’s extension theorem for continuous linear opera-
tors etc.

The aim of the present paper is to show that all these results follow imme-
diately from a formula for the distance to the kernel of a continuous linear op-
erator, inspired by the well-known distance formula to hyperplanes in normed
spaces.

For a continuous linear operator A : X1 → X2, between two normed spaces
X1, X2, let

(2) Z = {x ∈ X1 : Ax = 0}

be its kernel. Also, for x ∈ X1, put

(3) E(x) =
{
y ∈ X1 : Ay = Ax and ‖y‖ = ‖Ax‖

‖A‖

}
.

Theorem 1. 1. d(x, Z) ≥ ‖Ax‖‖A‖ .

2. We have

(4) d(x, Z) = ‖Ax‖
‖A‖

if and only if there exists a sequence (zn) in Z such that

(5) ‖x− zn‖ → ‖Ax‖
‖A‖ .

3 (a). If (4) holds then

(6) PZ(x) = x− E(x)

(with the convention x− ∅ = ∅).
3 (b). If there is z0 ∈ Z such that

(7) ‖x− z0‖ = ‖Ax‖
‖A‖

then z0 ∈ PZ(x) and the formulae (4) and (6) hold.

Proof. 1. For every z ∈ Z, we have

‖Ax‖ = ‖A(x− z)‖ ≤ ‖A‖‖x− z‖

showing that (3) holds.
2. Let (zn) ⊂ Z verifying (5). Then

d(x, Z) ≤ ‖x− zn‖, ∀n ∈ N,

and, letting n→∞, one obtains

d(x, Z) ≤ ‖Ax‖‖A‖

which, combined with the point 1 of the theorem, yields (4).
Conversely, if the equality (4) holds and (zn) is a sequence in Z such that

‖x− zn‖ → d(x, Z), then the sequence (zn) verifies (5).
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3. (a) Follows from the equivalences:

z ∈ PZ(x)⇐⇒ z ∈ Z and ‖x− z‖ = d(x, Z) = ‖Ax‖
‖A‖

⇐⇒ x− z ∈ E(x)⇐⇒ z ∈ x− E(x).
3. (b) Observe that the equality (7) implies that (5) holds with zn = z0,

n = 1, 2, . . . , so that, by the point 2 of the theorem, (4) and (6) hold too.
Since

‖x− z0‖ = ‖Ax‖
‖A‖ = d(x, Z)

it follows that z0 ∈ PZ(x). �

Remark. If y ∈ X1 is fixed and W := y + Z then

�(8) d(x,W ) = d(x− y, Z) = ‖Ax−Ay‖
‖A‖ .

Examples
1. The distance from a point to a hyperplane

Let X be a normed space, x∗ ∈ X∗, x∗ 6= 0, and Z = kerx∗. Take
A := x∗ : X → K

(K = R or K = C).
Let x ∈ X. First show that condition (5) is always fulfilled. Indeed, if

un ∈ X, ‖un‖ = 1, n ∈ N, are such that |x∗(un)| → ‖x∗‖, then

zn := x− x∗(x)
x∗(un)un ∈ Z and ‖x− zn‖ = |x∗(x)|

|x∗(un)| →
|x∗(x)|
‖x∗‖

.

Therefore
d(x, Z) = |x

∗(x)|
‖x∗‖

for every x ∈ X.
Observe now that condition (7) holds if and only if x∗ supports the closed

unit ball B of X. Indeed, if u0 ∈ X, ‖u0‖ = 1, is such that |x∗(u0)| = ‖x∗‖,
then z0 := x− (x∗(x)/x∗(u0))u0 is in Z and

‖x− z0‖ = |x∗(x)|
|x∗(u0)| = |x

∗(x)|
‖x∗‖

.

Conversely, if, for some x0 ∈ X, there is an element z0 ∈ Z such that
‖x− z0‖ = |x∗(x0)|/‖x∗‖, then

|x∗(x0 − z0)| = |x∗(x)| = ‖x∗‖‖x0 − z0‖,
showing that x∗ attains its norm on the element u0 = (x0 − z0)/‖x0 − z0‖ of
B.

