HOMOGENEOUS NUMERICAL CUBATURE FORMULAS OF INTERPOLATORY TYPE

GHEORGHE COMAN* ${ }^{*}$ and MARIA SOLOMON ${ }^{\dagger}$

Abstract

In this paper we construct homogeneous numerical cubature formulas based on some numerical multivariate interpolation schemes. MSC 2000. 65D32. Keywords. interpolation, cubature formulas, multivariate approximation, homogeneous cubature, numerical cubature.

1. INTRODUCTION

Let D be a given domain in $\mathbb{R}^{2}, f: D \rightarrow \mathbb{R}$ an integrable function on D and $\Lambda:=\left\{\lambda_{1} f, \ldots, \lambda_{N} f\right\}$ some given information on f. Next, one suppose that $\lambda_{i} f$ are values of f or of certain of its derivatives at some points of D, called nodes.

One considers the cubature formula

$$
I^{x y} f:=\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{i=1}^{N} A_{i} \lambda_{i} f+R_{N}(f)
$$

where $A_{i}, i=1, \ldots, N$ are its coefficients and $R_{N}(f)$ is the remainder term.
The coming problem is to find the parameters of such a cubature formula (coefficients, nodes) and to study the remainder term.

The most results has been obtained when D is a regular domain in \mathbb{R}^{2} (rectangle, triangle) and the information (data) are regularly spaced. At this class of cubature procedure belong the tensorial product and the cubature sum rules.

Let $D \in \mathbb{R}^{2}$ be a rectangle, $D=[a, b] \times[c, d]$.
If $\Lambda^{x}:=\left\{\lambda_{i}^{x} f \mid i=0,1, \ldots, m\right\}$ and $\Lambda^{y}:=\left\{\lambda_{j}^{y} f \mid j=0,1, \ldots, n\right\}, m, n \in \mathbb{N}$ are given sets of information on f with regard to x respectively y, one considers the quadrature formulas

$$
I^{x} f:=\int_{a}^{b} f(x, y) \mathrm{d} x=\left(Q_{1}^{x} f\right)(\cdot, y)+\left(R_{1}^{x} f\right)(\cdot, y)
$$

[^0]and
$$
I^{y} f:=\int_{c}^{d} f(x, y) \mathrm{d} y=\left(Q_{1}^{y} f\right)(x, \cdot)+\left(R_{1}^{y} f\right)(x, \cdot),
$$
where the quadrature rules Q_{1}^{x} and Q_{1}^{y} are given by
$$
\left(Q_{1}^{x} f\right)(\cdot, y)=\sum_{i=0}^{m} A_{i}\left(\lambda_{i}^{x} f\right)(\cdot, y),
$$
respectively
$$
\left(Q_{1}^{y} f\right)(x, \cdot)=\sum_{j=0}^{n} B_{j}\left(\lambda_{j}^{y} f\right)(x, \cdot),
$$
with R_{1}^{x} and R_{1}^{y} the corresponding remainder operators, i.e. $R_{1}^{x}=I^{x}-Q_{1}^{x}$, $R_{1}^{y}=I^{y}-Q_{1}^{y}$.

It is easy to check the following decomposition of the double integral operator $I^{x y}$

$$
\begin{equation*}
I^{x y}=Q_{1}^{x} Q_{1}^{y}+\left(R_{1}^{x} I^{y}+I^{x} R_{1}^{y}-R_{1}^{x} R_{1}^{y}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
I^{x y}=\left(Q_{1}^{x} I^{y}+I^{x} Q_{1}^{y}-Q_{1}^{x} Q_{1}^{y}\right)+R_{1}^{x} R_{1}^{y} . \tag{2}
\end{equation*}
$$

