REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 31 (2002) no. 1, pp. 45-53 ictp.acad.ro/jnaat

HOMOGENEOUS NUMERICAL CUBATURE FORMULAS OF INTERPOLATORY TYPE

GHEORGHE COMAN* and MARIA SOLOMON †

Abstract. In this paper we construct homogeneous numerical cubature formulas based on some numerical multivariate interpolation schemes.

MSC 2000. 65D32.

Keywords. interpolation, cubature formulas, multivariate approximation, homogeneous cubature, numerical cubature.

1. INTRODUCTION

Let D be a given domain in \mathbb{R}^2 , $f: D \to \mathbb{R}$ an integrable function on D and $\Lambda := \{\lambda_1 f, \ldots, \lambda_N f\}$ some given information on f. Next, one suppose that $\lambda_i f$ are values of f or of certain of its derivatives at some points of D, called nodes.

One considers the cubature formula

$$I^{xy}f := \iint_D f(x,y) \mathrm{d}x \mathrm{d}y = \sum_{i=1}^N A_i \lambda_i f + R_N(f),$$

where A_i , i = 1, ..., N are its coefficients and $R_N(f)$ is the remainder term.

The coming problem is to find the parameters of such a cubature formula (coefficients, nodes) and to study the remainder term.

The most results has been obtained when D is a regular domain in \mathbb{R}^2 (rectangle, triangle) and the information (data) are regularly spaced. At this class of cubature procedure belong the tensorial product and the cubature sum rules.

Let $D \in \mathbb{R}^2$ be a rectangle, $D = [a, b] \times [c, d]$.

If $\Lambda^x := \{\lambda_i^x f \mid i = 0, 1, \dots, m\}$ and $\Lambda^y := \{\lambda_j^y f \mid j = 0, 1, \dots, n\}, m, n \in \mathbb{N}$ are given sets of information on f with regard to x respectively y, one considers the quadrature formulas

$$I^{x}f := \int_{a}^{b} f(x, y) dx = (Q_{1}^{x}f)(\cdot, y) + (R_{1}^{x}f)(\cdot, y)$$

^{*&}quot;Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Str. M. Kogălniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: ghcoman@math.ubbcluj.ro.

[†]AISTEDA University, Faculty of Management, st. 1 Decembrie 1918 nr. 68, Alba Iulia 2500, Romania, e-mail: milenasolomon@yahoo.com.

and

$$I^{y}f := \int_{c}^{d} f(x, y) dy = (Q_{1}^{y}f)(x, \cdot) + (R_{1}^{y}f)(x, \cdot),$$

where the quadrature rules Q_1^x and Q_1^y are given by

$$(Q_1^x f)(\cdot, y) = \sum_{i=0}^m A_i(\lambda_i^x f)(\cdot, y),$$

respectively

$$(Q_1^y f)(x, \cdot) = \sum_{j=0}^n B_j(\lambda_j^y f)(x, \cdot),$$

with R_1^x and R_1^y the corresponding remainder operators, i.e. $R_1^x = I^x - Q_1^x$, $R_1^y = I^y - Q_1^y$.

It is easy to check the following decomposition of the double integral operator ${\cal I}^{xy}$

(1)
$$I^{xy} = Q_1^x Q_1^y + (R_1^x I^y + I^x R_1^y - R_1^x R_1^y)$$

and

(2)
$$I^{xy} = (Q_1^x I^y + I^x Q_1^y - Q_1^x Q_1^y) + R_1^x R_1^y.$$

The identities (1) and (2) generate so called product cubature formula

(3)
$$I^{xy}f = Q_1^x Q_1^y f + (R_1^x I^y + I^x R_1^y - R_1^x R_1^y)f,$$

respectively the boolean-sum cubature formula

(4)
$$I^{xy}f = (Q_1^x I^y + I^x Q_1^y - Q_1^x Q_1^y)f + R_1^x R_1^y f.$$

Let p_1 and q_1 be the approximation order of Q_1^x , respectively Q_1^y : $\operatorname{ord}(Q_1^x) = p_1$, $\operatorname{ord}(Q_1^y) = q_1$ [4].

From (3) and (4) it follows that the approximation order of the product formula is $\min\{p_1, q_1\}$ while the approximation order of the boolean-sum formula is $p_1 + q_1$.

Hence, the boolean-sum cubature rules has the remarkable property regarding its highest approximation order.