In fact we have shown that if x∗ supports the unit ball B of X then (7)
holds for every x ∈ X, and if (7) holds for a single element x0 ∈ X \ Z then
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x∗ supports the unit ball B and, therefore, (7) holds for every x ∈ X. It follows
that the subspace Z = kerx∗ is proximinal if x∗ supports the unit ball of X,
and antiproximinal if not.

If h0 ∈ X and H = h0 + Z = {x ∈ X : x∗(x) = a} where a = x∗(h0), is a
closed hyperplane paralel to Z then, by (8),

d(x,H) = |x
∗(x)− a|
‖x∗‖

a well-known formula.

2. Restriction operators

Let E be a normed space and S, T nonvoid sets with S ⊂ T. Consider
two normed spaces X1 = X1(T,E) and X2 = X2(S,E) of mappings from T
(respectively S) to E, the vector operations being defined pointwise. Suppose
that there are verified the following conditions
(9) x|S ∈ X2 and ‖x|S‖ ≤ ‖x‖
for every x ∈ X1. For y ∈ X2 denote by
(10) E(y) =

{
x ∈ X1 : x|S = y and ‖x‖ = ‖y‖

}
the (possibly empty) set of norm-preserving extensions of y in X1. One says
that the space X2 has the extension property with respect to X1 if E(y) 6= ∅,
for every y ∈ X2. Let A : X1 → X2 be the restriction operator defined by
(11) Ax = x|S , x ∈ X1.

By (9), A is well defined, linear, continuous, and
(12) ‖A‖ ≤ 1.
Put
(13) S⊥ = {x ∈ X1 : x|S = 0} = kerA.
From Theorem 1 one obtains:

Proposition 2. Let x ∈ X1. If E(x|S) 6= ∅ then ‖A‖ = 1,
(14) d(x, S⊥) = ‖Ax‖ = ‖x|S‖
and
(15) PS⊥(x) = x− E(Ax) = x− E(x|S).

Consequently, if X2 has the extension property with respect to X1 then
‖A‖ = 1, the space S⊥ is proximinal in X1 and the formulae (14), (15) hold.

Proof. Suppose E(x|S) 6= ∅. Taking y ∈ E(x|S) we have z0 := x− y ∈ S⊥,
and

‖x− z0‖ = ‖y‖ = ‖x|S‖ = ‖Ax‖ = ‖A(x− z0)‖
showing that ‖A‖ = 1 and that condition (7) holds. By Theorem 1, z0 ∈
PS⊥(x) and (14) and (15) follow from (4) and (6), respectively. �



5 Phelps type duality results in best approximation 33

2.1. Hahn-Banach extensions

Let X be a normed space and Y a closed subspace of X. Put X1 = X∗

and X2 = Y ∗. By Hahn-Banach theorem every y∗ ∈ Y ∗ has a norm preserving
extension in X∗, i.e. the space Y ∗ has the extension property with respect to
X∗. By Proposition 1, it follows that Y ⊥ is proximinal in X∗,

(16) d(x∗, Y ⊥) = ‖x∗|Y ‖ and PY ⊥(x∗) = x∗ − E(x∗|Y ).

From the second formula in (16) follows Phelps’ result [38] that Y ⊥ is Cheby-
shevian in X∗ if and only if every y∗ ∈ Y ∗ has a unique norm-preserving ex-
tension in X∗, as well as the result of Xu Ji Hong [20], asserting that PY ⊥(x∗)
has affine dimension at most k − 1, for every x∗ ∈ X∗, if and only if every
y∗ ∈ Y ∗ has at most k linearly independent norm-preserving extensions in X∗.
For other results concerning the unicity in Hahn-Banach extension theorem
see E. Oja’s papers [34, 36] and the monograph [35].