The identities (1) and (2) generate so called product cubature formula

$$
\begin{equation*}
I^{x y} f=Q_{1}^{x} Q_{1}^{y} f+\left(R_{1}^{x} I^{y}+I^{x} R_{1}^{y}-R_{1}^{x} R_{1}^{y}\right) f, \tag{3}
\end{equation*}
$$

respectively the boolean-sum cubature formula

$$
\begin{equation*}
I^{x y} f=\left(Q_{1}^{x} I^{y}+I^{x} Q_{1}^{y}-Q_{1}^{x} Q_{1}^{y}\right) f+R_{1}^{x} R_{1}^{y} f . \tag{4}
\end{equation*}
$$

Let p_{1} and q_{1} be the approximation order of Q_{1}^{x}, respectively Q_{1}^{y} : $\operatorname{ord}\left(Q_{1}^{x}\right)$ $=p_{1}, \operatorname{ord}\left(Q_{1}^{y}\right)=q_{1}[4]$.

From (3) and (4) it follows that the approximation order of the product formula is $\min \left\{p_{1}, q_{1}\right\}$ while the approximation order of the boolean-sum formula is $p_{1}+q_{1}$.

Hence, the boolean-sum cubature rules has the remarkable property regarding its highest approximation order.

Otherwise, the boolean-sum formula contains the simple integrals $I^{x} f$, respectively $I^{y} f$. But, this simple integrals can be approximated, in a second level of approximation, using new quadrature procedures.

From (4), one obtains

$$
\begin{equation*}
I^{x y} f=Q f+R f \tag{5}
\end{equation*}
$$

with $Q=Q_{1}^{x} Q_{2}^{y}+Q_{2}^{x} Q_{1}^{y}-Q_{1}^{x} Q_{1}^{y}$ and $R=Q_{1}^{x} R_{2}^{y}+Q_{1}^{y} R_{2}^{x}+R_{1}^{x} R_{1}^{y}$, where Q_{2}^{x} and Q_{2}^{y} are the quadrature rules used in the second level of approximation and R_{2}^{x}, R_{2}^{y} are the corresponding remainder operators.

As can be seen

$$
\operatorname{ord}(Q)=\min \left\{\operatorname{ord}\left(Q_{1}^{x}\right)+\operatorname{ord}\left(Q_{1}^{y}\right), \operatorname{ord}\left(Q_{2}^{x}\right)+1, \operatorname{ord}\left(Q_{2}^{y}\right)+1\right\} .
$$

The quadrature rules Q_{2}^{x} and Q_{2}^{y} can be chosen in many ways. First of all, it depends on the given information of the function f.

A natural way to choose them is such that the approximation order of the initial boolean-sum formula to be preserved. It is obvious that its approximation order cannot be increased.

Definition 1. A cubature formula of the form (5) derived from the booleansum formula (4) which preserves its approximation order is called a consistent cubature formula.

Remark 1. The cubature formula (5) is consistent if the orders p_{2} and q_{2} of the quadrature procedures Q_{2}^{x}, respectively Q_{2}^{y}, used in the second level of approximation, satisfy the inequalities $p_{2} \geq p_{1}+q_{1}-1, q_{2} \geq p_{1}+q_{1}-1$.

As the approximation order of the boolean-sum cubature cannot be increased, it is preferable to choose the quadrature procedures Q_{2}^{x} and Q_{2}^{y} such that each term of the remainder from (5) to have the same order of approximation.

Definition 2. A cubature formula, of the form (5), of which each term of the remainder has the same order of approximation is called a homogeneous cubature formula.

Remark 2. The cubature formula (5) is homogeneous if $p_{2}=q_{2}=p_{1}+$ $q_{1}-1$.

For example, let be

$$
I^{x y} f=\int_{0}^{h} \int_{0}^{h} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

and

$$
\left(Q_{1}^{x} f\right)(\cdot, y)=h f\left(\frac{h}{2}, y\right), \quad \text { respectively }\left(Q_{1}^{y} f\right)(x, \cdot)=h f\left(x, \frac{h}{2}\right)
$$

the gaussian quadrature rules. Then for boolean-sum cubature formula, we have

$$
I^{x y} f=h \int_{0}^{h} f\left(\frac{h}{2}, y\right) \mathrm{d} y+h \int_{0}^{h} f\left(x, \frac{h}{2}\right) \mathrm{d} x-h^{2} f\left(\frac{h}{2}, \frac{h}{2}\right)+R_{S}(f),
$$