Otherwise, the boolean-sum formula contains the simple integrals $I^x f$, respectively $I^y f$. But, this simple integrals can be approximated, in a second level of approximation, using new quadrature procedures.

From (4), one obtains

$$I^{xy}f = Qf + Rf$$

with $Q = Q_1^x Q_2^y + Q_2^x Q_1^y - Q_1^x Q_1^y$ and $R = Q_1^x R_2^y + Q_1^y R_2^x + R_1^x R_1^y$, where Q_2^x and Q_2^y are the quadrature rules used in the second level of approximation and R_2^x, R_2^y are the corresponding remainder operators.

As can be seen

$$\operatorname{ord}(Q) = \min\{\operatorname{ord}(Q_1^x) + \operatorname{ord}(Q_1^y), \operatorname{ord}(Q_2^x) + 1, \operatorname{ord}(Q_2^y) + 1\}.$$

The quadrature rules Q_2^x and Q_2^y can be chosen in many ways. First of all, it depends on the given information of the function f.

A natural way to choose them is such that the approximation order of the initial boolean-sum formula to be preserved. It is obvious that its approximation order cannot be increased.

DEFINITION 1. A cubature formula of the form (5) derived from the booleansum formula (4) which preserves its approximation order is called a consistent cubature formula.

REMARK 1. The cubature formula (5) is consistent if the orders p_2 and q_2 of the quadrature procedures Q_2^x , respectively Q_2^y , used in the second level of approximation, satisfy the inequalities $p_2 \ge p_1 + q_1 - 1$, $q_2 \ge p_1 + q_1 - 1$. \Box

As the approximation order of the boolean-sum cubature cannot be increased, it is preferable to choose the quadrature procedures Q_2^x and Q_2^y such that each term of the remainder from (5) to have the same order of approximation.

DEFINITION 2. A cubature formula, of the form (5), of which each term of the remainder has the same order of approximation is called a homogeneous cubature formula.

REMARK 2. The cubature formula (5) is homogeneous if $p_2 = q_2 = p_1 + q_1 - 1$.

For example, let be

$$I^{xy}f = \int_0^h \int_0^h f(x,y) \mathrm{d}x \mathrm{d}y,$$

and

$$(Q_1^x f)(\cdot, y) = hf\left(\frac{h}{2}, y\right), \quad \text{respectively } (Q_1^y f)(x, \cdot) = hf\left(x, \frac{h}{2}\right)$$

the gaussian quadrature rules. Then for boolean-sum cubature formula, we have

$$I^{xy}f = h\int_0^h f\left(\frac{h}{2}, y\right) \mathrm{d}y + h\int_0^h f\left(x, \frac{h}{2}\right) \mathrm{d}x - h^2 f\left(\frac{h}{2}, \frac{h}{2}\right) + R_S(f),$$

where

$$R_S(f) = \frac{h^6}{576} f^{(2,2)}(\xi,\eta).$$

In order to get a homogeneous numerical cubature formula we must use, in a second level of approximation, some quadrature rules Q_2^x and Q_2^y with $\operatorname{ord}(Q_2^x) = \operatorname{ord}(Q_2^y) = 5$. Such quadrature rules can be

$$(Q_2^x f)(\cdot, y) = \frac{h}{2} [f(0, y) + f(h, y)] + \frac{h^2}{12} [f^{(1,0)}(0, y) - f^{(1,0)}(h, y)]$$

with

$$(R_2^x f)(\cdot, y) = \frac{h^5}{720} f^{(4,0)}(\xi_1, y),$$

respectively

$$(Q_2^y f)(x, \cdot) = \frac{h}{2} [f(x, 0) + f(x, h)] + \frac{h^2}{12} [f^{(0,1)}(x, 0) - f^{(0,1)}(x, h)]$$

with

$$(R_2^y f)(x, \cdot) = \frac{h^5}{720} f^{(0,4)}(x, \eta_1).$$

It follows:

THEOREM 1. If $f^{(4,0)}\left(\cdot,\frac{h}{2}\right)$, $f^{(0,4)}\left(\frac{h}{2},\cdot\right) \in C[0,h]$ and $f^{(2,2)} \in C(D_h)$, with $D_h = [0,h] \times [0,h]$, then we have the homogeneous cubature formula