If E is a Banach space with the binary intersection property then, by
a result of L. Nachbin [33], the space L(Y,E) has the extension property
with respect to L(X,E). Here X,Y are normed spaces with Y ⊂ X and
L(X,E) (L(Y,E)) denotes the space of all continuous linear operators from
X (respectively Y ) to E. It follows that the space Y ⊥ = {A ∈ L(X,E) :
A|Y = 0} is proximinal in L(X,E) and the formulae (14) and (15) apply.

Using some extension results for bounded bilinear functionals and operators
on 2-normed spaces one can prove similar duality results for spaces of bounded
bilinear operators or functionals on 2-normed spaces (see [6, 7]) Let (X, ‖ , ‖)
be a 2-normed space in the sense of S. Gähler [16] and let E be a normed
space. A bilinear operator A : X1 × X2 → E, X1, X2 subspaces of X, is
called bounded (or Lipschitz) if ‖A(x1, x2)‖ ≤ ‖x1, x2‖, (x1, x2) ∈ X1 ×X2,
for some L ≥ 0. Denote by L2(X1 × X2, E) the space of bounded bilinear
operators from X1 × X2 to E, and let L2(X1 × X2) = L2(X1 × X2,K) be
the space of bounded bilinear functionals on X1 × X2. If Z is a subspace of
X and [b] = Kb is the subspace generated by an element b ∈ X, b 6= 0, then
every bilinear functional f ∈ L2(Z × [b]) admits a norm-preserving extension
F ∈ L2(X × [b]). If E has the binary intersection property, then a similar
extension result is valid for the spaces L2(Z × [b], E) and L2(X × [b], E) (see
[3] or [6]). Denoting by E(f) the set of all these extensions and by

Z⊥b = {F ∈ L2(X × [b]) : F |Z×[b] = 0}

the annihilator of Z × [b] in L2(X × [b]), it follows that Z⊥b is proximinal in
X × [b] and that

d(F,Z⊥b ) = ‖F |Z×[b]‖ and PZ⊥
b

(F ) = F − E(F |Z×[b])

(see [7]). If E has the binary intersection property then the above results hold
for the spaces of bounded bilinear operators L2(Z× [b], E) and L2(X× [b], E)
(see [6]).
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2.2. Helly extensions

Let X be a real normed space and J : X → X∗∗ the canonical embedding
operator of X in its bidual, defined by

J(x)(x∗) = x∗(x), x∗ ∈ X∗.
Put x̂ = J(x).

Let Y be a closed subspace of X and Y ⊥ its annihilator in X∗. For x∗∗ ∈
X∗∗ define the set of Helly extensions of x∗∗ by

E(x∗∗|Y ⊥) =
{
y ∈ X : ŷ|Y ⊥ = x∗∗|Y ⊥ and ‖ŷ‖ = ‖x∗∗|Y ⊥‖

}
.

Helly extensions can not exist, i.e. it is possible that E(x∗∗|Y ⊥) = ∅. If
x∗1, . . . , x

∗
n are in X∗ and ε > 0 then there is x ∈ X such that ‖x‖ < ‖x∗∗‖+ ε

and x∗i (x) = x∗∗(x∗i ), i = 1, . . . , n. This is Helly’s theorem (see [13, p. 86])
justifying the denomination ”Helly extension”. Restricting to J(X) we have

E(x̂|Y ⊥) = {y ∈ X : ŷ|Y ⊥ = x̂|Y ⊥ and ‖ŷ‖ = ‖x̂|Y ⊥‖}
for x ∈ X.

Observe that if x ∈ X is fixed and y ∈ Y is arbitrary then, denoting by B∗
the closed unit ball of X∗, we have

‖x− y‖ = ‖x̂− y‖ = sup{|x∗(x− y)| : x∗ ∈ B∗}
≥ sup{|y∗(x− y)| : y∗ ∈ B∗ ∩ Y ⊥}
= sup{|y∗(x)| : y∗ ∈ B∗ ∩ Y ⊥} = ‖x̂|Y ⊥‖,

showing that
d(x, Y ) ≥ ‖x̂|Y ⊥‖.