where

$$
R_{S}(f)=\frac{h^{6}}{576} f^{(2,2)}(\xi, \eta)
$$

In order to get a homogeneous numerical cubature formula we must use, in a second level of approximation, some quadrature rules Q_{2}^{x} and Q_{2}^{y} with $\operatorname{ord}\left(Q_{2}^{x}\right)=\operatorname{ord}\left(Q_{2}^{y}\right)=5$. Such quadrature rules can be

$$
\left(Q_{2}^{x} f\right)(\cdot, y)=\frac{h}{2}[f(0, y)+f(h, y)]+\frac{h^{2}}{12}\left[f^{(1,0)}(0, y)-f^{(1,0)}(h, y)\right]
$$

with

$$
\left(R_{2}^{x} f\right)(\cdot, y)=\frac{h^{5}}{720} f^{(4,0)}\left(\xi_{1}, y\right)
$$

respectively

$$
\left(Q_{2}^{y} f\right)(x, \cdot)=\frac{h}{2}[f(x, 0)+f(x, h)]+\frac{h^{2}}{12}\left[f^{(0,1)}(x, 0)-f^{(0,1)}(x, h)\right]
$$

with

$$
\left(R_{2}^{y} f\right)(x, \cdot)=\frac{h^{5}}{720} f^{(0,4)}\left(x, \eta_{1}\right) .
$$

It follows:
Theorem 1. If $f^{(4,0)}\left(\cdot, \frac{h}{2}\right), f^{(0,4)}\left(\frac{h}{2}, \cdot\right) \in C[0, h]$ and $f^{(2,2)} \in C\left(D_{h}\right)$, with $D_{h}=[0, h] \times[0, h]$, then we have the homogeneous cubature formula
(6) $\iint_{D_{h}} f(x, y) \mathrm{d} x \mathrm{~d} y=$

$$
\begin{aligned}
= & \frac{h^{2}}{2}\left[f\left(\frac{h}{2}, 0\right)+f\left(\frac{h}{2}, h\right)+f\left(0, \frac{h}{2}\right)+f\left(h, \frac{h}{2}\right)-2 f\left(\frac{h}{2}, \frac{h}{2}\right)\right] \\
& +\frac{h^{3}}{12}\left[f^{(1,0)}\left(0, \frac{h}{2}\right)-f^{(1,0)}\left(h, \frac{h}{2}\right)+f^{(0,1)}\left(\frac{h}{2}, 0\right)-f^{(0,1)}\left(\frac{h}{2}, h\right)\right]+R(f),
\end{aligned}
$$

where

$$
\begin{equation*}
R(f)=\frac{h^{6}}{144}\left[\frac{1}{5} f^{(4,0)}\left(\frac{h}{2}, \eta_{1}\right)+\frac{1}{5} f^{(0,4)}\left(\xi, \frac{h}{2}\right)+\frac{1}{4} f^{(2,2)}(\xi, \eta)\right] . \tag{7}
\end{equation*}
$$

Next, we try to construct such homogeneous cubature formulas using interpolation formulas derived from a boolean-sum interpolation formula and not only.

It is know [2] that if P_{1}^{x} and P_{1}^{y} are univariate interpolation operators, from the corresponding boolean-sum formula

$$
f=P_{1}^{x} \oplus P_{1}^{y} f+R_{1}^{x} R_{1}^{y} f
$$

can be derived using in a second level of approximation, some new operators P_{2}^{x} and P_{2}^{y}, a numerical approximation formula, i.e.

$$
\begin{equation*}
f=\left(P_{1}^{x} P_{2}^{y}+P_{2}^{x} P_{1}^{y}-P_{1}^{x} P_{1}^{y}\right) f+\left(P_{1}^{x} R_{2}^{y}+P_{1}^{y} R_{2}^{x}+R_{1}^{x} R_{1}^{y}\right) f . \tag{8}
\end{equation*}
$$