(6)
$$\iint_{D_{h}} f(x,y) dx dy =$$

= $\frac{h^{2}}{2} \left[f\left(\frac{h}{2},0\right) + f\left(\frac{h}{2},h\right) + f\left(0,\frac{h}{2}\right) + f\left(h,\frac{h}{2}\right) - 2f\left(\frac{h}{2},\frac{h}{2}\right) \right]$
+ $\frac{h^{3}}{12} \left[f^{(1,0)}\left(0,\frac{h}{2}\right) - f^{(1,0)}\left(h,\frac{h}{2}\right) + f^{(0,1)}\left(\frac{h}{2},0\right) - f^{(0,1)}\left(\frac{h}{2},h\right) \right] + R(f),$

where

(7)
$$R(f) = \frac{h^6}{144} \left[\frac{1}{5} f^{(4,0)} \left(\frac{h}{2}, \eta_1 \right) + \frac{1}{5} f^{(0,4)} \left(\xi, \frac{h}{2} \right) + \frac{1}{4} f^{(2,2)}(\xi, \eta) \right].$$

Next, we try to construct such homogeneous cubature formulas using interpolation formulas derived from a boolean-sum interpolation formula and not only.

It is know [2] that if P_1^x and P_1^y are univariate interpolation operators, from the corresponding boolean-sum formula

$$f = P_1^x \oplus P_1^y f + R_1^x R_1^y f$$

can be derived using in a second level of approximation, some new operators P_2^x and P_2^y , a numerical approximation formula, i.e.

(8)
$$f = (P_1^x P_2^y + P_2^x P_1^y - P_1^x P_1^y)f + (P_1^x R_2^y + P_1^y R_2^x + R_1^x R_1^y)f$$

Now, if f is an integrable function on $D = [a,b] \times [c,d]$ then it is obviously that

$$\iint_{D} f(x,y) \mathrm{d}x \mathrm{d}y = \iint_{D} (P_1^x P_2^y + P_2^x P_1^y - P_1^x P_1^y) f(x,y) \mathrm{d}x \mathrm{d}y + R(f),$$

where

$$R(f) = \iint_{D} ((P_1^x R_2^y + P_1^y R_2^x + R_1^x R_1^y) f)(x, y) \mathrm{d}x \mathrm{d}y$$

is a numerical integration formula.

For $f: D_h \to \mathbb{R}$, one considers

$$\Lambda^{x} = \left\{ f\left(\frac{h}{m}i, \cdot\right) \mid i = 0, 1, \dots, m \right\}, \quad \Lambda^{y} = \left\{ f\left(\cdot, \frac{h}{n}j\right) \mid j = 0, 1, \dots, n \right\}$$

$$\begin{split} (S_1^x f)(x,\cdot) &= \sum_{i=0}^m s_i^1(x) f\left(\frac{h}{m}i,\cdot\right), \quad (S_3^x f)(x,\cdot) = \sum_{i=0}^m s_i^3(x) f\left(\frac{h}{m}i,\cdot\right), \\ (S_1^y f)(\cdot,y) &= \sum_{j=0}^n s_j^1(y) f\left(\cdot,\frac{h}{n}j\right), \quad (S_3^y f)(\cdot,y) = \sum_{j=0}^n s_j^3(y) f\left(\cdot,\frac{h}{n}j\right), \end{split}$$

where $s_i^1, s_i^3, s_j^1, s_j^3$ are the corresponding cardinal splines.

THEOREM 2. Let f be an integrable function on D_h .

$$\iint_{D_h} f(x,y) \mathrm{d}x \mathrm{d}y = \sum_{i=0}^m \sum_{j=0}^n (A_i^1 B_j^3 + A_i^3 B_j^1 - A_i^1 B_j^1) f\left(\frac{h}{m}i, \frac{h}{n}j\right) + R_{mn}(f)$$

where

$$A_i^1 = \int_0^h s_i^1(x) \mathrm{d}x, \quad A_i^3 = \int_0^h s_i^3(x) \mathrm{d}x, \quad B_j^1 = \int_0^h s_j^1(y) \mathrm{d}y, \quad B_j^3 = \int_0^3 s_j^3(y) \mathrm{d}y$$

is a homogeneous cubature formula.