By a theorem of Hahn (see [13, Lemma II.3.12]), there exists y∗0 ∈ Y ⊥ such
that ‖y∗0‖ = 1 and y∗0(x) = d(x, Y ), implying

d(x, Y ) = y∗0(x) = x̂(y∗0) ≤ ‖x̂‖.
Consequently

(17) d(x, Y ) = ‖x̂|Y ⊥‖
for every x ∈ X.

Let W := {x̂|Y ⊥ : x ∈ X} and let A : J(X) → W be the restriction
operator, defined by Ax̂ = x̂|Y ⊥ , x ∈ X.

Since Y is a closed subspace of X, it follows that for every x ∈ X \Y there
exists y∗ ∈ Y ⊥ such that y∗(x) = 1 (see [13, Consequence II.3.13]), implying

kerA = {x ∈ X : x̂|Y ⊥ = 0} = {x ∈ X : y∗(x) = 0, ∀y∗ ∈ Y ⊥} = Y.

Also, by (17) and Proposition 1,
d(x, kerA) = d(x, Y ) = ‖x̂|Y ⊥‖ = ‖Ax‖.

It follows that
PY (x) = x− E(x̂|Y ⊥)



7 Phelps type duality results in best approximation 35

and that Y is proximinal if and only if every element x ∈ X admits a Helly
extension. For results of this kind see [37, 11].

2.3. The spaces c0 and l∞
We illustrate the above considerations on the case of spaces c0 and l∞.

As usual, denote by c0 (l∞) the space of all converging to zero (respectively
bounded) sequences of real numbers. Equipped with the sup-norms they are
Banach spaces and c0 ⊂ l∞.

Proposition 3. 1. The subspace c0 is proximinal in l∞ and the dis-
tance of an element x ∈ l∞ to c0 is given by the formula

(18) d(x, c0) = lim sup |x(n)|.

2. Every continuous linear functional y∗ ∈ c∗0 has a unique norm-preser-
ving extension x∗ ∈ l∗∞.

3. The annihilator c⊥0 of c0 is a Chebyshev subspace of l∗∞ and

(19) d(x∗, c⊥0 ) = ‖x∗|c0‖

for every x∗ ∈ l∗∞.

Proof. 1. The proof is immediate (see e.g. [4] for this result as well as for
other distance formulae and proximinality results in Banach spaces of vector-
valued sequences).

2. Let y∗ ∈ c∗0, y∗ 6= 0. Since c∗0 = l1 there exists (an) ∈ l1 such that

(20) y∗(y) =
∞∑
i=1

aiy(i), ∀y ∈ c0, and ‖y∗‖ =
∞∑
i=1
|ai|.

Let x∗ ∈ l∗∞ be such that

(21) x∗|c0 = y∗ and ‖x∗‖ = ‖y∗‖.

To prove the unicity of x∗ we shall follow the ideas in the proof of Helly’s
one step extension theorem (see the proof of Theorem II.3.20 in [13]).

Let x ∈ l∞ \ c0. For z ∈ c0 we have

x∗(x)− y∗(z) = x∗(x− z) ≤ ‖x∗‖‖x− z‖ = ‖y∗‖‖x− z‖

implying

(22) x∗(x) ≤ y∗(z) + ‖x− z‖, ∀z ∈ c0.

Similarly

y∗(y)− x∗(x) = x∗(x− y) ≤ ‖x∗‖‖x− y‖ = ‖y∗‖‖x− y‖

implies

(23) y∗(y)− ‖y∗‖‖x− y‖ ≤ x∗(x), ∀y ∈ c0.
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The inequalities (22) and (23) yield

(24) sup
y∈c0

[
y∗(y)− ‖y∗‖‖x− y‖

]
≤ x∗(x) ≤ inf

z∈c0

[
y∗(z) + ‖y∗‖‖x− z‖

]
.