Now, if f is an integrable function on $D=[a, b] \times[c, d]$ then it is obviously that

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D}\left(P_{1}^{x} P_{2}^{y}+P_{2}^{x} P_{1}^{y}-P_{1}^{x} P_{1}^{y}\right) f(x, y) \mathrm{d} x \mathrm{~d} y+R(f),
$$

where

$$
R(f)=\iint_{D}\left(\left(P_{1}^{x} R_{2}^{y}+P_{1}^{y} R_{2}^{x}+R_{1}^{x} R_{1}^{y}\right) f\right)(x, y) \mathrm{d} x \mathrm{~d} y
$$

is a numerical integration formula.
For $f: D_{h} \rightarrow \mathbb{R}$, one considers

$$
\Lambda^{x}=\left\{\left.f\left(\frac{h}{m} i, \cdot\right) \right\rvert\, i=0,1, \ldots, m\right\}, \quad \Lambda^{y}=\left\{\left.f\left(\cdot, \frac{h}{n} j\right) \right\rvert\, j=0,1, \ldots, n\right\}
$$

$S_{1}^{x} f$ and $S_{3}^{x} f$ the linear respectively the cubic spline that interpolates f with regard to Λ^{x} and $S_{1}^{y} f, S_{3}^{y} f$ the corresponding splines that interpolates f with regard to Λ^{y}, i.e.

$$
\begin{array}{ll}
\left(S_{1}^{x} f\right)(x, \cdot)=\sum_{i=0}^{m} s_{i}^{1}(x) f\left(\frac{h}{m} i, \cdot\right), \quad\left(S_{3}^{x} f\right)(x, \cdot)=\sum_{i=0}^{m} s_{i}^{3}(x) f\left(\frac{h}{m} i, \cdot\right), \\
\left(S_{1}^{y} f\right)(\cdot, y)=\sum_{j=0}^{n} s_{j}^{1}(y) f\left(\cdot, \frac{h}{n} j\right), \quad\left(S_{3}^{y} f\right)(\cdot, y)=\sum_{j=0}^{n} s_{j}^{3}(y) f\left(\cdot, \frac{h}{n} j\right)
\end{array}
$$

where $s_{i}^{1}, s_{i}^{3}, s_{j}^{1}, s_{j}^{3}$ are the corresponding cardinal splines.
Theorem 2. Let f be an integrable function on D_{h}.

$$
\iint_{D_{h}} f(x, y) \mathrm{d} x \mathrm{~d} y=\sum_{i=0}^{m} \sum_{j=0}^{n}\left(A_{i}^{1} B_{j}^{3}+A_{i}^{3} B_{j}^{1}-A_{i}^{1} B_{j}^{1}\right) f\left(\frac{h}{m} i, \frac{h}{n} j\right)+R_{m n}(f)
$$

where

$$
A_{i}^{1}=\int_{0}^{h} s_{i}^{1}(x) \mathrm{d} x, \quad A_{i}^{3}=\int_{0}^{h} s_{i}^{3}(x) \mathrm{d} x, \quad B_{j}^{1}=\int_{0}^{h} s_{j}^{1}(y) \mathrm{d} y, \quad B_{j}^{3}=\int_{0}^{3} s_{j}^{3}(y) \mathrm{d} y
$$

is a homogeneous cubature formula.
Proof. The bivariate interpolation formula (8) becomes $f=S_{13}^{x y} f+R_{m n} f$ with $S_{13}^{x y}=S_{1}^{x} S_{3}^{y}+S_{3}^{x} S_{1}^{y}-S_{1}^{x} S_{1}^{y}$ and $R_{m n}=S_{1}^{x} R_{3}^{y}+S_{1}^{y} R_{3}^{x}+R_{1}^{x} R_{1}^{y}$, or
$f(x, y)=\sum_{i=0}^{m} \sum_{j=0}^{n}\left[s_{i}^{1}(x) s_{j}^{3}(y)+s_{i}^{3}(x) s_{j}^{1}(y)-s_{i}^{1}(x) s_{j}^{1}(y)\right] f\left(\frac{h}{m} i, \frac{h}{n} j\right)+\left(R_{m n} f\right)(x, y)$.
Now,