Proof. The bivariate interpolation formula (8) becomes $f = S_{13}^{xy}f + R_{mn}f$ with $S_{13}^{xy} = S_1^x S_3^y + S_3^x S_1^y - S_1^x S_1^y$ and $R_{mn} = S_1^x R_3^y + S_1^y R_3^x + R_1^x R_1^y$, or $f(x,y) = \sum_{i=0}^m \sum_{j=0}^n [s_i^1(x)s_j^3(y) + s_i^3(x)s_j^1(y) - s_i^1(x)s_j^1(y)]f\left(\frac{h}{m}i, \frac{h}{n}j\right) + (R_{mn}f)(x,y).$

Now,

(9)
$$\iint_{D_h} f(x,y) \mathrm{d}x \mathrm{d}y = (Q_1^x Q_3^y + Q_3^x Q_1^y - Q_1^x Q_1^y)f + R_{mn}(f)$$

with

$$\begin{split} (Q_1^x f)(\cdot, y) &= \sum_{i=0}^m A_i^1 f\left(\frac{h}{m} i, y\right), \quad (Q_1^y f)(x, \cdot) = \sum_{j=0}^n B_j^1 f\left(x, \frac{h}{n} j\right), \\ (Q_3^x f)(\cdot, y) &= \sum_{i=0}^m A_i^3 f\left(\frac{h}{m} i, y\right), \quad (Q_3^y f)(x, \cdot) = \sum_{j=0}^n B_j^3 f\left(x, \frac{h}{n} j\right), \end{split}$$

where

$$R_{mn}(f) = \iint_{D_h} (S_1^x R_3^y + S_1^y R_3^x + R_1^x R_1^y) f(x, y) \mathrm{d}x \mathrm{d}y$$

But in general the degree of exactness ("dex") of the linear spline operators are: $dex(S_1^x) = dex(S_1^y) = 0$ and $dex(S_3^x) = dex(S_3^y) = 1$, so $dex(Q_1^x) = dex(Q_1^y) = 0$, $dex(Q_3^x) = dex(Q_3^y) = 1$. It follows that [3] $ord(Q_1^x) = ord(Q_1^y) = 2$, $ord(Q_3^x) = ord(Q_3^y) = 3$. Hence

$$\operatorname{ord}(Q_3^x) = \operatorname{ord}(Q_3^y) = \operatorname{ord}(Q_1^x) + \operatorname{ord}(Q_1^y) - 1. \qquad \Box$$

REMARK 3. Taking into account that if

$$f(x) = (Sf)(x) + (Rf)(x)$$

is a natural spline interpolation formula then

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (Sf)(x)dx + \int_{a}^{b} (Rf)(x)dx$$

is an optimal quadrature formula in sense of Sard [7], formula (9) is also an almost optimal cubature formula [9]. $\hfill \Box$

Some particular cases

(C1) Let S_1^x and S_1^y be the Lagrange-type linear spline operators that interpolate the data

$$\Lambda_1^x = \left\{ f(0,y), f\left(\frac{h}{2}, y\right), f(h,y) \right\}, \quad \text{resp.} \quad \Lambda_1^y = \left\{ f(x,0), f\left(x, \frac{h}{2}\right), f(x,h) \right\}$$

and S_3^x and S_3^y the Hermite-type cubic spline operators that interpolate

$$\Lambda_3^x = \left\{ f(0,y), f^{(1,0)}(0,y), f\left(\frac{h}{2}, y\right), f(h,y), f^{(1,0)}(h,y) \right\},\$$

respectively

$$\Lambda_3^y = \left\{ f(x,0), f^{(0,1)}(x,0), f\left(x,\frac{h}{2}\right), f(x,h), f^{(0,1)}(x,h) \right\}.$$

Let also

$$f = (S_1^x S_3^y + S_3^x S_1^y - S_1^x S_1^y)f + (S_1^y R_3^x + S_1^x R_3^y + R_1^x R_1^y)f$$

be the spline interpolation formula generated by the operators S_1^x, S_1^y, S_3^x and S_3^y using two level of approximation with $R_1^x, R_1^y, R_3^x, R_3^y$ the corresponding remainder operators.

THEOREM 3. If $f \in C^{(4,4)}(D_h)$ then

$$\iint_{D_h} f(x,y) \mathrm{d}x \mathrm{d}y = \iint_{D_h} (S_1^x S_3^y + S_3^y S_1^y - S_1^x S_1^y) f(x,y) \mathrm{d}x \mathrm{d}y + (R_{13}f)(x,y),$$
here

where

$$(R_{13}f)(x,y) = \iint_{D_h} (S_1^y R_3^x + S_1^x R_3^y + R_1^x R_1^y) f(x,y) \mathrm{d}x \mathrm{d}y$$

is a homogeneous cubature formula of order 6.