Now, by (20), the inequalities (22) and (23) give
∞∑
i=1

aiy(i)− ‖x− y‖
∞∑
i=1
|ai| ≤

∞∑
i=1

aiz(i) + ‖x− z‖
∞∑
i=1
|ai|.

Writing |ai| = aiεi, one obtains
∞∑
i=1
|ai|
(
εiy(i)− ‖x− y‖

)
≤
∞∑
i=1
|ai|
(
εiz(i) + ‖x− z‖

)
or equivalently

(25)
∞∑
i=1
|ai|
(
εi[y(i)− x(i)]− ‖x− y‖

)
≤
∞∑
i=1
|ai|
(
εi[z(i)− x(i)] + ‖x− z‖

)
for all y, z ∈ c0. Since εi[y(i) − x(i)] − ‖x − y‖ ≤ 0, for all i ∈ N, it follows
that the supremum for y ∈ c0 in the left-hand side of (25) is ≤ 0.

Let β = ‖x‖ > 0, and let yn(i) = x(i) + εi(β + 1), for 1 ≤ i ≤ n, and
yn(i) = 0, for i > n, n ∈ N. Then ‖x − yn‖ = β + 1 for n sufficiently large
(such that at least one ai, 1 ≤ i ≤ n, be different from zero), so that the
expression in the left-hand side of (25) becomes∣∣∣ ∞∑

i=1
|ai|
(
εi[yn(i)− x(i)]− ‖x− yn‖

)∣∣∣ ≤∑
i>n

∣∣εix(i) + β + 1
∣∣

≤ (2β + 1)
∑
i>n

|ai| → 0, for n→∞.

It follows that

sup
y∈c0

{ ∞∑
i=1

(
εi[y(i)− x(i)]− ‖x− y‖

)}
= 0

or equivalently

sup
y∈c0

{ ∞∑
i=1
|ai|
(
εiy(i)− ‖x− y‖

)}
=
∞∑
i=1
|ai|εix(i) =

∞∑
i=1

aix(i).

Reasoning similarly, one obtains

inf
z∈c0

{ ∞∑
i=1
|ai|
(
εiz(i) + ‖x− z‖

)}
=
∞∑
i=1

aix(i).

Taking into account the inequalities (24) and the fact that x ∈ l∞ was
arbitrarily chosen, it follows

x∗(x) =
∞∑
i=1

aix(i)
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for all x ∈ l∞, proving the unicity of the extension x∗. �

Remark. The above proof of the unicity of the extension of linear func-
tionals on c0 is suggested in [41, Problem 12.20]. �

Using the representation of continuous linear functionals on l∞ we can ob-
tain more information on the behavior of c⊥0 in l∗∞. It is known that the dual
space of l∞ can be identified with the space ba(P(N)) of all finitely additive
bounded measures on P(N) (see [13, Th.IV.8.16] or [2, C. 4.7.11]). Following
[2] we shall call the elements of ba(P(N)) charges. The variation of a charge
µ ∈ ba(P(N)) is defined by

|µ|(A) = sup
{ n∑
i=1
|µ(Ai)| : n ∈ N, A =

n⋃
i=1

Ai, with Ai pairwise disjoint
}
.

One shows that |µ| is in ba(P(N)) too, and
‖µ‖ = |µ|(N)

is a norm on ba(P(N)) with respect to which ba(P(N)) is a Banach space.
The space ca(P(N)) of countably additive finite measures on P(N)) is a closed
subspace of ba((N)) and the correspondence

λ 7→
(
λ
(
{i}
)
; i ∈ N

)
, λ ∈ ca(P(N)),

is an isometric isomorphism between the Banach spaces ca(P(N)) and l1.
For µ ∈ba(P(N)) the formula

x∗µ(x) =
∫
x · dµ, x ∈ l∞

defines a continuous linear functional x∗µ on l∞ with ‖x∗µ‖ = ‖µ‖. We shall
denote this functional simply by µ. If x ∈ c0 then the sequence xn =
(x(1), . . . , x(n), 0, . . .), n ∈ N, converges uniformly to x so that, by the defi-
nition of the integral with respect to µ,

µ(x) = lim
n→∞

µ(xn) = lim
n→∞

n∑
i=1

µ({i})x(i)

i.e.