$$
\begin{equation*}
\iint_{D_{h}} f(x, y) \mathrm{d} x \mathrm{~d} y=\left(Q_{1}^{x} Q_{3}^{y}+Q_{3}^{x} Q_{1}^{y}-Q_{1}^{x} Q_{1}^{y}\right) f+R_{m n}(f) \tag{9}
\end{equation*}
$$

with

$$
\begin{array}{ll}
\left(Q_{1}^{x} f\right)(\cdot, y)=\sum_{i=0}^{m} A_{i}^{1} f\left(\frac{h}{m} i, y\right), & \left(Q_{1}^{y} f\right)(x, \cdot)=\sum_{j=0}^{n} B_{j}^{1} f\left(x, \frac{h}{n} j\right), \\
\left(Q_{3}^{x} f\right)(\cdot, y)=\sum_{i=0}^{m} A_{i}^{3} f\left(\frac{h}{m} i, y\right), & \left(Q_{3}^{y} f\right)(x, \cdot)=\sum_{j=0}^{n} B_{j}^{3} f\left(x, \frac{h}{n} j\right),
\end{array}
$$

where

$$
R_{m n}(f)=\iint_{D_{h}}\left(S_{1}^{x} R_{3}^{y}+S_{1}^{y} R_{3}^{x}+R_{1}^{x} R_{1}^{y}\right) f(x, y) \mathrm{d} x \mathrm{~d} y
$$

But in general the degree of exactness ("dex") of the linear spline operators are: $\operatorname{dex}\left(S_{1}^{x}\right)=\operatorname{dex}\left(S_{1}^{y}\right)=0$ and $\operatorname{dex}\left(S_{3}^{x}\right)=\operatorname{dex}\left(S_{3}^{y}\right)=1$, so $\operatorname{dex}\left(Q_{1}^{x}\right)=$ $\operatorname{dex}\left(Q_{1}^{y}\right)=0, \operatorname{dex}\left(Q_{3}^{x}\right)=\operatorname{dex}\left(Q_{3}^{y}\right)=1$. It follows that $[3] \operatorname{ord}\left(Q_{1}^{x}\right)=\operatorname{ord}\left(Q_{1}^{y}\right)=$ $2, \operatorname{ord}\left(Q_{3}^{x}\right)=\operatorname{ord}\left(Q_{3}^{y}\right)=3$. Hence

$$
\operatorname{ord}\left(Q_{3}^{x}\right)=\operatorname{ord}\left(Q_{3}^{y}\right)=\operatorname{ord}\left(Q_{1}^{x}\right)+\operatorname{ord}\left(Q_{1}^{y}\right)-1
$$

Remark 3. Taking into account that if

$$
f(x)=(S f)(x)+(R f)(x)
$$

is a natural spline interpolation formula then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b}(S f)(x) d x+\int_{a}^{b}(R f)(x) \mathrm{d} x
$$

is an optimal quadrature formula in sense of Sard [7], formula (9) is also an almost optimal cubature formula [9].

Some particular cases

(C1) Let S_{1}^{x} and S_{1}^{y} be the Lagrange-type linear spline operators that interpolate the data

$$
\Lambda_{1}^{x}=\left\{f(0, y), f\left(\frac{h}{2}, y\right), f(h, y)\right\}, \quad \text { resp. } \quad \Lambda_{1}^{y}=\left\{f(x, 0), f\left(x, \frac{h}{2}\right), f(x, h)\right\}
$$

and S_{3}^{x} and S_{3}^{y} the Hermite-type cubic spline operators that interpolate

$$
\Lambda_{3}^{x}=\left\{f(0, y), f^{(1,0)}(0, y), f\left(\frac{h}{2}, y\right), f(h, y), f^{(1,0)}(h, y)\right\},
$$

respectively

$$
\Lambda_{3}^{y}=\left\{f(x, 0), f^{(0,1)}(x, 0), f\left(x, \frac{h}{2}\right), f(x, h), f^{(0,1)}(x, h)\right\} .
$$