Proof. We must check that $dex(S_1^x) = 1$ and $dex(S_3^x) = 3$. By the symmetry of the data it follows that also $dex(S_1^y) = 1$ and $dex(S_3^y) = 3$.

We have

$$(S_1^x f)(x, y) = s_0(x)f(0, y) + s_1(x)f\left(\frac{h}{2}, y\right) + s_2(x)f(h, y)$$

with

$$s_0(x) = 1 - \frac{2}{h}x + \frac{2}{h}\left(x - \frac{h}{2}\right)_+, \quad s_1(x) = \frac{2}{h}x - \frac{4}{h}\left(x - \frac{h}{2}\right)_+, \quad s_2(x) = \frac{2}{h}\left(x - \frac{h}{2}\right)_+.$$

Now it is easy to verify that $S_1^x e_i = e_i$ for i = 0, 1 and $S_1^x e_2 = e_2$, with $e_i(x) = x^i$.

We also have

$$(S_3^x f)(x, y) = s_{00}(x)f(0, y) + s_{01}(x)f^{(1,0)}(0, y) + s_{10}(x)f\left(\frac{h}{2}, y\right) + s_{20}(x)f(h, y) + s_{21}(x)f^{(1,0)}f(h, y)$$

with

$$s_{00}(x) = 1 + \frac{10}{h^3}x^3 - \frac{9}{h^2}x^2 - \frac{16}{h^3}\left(x - \frac{h}{2}\right)_+^3,$$

$$s_{01}(x) = x + \frac{3}{h^2}x^3 - \frac{7}{2h}x^2 - \frac{4}{h^2}\left(x - \frac{h}{2}\right)_+^3,$$

$$s_{10}(x) = -\frac{16}{h^3}x^3 + \frac{12}{h^2}x^2 + \frac{32}{h^3}\left(x - \frac{h}{2}\right)_+^3,$$

$$s_{20}(x) = \frac{6}{h^3}x^3 - \frac{3}{h^2}x^2 - \frac{16}{h^3}\left(x - \frac{h}{2}\right)_+^3,$$

$$s_{21}(x) = -\frac{1}{h^2}x^3 + \frac{1}{2h}x^2 + \frac{4}{h^2}\left(x - \frac{h}{2}\right)_+^3.$$

But $S_3^{\eta} e_i = e_i$ for i = 0, 1, 2, 3.

REMARK 4. The corresponding quadrature rules are

$$(Q_1^x f)(\cdot, y) := \int_0^h (S_1^x f)(x, y) \mathrm{d}x = \frac{h}{4} \left[f(0, y) + 2f\left(\frac{h}{2}, y\right) + f(h, y) \right],$$

with

$$(R_1^x f)(\cdot, y) = -\frac{h^3}{48} f^{(2,0)}(\xi_1, y)$$

and

$$\begin{aligned} (Q_3^x f)(\cdot, y) &:= \int_0^h (S_3^x f)(x, y) \mathrm{d}x \\ &= \frac{h}{4} \left[f(0, y) + \frac{h}{12} f^{(1,0)}(0, y) + 2f\left(\frac{h}{2}, y\right) + f(h, y) - \frac{h}{12} f^{(1,0)}(h, y) \right], \end{aligned}$$

where

$$(R_3^x f)(\cdot, y) = \frac{h^5}{11520} f^{(4,0)}(\xi_2, y).$$

(C2) If in the particular case (C1) is taken instead of the Hermite-type cubic spline operators the next Birkhoff-type cubic spline operators S_3^x and S_3^y that interpolate the date

$$\Lambda_3^x = \left\{ f^{(1,0)}(0,y) + f\left(\frac{h}{2},y\right) + f^{(1,0)}(h,y) \right\},\,$$

respectively

$$\Lambda_3^y = \left\{ f^{(0,1)}(x,0), f\left(x,\frac{h}{2}\right), f^{(0,1)}(x,h) \right\}$$

$$(Q_3^x f)(\cdot, y) = \iint_{D_h} (S_3^x f)(x, y) dx$$
 and $(Q_3^y f)(x, \cdot) = \iint_{D_h} (S_3^y)(x, y) dy.$