(26) µ(x) =
∞∑
i=1

µ({i})x(i), ∀x ∈ c0.

A charge µ ∈ ba(P(N)) is called purely finitely additive (or a pure charge) if
0 ≤ λ ≤ |µ| implies λ = 0, for every λ ∈ca(P(N)). Denote by pba(P(N)) the
set of all purely finitely additive measures. By Yosida-Hewitt theorem (see [43]
or [2, p. 240]), every charge µ ∈ ba(P(N)) admits a unique decomposition,
called Yosida-Hewitt decomposition, of the form
(27) µ = µc + µp

with µc countably additive and µp purely finitely additive.
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In our case
(28) µc(A) =

∑
i∈A

µ({i})

and
(29) µp(A) = µ(A)−

∑
i∈A

µ({i})

for every A ⊂ N. It follows that µp(A) = 0 for every finite subset A of N. In
particular µ({i}) = 0, i ∈ N. so that, by (26), µp(x) = 0, x ∈ c0, showing
that

pba(P(N)) ⊂ c⊥0 .
Conversely, if µ ∈ c⊥0 then, by (26),

∞∑
i=1

µ({i})x(i) = µ(x) = 0, ∀x ∈ c0,

implying µ({i}) = 0, i ∈ N, which by (28) yields µc = 0 and µ = µp ∈
pba(P(N)), i.e. c⊥0 ⊂ pba (P(N)).

Consequently
(30) c⊥0 = pba(P(N)).

If µ = µc + µp then, by (28),

‖µc‖ =
∞∑
i=1
|µ({i})|.

By (29)

|µp(A1)|+ . . .+ |µp(Ak)| = |µ(A1)|+ . . .+ |µp(Ak)| −
∞∑
i=1
|µ({i})|

for every decomposition N = A1 ∪ . . .∪Ak of N into pairwise disjoint sets. It
follows ‖µp‖ = ‖µ‖ − ‖µc‖ or, equivalently,
(31) ‖µ‖ = ‖µc‖+ ‖µp‖.
Consequently
(32) ba(P(N)) = ca(P(N))⊕ pba(P(N)) = ca(P(N))⊕ c⊥0 .

A closed subspace Y of a Banach space X is called an M-ideal if X∗ can be
decomposed into a direct sum

X∗ = Y ⊥ ⊕ Ŷ
with ‖x∗‖ = ‖y∗‖ + ‖z∗‖, for every (x∗, y∗, z∗) ∈ X∗ × Y ⊥ × Ŷ , such
that x∗ = y∗ + z∗. M-ideals were considered first by E. Alfsen and Efros [1].
For a thorough exposition of the present day situation in M-ideals theory we
recommend the monograph [17] (see also [35]). In this language, the relations
(31) and (32) tell us that c0 is an M-ideal in l∞. From the general theory
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of M-ideals it follows that the space c0 is proximinal in l∞ and that every
continuous linear functional on c0 has a unique norm-preserving extension to
l∞. Since µp|c0 = 0, for µ ∈ba(P(N)), the formulae (16) become

d(µ, c⊥0 ) = ‖µ|c0‖ = ‖µc‖ =
∞∑
i=1
|µ({i})| and Pc⊥0

(µ) = {µp}.

This is another way to obtain the results in Proposition 2.
Since c0 is proximinal in l∞ it follows that every x ∈ l∞ admits a Helly

extension with respect to c0. To obtain concrete representations in this situa-
tion we have to work with the bidual l∗∗∞ = ba∗(P(N)). But, as it is asserted
in [2, p. 231], no satisfactory representation for the elements of ba∗(P(N)) is
known.