Let also

$$
f=\left(S_{1}^{x} S_{3}^{y}+S_{3}^{x} S_{1}^{y}-S_{1}^{x} S_{1}^{y}\right) f+\left(S_{1}^{y} R_{3}^{x}+S_{1}^{x} R_{3}^{y}+R_{1}^{x} R_{1}^{y}\right) f
$$

be the spline interpolation formula generated by the operators $S_{1}^{x}, S_{1}^{y}, S_{3}^{x}$ and S_{3}^{y} using two level of approximation with $R_{1}^{x}, R_{1}^{y}, R_{3}^{x}, R_{3}^{y}$ the corresponding remainder operators.

Theorem 3. If $f \in C^{(4,4)}\left(D_{h}\right)$ then

$$
\iint_{D_{h}} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D_{h}}\left(S_{1}^{x} S_{3}^{y}+S_{3}^{y} S_{1}^{y}-S_{1}^{x} S_{1}^{y}\right) f(x, y) \mathrm{d} x \mathrm{~d} y+\left(R_{13} f\right)(x, y),
$$

where

$$
\left(R_{13} f\right)(x, y)=\iint_{D_{h}}\left(S_{1}^{y} R_{3}^{x}+S_{1}^{x} R_{3}^{y}+R_{1}^{x} R_{1}^{y}\right) f(x, y) \mathrm{d} x \mathrm{~d} y
$$

is a homogeneous cubature formula of order 6 .
Proof. We must check that $\operatorname{dex}\left(S_{1}^{x}\right)=1$ and $\operatorname{dex}\left(S_{3}^{x}\right)=3$. By the symmetry of the data it follows that also $\operatorname{dex}\left(S_{1}^{y}\right)=1$ and $\operatorname{dex}\left(S_{3}^{y}\right)=3$.

We have

$$
\left(S_{1}^{x} f\right)(x, y)=s_{0}(x) f(0, y)+s_{1}(x) f\left(\frac{h}{2}, y\right)+s_{2}(x) f(h, y)
$$

with
$s_{0}(x)=1-\frac{2}{h} x+\frac{2}{h}\left(x-\frac{h}{2}\right)_{+}, \quad s_{1}(x)=\frac{2}{h} x-\frac{4}{h}\left(x-\frac{h}{2}\right)_{+}, \quad s_{2}(x)=\frac{2}{h}\left(x-\frac{h}{2}\right)_{+}$.

Now it is easy to verify that $S_{1}^{x} e_{i}=e_{i}$ for $i=0,1$ and $S_{1}^{x} e_{2}=e_{2}$, with $e_{i}(x)=x^{i}$.
We also have

$$
\begin{aligned}
\left(S_{3}^{x} f\right)(x, y)= & s_{00}(x) f(0, y)+s_{01}(x) f^{(1,0)}(0, y)+s_{10}(x) f\left(\frac{h}{2}, y\right) \\
& +s_{20}(x) f(h, y)+s_{21}(x) f^{(1,0)} f(h, y)
\end{aligned}
$$

with

$$
\begin{aligned}
& s_{00}(x)=1+\frac{10}{h^{3}} x^{3}-\frac{9}{h^{2}} x^{2}-\frac{16}{h^{3}}\left(x-\frac{h}{2}\right)_{+}^{3}, \\
& s_{01}(x)=x+\frac{3}{h^{2}} x^{3}-\frac{7}{2 h} x^{2}-\frac{4}{h^{2}}\left(x-\frac{h}{2}\right)_{+}^{3} \\
& s_{10}(x)=-\frac{16}{h^{3}} x^{3}+\frac{12}{h^{2}} x^{2}+\frac{32}{h^{3}}\left(x-\frac{h}{2}\right)_{+}^{3}, \\
& s_{20}(x)=\frac{6}{h^{3}} x^{3}-\frac{3}{h^{2}} x^{2}-\frac{16}{h^{3}}\left(x-\frac{h}{2}\right)_{+}^{3} \\
& s_{21}(x)=-\frac{1}{h^{2}} x^{3}+\frac{1}{2 h} x^{2}+\frac{4}{h^{2}}\left(x-\frac{h}{2}\right)_{+}^{3} .
\end{aligned}
$$