But

$$(S_3^x f)(x,y) = s_{01}(x)f^{(1,0)}(0,y) + s_{10}(x)f\left(\frac{h}{2},y\right) + s_{21}(x)f^{(1,0)}(h,y),$$

where

$$s_{01}(x) = -\frac{3h}{8} + x - \frac{1}{2h}x^2, \qquad s_{10}(x) = 1, \qquad s_{21}(x) = -\frac{h}{8} + \frac{1}{2h}x^2$$

By a straightforward computation one obtains that

$$S_3^x = e_i$$
, for $i = 0, 1, 2$,

i.e. $dex(S_3^x) = 2$. Hence $dex(Q_3^x) \ge 2$. Taking into account that

$$(Q_3^x f)(\cdot, y) = -\frac{h^2}{24} f^{(1,0)}(0, y) + hf\left(\frac{h}{2}, y\right) + \frac{h^2}{24} f^{(1,0)}(h, y)$$

it follows that $dex(Q_3^x) = 3$.

(C3) Let f be an integrable function on the standard triangle

$$T_h := \{ (x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0, x + y \le h \}.$$

For $f \in B_{1,2}(0,0)$ [6], one considers the Birkhoff-type bivariate polynomial operator say B_2 that interpolates the date

$$\Lambda_B = \{ f(0,0) + f^{(2,0)}(0,0), f^{(1,1)}(0,0), f^{(0,2)}(0,0), f(h,0), f(0,h) \},\$$

i.e.

$$(B_2f)(x,y) = \frac{h-x-y}{h}f(0,0) + \frac{x(x-h)}{2}f^{(2,0)}(0,0) + xyf^{(1,1)}(0,0) + \frac{y(y-h)}{2}f^{(0,2)}f(0,0) + \frac{x}{h}f(h,0) + \frac{y}{h}f(0,h).$$

It follows that

$$Q_2(f) = \frac{h^2}{6} \left[f(0,0) - \frac{h^2}{4} f^{(2,0)}(0,0) + \frac{h^2}{4} f^{(1,1)}(0,0) - \frac{h^2}{4} f^{(0,2)}(0,0) + f(h,0) + f(0,h) \right].$$

It is easy to check that $dex(Q_2) = 2$. In other words $Q_2(f) = f$ for all $f \in \mathbb{P}^2_2$ (the set of the bivariate polynomials of the total degree at most 2).

Now, let us consider the cubature formula

(10)
$$\iint_{T_h} f(x,y) \mathrm{d}x \mathrm{d}y = Q_2(f) + R_2(f).$$

Using the Peano-type theorem for bivariate case [1], one obtains

$$R_2(f) = \frac{h^5}{120} \left[-\frac{7}{3} f^{(3,0)}(\xi,0) + f^{(2,1)}(\xi_1,0) - \frac{7}{3} f^{(0,3)}(0,\eta) - f^{(1,2)}(\xi_2,\eta_1) \right].$$

So, the cubature formula (10) is a homogeneous one, of order 5.

REFERENCES

- BARNHILL, R. E. and MANSFIELD, L., Error bounds for smooth interpolation in triangles, J. Approx. Theory, 11, pp. 306–318, 1974.
- [2] COMAN, GH., Multivariate approximation schemes and the approximation of linear functions, Mathematica, 16 (39), no. 2, pp. 229–249, 1974.
- [3] COMAN, GH., The complexity of the quadrature formulas, Mathematica (Cluj), 23 (46), pp. 183–192, 1981.
- [4] COMAN, GH., Homogeneous cubature formulas, Studia Univ. Babeş-Bolyai, Mathematica, 38, no. 2, pp. 91–101, 1993.
- [5] DELVOS, F. F., Boolean methods for double integration, Math. Comp., 55, pp. 683–692, 1990.
- [6] SARD, A., Linear Approximation, Amer. Math. Society, Providence, 1963.
- [7] SCHOENBERG, I. J., On best approximation of linear operators, Indag. Math., 26, pp. 155-163, 1964.
- [8] SMOLYAK, S. A., Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Math. Dokl., 4, pp. 240–243, 1963.
- [9] SOMOGYI, I., Almost optimal numerical methods, Studia Univ. Babeş-Bolyai, Mathematica, 1, pp. 85–93, 1999.

Received by the editors: December 12, 2001.