2.4. Tietze extensions

Let T be a locally compact Hausdorff topological space and S a nonvoid
closed subset of T . Denote by C0(T ) (C0(S)) the space of all real-valued
continuous functions on T (respectively S) vanishing at infinity. Equipped
with the sup-norms C0(T ) and C0(S) are Banach algebras and

Z(S) = {F ∈ C0(T ) : F |S = 0}

is a closed ideal in C0(T ). By Tietze extension theorem (see [14]) every f ∈
C0(S) admits a norm-preserving extension F ∈ C0(T ). It follows that Propo-
sition 1 can be applied to deduce that Z(S) is a proximinal subspace of C0(T )
and that the formulae

(33) d(F,Z(S)) = ‖F |S‖ and PZ(S)(F ) = F − E(F |S)

hold.
Results of this kind have been obtained in [10, 37].
Using Dugundji’s [12] vector-version of Tietze extension theorem one ob-

tains the validity of the formulae (33) for C0(T,E), C0(S,E), with E a Ba-
nach space.

2.5. Spaces of Lipschitz and Hölder functions

Let (X, d) be a metric space. A function F : X → R is called Lipschitz if

(34) ‖F‖ := sup
{ |F (x1)− F (x2)|

d(x1, x2) : x1, x2 ∈ X, x1 6= x2

}
<∞.

The quantity ‖F‖ is called the Lipschitz norm of the function F and the
space of all real-valued Lipschitz functions on X is denoted by Lip(X). Since
‖F‖ = 0 for constant functions, (34) is in fact only a semi-norm on Lip(X).
There are several ways to transform Lip(X) into a Banach space. One consists
in fixing a point x0 ∈ X and consider the space Lip0(X) of all functions in
Lip(X) vanishing at x0. Other way consists in considering the space BLip(X)
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of all bounded functions in Lip(X), normed by
(35) ‖F‖1 = ‖F‖+ ‖F‖∞
or by
(36) ‖F‖2 = max{‖F‖, ‖F‖∞},
where ‖F‖ is given by (34) and ‖F‖∞ is the sup-norm.

McShane [25] proved that every Lipschitz functions f , defined on a subset
Y of X, admits a norm preserving extension to X (see also [8, 26]). The case
X = Rn was considered by M. Kirszbraun [22]. Based on this result one can
show that the space Lip0(Y ) has the extension property in Lip0(X) so that,
by Proposition 1,

d(F, Y ⊥) = ‖f |Y ‖ and PY ⊥(F ) = F − E(F |Y )
for every F ∈ Lip0(X), where

Y ⊥ = {F ∈ Lip0(X) : F |Y = 0}.
Here Y is a subset of X containing the fixed point x0.

Similar results hold for the spaces BLip(Y ) and BLip(X) with respect to
the norms (35) or (36) (see [29]). In this case one can show that every f ∈
BLip(Y ) has an extension F ∈ BLip(X) preserving both the Lipschitz and
uniform norms, implying that the space BLip(Y ) have the extension property
with respect to BLip(X) for both of the norms (35) and (36).

For 0 < α ≤ 1, a function F : X → R is called Hölder of order α if

‖F‖α := sup
{ |F (x1)− F (x2)|

dα(x1, x2) : x1, x2 ∈ X, x1 6= x2

}
<∞.

Denote by Λα(X) the space of all Hölder functions on X. To obtain Banach
spaces of Hölder functions one can proceed like above, by considering the space
Λα0 (X) of Hölder functions vanishing at a fixed point x0 or the space BΛα(X)
of bounded Hölder functions on X. Duality results for these spaces have been
obtained by C. Mustăţa [31, 32].

REFERENCES

[1] Alfsen, E. M. and Effros, E. G., Structure in real Banach spaces, Ann. Math., 96,
Part I: 98–128, Part II: 129–173, 1972.

[2] Bhaskara Rao, K. P. S. and Bhaskara Rao, M. Theory of Charges–A Study of
Finitely Additive Measures, Academic Press, New York, 1983.

[3] Beg, I. and Iqbal, M., Extension of linear 2-operators, Math. Montesnigri, 2, pp. 1–10,
1993.
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