But $S_{3}^{\eta} e_{i}=e_{i}$ for $i=0,1,2,3$.
Remark 4. The corresponding quadrature rules are

$$
\left(Q_{1}^{x} f\right)(\cdot, y):=\int_{0}^{h}\left(S_{1}^{x} f\right)(x, y) \mathrm{d} x=\frac{h}{4}\left[f(0, y)+2 f\left(\frac{h}{2}, y\right)+f(h, y)\right],
$$

with

$$
\left(R_{1}^{x} f\right)(\cdot, y)=-\frac{h^{3}}{48} f^{(2,0)}\left(\xi_{1}, y\right)
$$

and

$$
\begin{aligned}
\left(Q_{3}^{x} f\right)(\cdot, y) & :=\int_{0}^{h}\left(S_{3}^{x} f\right)(x, y) \mathrm{d} x \\
& =\frac{h}{4}\left[f(0, y)+\frac{h}{12} f^{(1,0)}(0, y)+2 f\left(\frac{h}{2}, y\right)+f(h, y)-\frac{h}{12} f^{(1,0)}(h, y)\right]
\end{aligned}
$$

where

$$
\left(R_{3}^{x} f\right)(\cdot, y)=\frac{h^{5}}{11520} f^{(4,0)}\left(\xi_{2}, y\right) .
$$

(C2) If in the particular case (C1) is taken instead of the Hermite-type cubic spline operators the next Birkhoff-type cubic spline operators S_{3}^{x} and S_{3}^{y} that interpolate the date

$$
\Lambda_{3}^{x}=\left\{f^{(1,0)}(0, y)+f\left(\frac{h}{2}, y\right)+f^{(1,0)}(h, y)\right\},
$$

respectively

$$
\Lambda_{3}^{y}=\left\{f^{(0,1)}(x, 0), f\left(x, \frac{h}{2}\right), f^{(0,1)}(x, h)\right\}
$$

then we obtain a homogeneous cubature formula of the order 6. Certainly, this is the case if $\operatorname{dex}\left(Q_{3}^{x}\right)=\operatorname{dex}\left(Q_{3}^{y}\right)=3$, where

$$
\left(Q_{3}^{x} f\right)(\cdot, y)=\iint_{D_{h}}\left(S_{3}^{x} f\right)(x, y) \mathrm{d} x \quad \text { and } \quad\left(Q_{3}^{y} f\right)(x, \cdot)=\iint_{D_{h}}\left(S_{3}^{y}\right)(x, y) \mathrm{d} y
$$

But

$$
\left(S_{3}^{x} f\right)(x, y)=s_{01}(x) f^{(1,0)}(0, y)+s_{10}(x) f\left(\frac{h}{2}, y\right)+s_{21}(x) f^{(1,0)}(h, y)
$$

where

$$
s_{01}(x)=-\frac{3 h}{8}+x-\frac{1}{2 h} x^{2}, \quad s_{10}(x)=1, \quad s_{21}(x)=-\frac{h}{8}+\frac{1}{2 h} x^{2} .
$$

By a straightforward computation one obtains that

$$
S_{3}^{x}=e_{i}, \text { for } i=0,1,2,
$$

i.e. $\operatorname{dex}\left(S_{3}^{x}\right)=2$. Hence $\operatorname{dex}\left(Q_{3}^{x}\right) \geq 2$. Taking into account that

$$
\left(Q_{3}^{x} f\right)(\cdot, y)=-\frac{h^{2}}{24} f^{(1,0)}(0, y)+h f\left(\frac{h}{2}, y\right)+\frac{h^{2}}{24} f^{(1,0)}(h, y)
$$

it follows that $\operatorname{dex}\left(Q_{3}^{x}\right)=3$.
(C3) Let f be an integrable function on the standard triangle

$$
T_{h}:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0, x+y \leq h\right\} .
$$

For $f \in B_{1,2}(0,0)[6]$, one considers the Birkhoff-type bivariate polynomial operator say B_{2} that interpolates the date

$$
\Lambda_{B}=\left\{f(0,0)+f^{(2,0)}(0,0), f^{(1,1)}(0,0), f^{(0,2)}(0,0), f(h, 0), f(0, h)\right\},
$$

i.e.

$$
\begin{aligned}
\left(B_{2} f\right)(x, y)= & \frac{h-x-y}{h} f(0,0)+\frac{x(x-h)}{2} f^{(2,0)}(0,0)+x y f^{(1,1)}(0,0) \\
& +\frac{y(y-h)}{2} f^{(0,2)} f(0,0)+\frac{x}{h} f(h, 0)+\frac{y}{h} f(0, h) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
Q_{2}(f)= & \frac{h^{2}}{6}\left[f(0,0)-\frac{h^{2}}{4} f^{(2,0)}(0,0)+\frac{h^{2}}{4} f^{(1,1)}(0,0)\right. \\
& \left.-\frac{h^{2}}{4} f^{(0,2)}(0,0)+f(h, 0)+f(0, h)\right] .
\end{aligned}
$$

It is easy to check that $\operatorname{dex}\left(Q_{2}\right)=2$. In other words $Q_{2}(f)=f$ for all $f \in \mathbb{P}_{2}^{2}$ (the set of the bivariate polynomials of the total degree at most 2).

Now, let us consider the cubature formula

$$
\begin{equation*}
\iint_{T_{h}} f(x, y) \mathrm{d} x \mathrm{~d} y=Q_{2}(f)+R_{2}(f) \tag{10}
\end{equation*}
$$

Using the Peano-type theorem for bivariate case [1], one obtains
$R_{2}(f)=\frac{h^{5}}{120}\left[-\frac{7}{3} f^{(3,0)}(\xi, 0)+f^{(2,1)}\left(\xi_{1}, 0\right)-\frac{7}{3} f^{(0,3)}(0, \eta)-f^{(1,2)}\left(\xi_{2}, \eta_{1}\right)\right]$.
So, the cubature formula (10) is a homogeneous one, of order 5.

REFERENCES

[1] Barnhill, R. E. and Mansfield, L., Error bounds for smooth interpolation in triangles, J. Approx. Theory, 11, pp. 306-318, 1974.
[2] Coman, Gh., Multivariate approximation schemes and the approximation of linear functions, Mathematica, 16 (39), no. 2, pp. 229-249, 1974.
[3] Coman, Gh., The complexity of the quadrature formulas, Mathematica (Cluj), 23 (46), pp. 183-192, 1981.
[4] Coman, Gh., Homogeneous cubature formulas, Studia Univ. Babeş-Bolyai, Mathematica, 38, no. 2, pp. 91-101, 1993.
[5] Delvos, F. F., Boolean methods for double integration, Math. Comp., 55, pp. 683-692, 1990.
[6] Sard, A., Linear Approximation, Amer. Math. Society, Providence, 1963.
[7] Schoenberg, I. J., On best approximation of linear operators, Indag. Math., 26, pp. 155-163, 1964.
[8] Smolyak, S. A., Quadrature and interpolation formulas for tensor products of certain classes of functions, Soviet Math. Dokl., 4, pp. 240-243, 1963.
[9] Somogyi, I., Almost optimal numerical methods, Studia Univ. Babeş-Bolyai, Mathematica, 1, pp. 85-93, 1999.

Received by the editors: December 12, 2001.

[^0]: *"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Str. M. Kogǎlniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: ghcoman@math.ubbcluj.ro.
 ${ }^{\dagger}$ AISTEDA University, Faculty of Management, st. 1 Decembrie 1918 nr . 68, Alba Iulia 2500, Romania, e-mail: milenasolomon@yahoo.com.

