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Abstract. In this paper we construct homogeneous numerical cubature formu-
las based on some numerical multivariate interpolation schemes.
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1. INTRODUCTION

Let D be a given domain in R?, f : D — R an integrable function on D and
A = {A\if,..., AN [} some given information on f. Next, one suppose that
Ai f are values of f or of certain of its derivatives at some points of D, called
nodes.

One considers the cubature formula

N
17f = [[ fep)dady = 35 ANS + R (1),
D =1

where A;, 1 =1,..., N are its coefficients and Ry(f) is the remainder term.

The coming problem is to find the parameters of such a cubature formula
(coefficients, nodes) and to study the remainder term.

The most results has been obtained when D is a regular domain in R?
(rectangle, triangle) and the information (data) are regularly spaced. At this
class of cubature procedure belong the tensorial product and the cubature sum
rules.

Let D € R? be a rectangle, D = [a, b] x [c,d].

IfA" == {Affli=0,1,...,m} and AV := {N\]f| j = 0,1,...,n}, mn €N
are given sets of information on f with regard to x respectively y, one considers
the quadrature formulas

b
[f = / fl@,y)de = (QUF)(y) + (RIF) ()

*“Babeg-Bolyai” University, Faculty of Mathematics and Computer Science, Str. M. Ko-
galniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: ghcoman@math.ubbcluj.ro.

TAISTEDA University, Faculty of Management, st. 1 Decembrie 1918 nr. 68, Alba Iulia
2500, Romania, e-mail: milenasolomon@yahoo.com.


www.ictp.acad.ro/jnaat

46 Gheorghe Coman and Maria Solomon 2

and
d
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where the quadrature rules @} and QY are given by

QTN ZA (AT )
respectively
n
Z (Aj D@
with R} and RY the corresponding remalnder operators, i.e. R = 1" — Qf,
RY =1Y - QY.

It is easy to check the following decomposition of the double integral ope-
rator 1Y

(1) I'" = QIQ + (R{I" + I"R{ — R{RY)
and
2) I = (QY1Y + I°Q} — Q{QY) + RRY.
The identities (1) and (2) generate so called product cubature formula
(3) I'"f = QIQIf + (R{IY + I"RY — R{RY)f,
respectively the boolean-sum cubature formula
(4) I = (QTIY + I"QY — Q{QY) f + RIRYf.

Let p; and g be the approximation order of Q¥, respectively QY: ord(Q¥)
— p1, ord(QY) = g1 [4].

From (3) and (4) it follows that the approximation order of the product for-
mula is min{pj, ¢; } while the approximation order of the boolean-sum formula
s p1+ a1

Hence, the boolean-sum cubature rules has the remarkable property regar-
ding its highest approximation order.

Otherwise, the boolean-sum formula contains the simple integrals I*f, re-
spectively IYf. But, this simple integrals can be approximated, in a second
level of approximation, using new quadrature procedures.

From (4), one obtains

(5) If=Qf+Rf
with Q = Q7QY + Q5QY — QTQY and R = QIRY + QURS + RYRY, where Q3
and QY are the quadrature rules used in the second level of approximation and
2 RY are the corresponding remainder operators.
As can be seen

ord(Q) = min{ord(Q7) + ord(QY), ord(Q3) + 1, ord(Q%) + 1}.
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The quadrature rules Q% and QY can be chosen in many ways. First of all,
it depends on the given information of the function f.

A natural way to choose them is such that the approximation order of the
initial boolean-sum formula to be preserved. It is obvious that its approxima-
tion order cannot be increased.

DEFINITION 1. A cubature formula of the form (5) derived from the boolean-
sum formula (4) which preserves its approzimation order is called a consistent
cubature formula.

REMARK 1. The cubature formula (5) is consistent if the orders ps and g9
of the quadrature procedures Q%, respectively @Y, used in the second level of
approximation, satisfy the inequalities po > p1+¢1 —1, @ >p1+q —1. O

As the approximation order of the boolean-sum cubature cannot be in-
creased, it is preferable to choose the quadrature procedures Q% and QY such
that each term of the remainder from (5) to have the same order of approxi-
mation.

DEFINITION 2. A cubature formula, of the form (5), of which each term of
the remainder has the same order of approximation is called a homogeneous
cubature formula.

REMARK 2. The cubature formula (5) is homogeneous if ps = g2 = p1 +

@1 — L.
For example, let be

h rh
rip= [0 ey,
and
(QTf)(y) =hf (%,y) , respectively (QYf)(z, ) = hf (;C’ %)

the gaussian quadrature rules. Then for boolean-sum cubature formula, we
have

Rs(f) = 2 f@2 (g, ). O

In order to get a homogeneous numerical cubature formula we must use,
in a second level of approximation, some quadrature rules Q% and QY with
ord(Q%) = ord(QY) = 5. Such quadrature rules can be

(Q5H) () = BIF0,9) + f(hy)] + B 1FO00,y) — FOO (h,y)]
with
(R ) (- y) = L5 FA0 (&1, y),
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respectively
(Q8F)(w,) = &1f(2,0) + f(, 1)) + S5 [FOD(,0) = FOV (a, 1)
with
(RYf)(w,) = 455 £ O (@,m).
It follows:

THEOREM 1. If f40) ( g) ,f049 (g ) € C[0,h] and f3? € C(Dy), with
Dy, = [0,h] x [0, h], then we have the homogeneous cubature formula

©) [[ fay)dady =
Dy,

S0 (50) + 7 (60) 11 (0) £ (18) 27 (1)
O (08) =109 (1) 500 (£0) - £ (30)] 70
where
(1) R =15 [2r40 (5m) + 1709 (6,4) + 1r@D (g, m)] .-

Next, we try to construct such homogeneous cubature formulas using inter-
polation formulas derived from a boolean-sum interpolation formula and not
only.

It is know [2] that if P{ and P} are univariate interpolation operators, from
the corresponding boolean-sum formula

f=ProP/f+RIRf

can be derived using in a second level of approximation, some new operators
P§ and PJ, a numerical approximation formula, i.e.

(8) f=(PIPy+ PyP{ — PIP))f + (PIR; + P/R; + R{RY)f.

Now, if f is an integrable function on D = [a,b] X [c, d] then it is obviously
that

J[ t@wdady = [[(PrRy + PEPY = PEPY f(a,y)dady + RO,
D D

where

R() = [[((PPRY + PYRS + RERY) f)(w, y)dady
D

is a numerical integration formula.
For f: D, — R, one considers

Ax:{f(%i,-)]i:O,l,...,m}, Ay:{f(-,gj)\jzo,l,...,n}
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ST f and S f the linear respectively the cubic spline that interpolates f with
regard to A” and S} f, SY f the corresponding splines that interpolates f with
regard to AY, i.e.

=3 s (B, S50 =3 st (),
(SYA( Zs (5 55), (SENC Zs ) (5 55),

13 o1 3
where 87587, 55,S;

THEOREM 2. Let f be an integrable function on Dy,.

//fa:ydxdy—ZZAB3+A3B1 ABYF (i, 2) + Runl)

=0 7=0

are the corresponding cardinal sphnes.

where

h h h 3
A= [ stade, 42 = [Csi@de, B] = [Csway. B = [ sy
18 a homogeneous cubature formula.
Proof. The bivariate interpolation formula (8) becomes f = S7¥f + Ry f
with S7§ = S7SY + 5557 — 5757 and Ry, = STRY + S{RS + RYRY, or

Few) = 3 3 (s @) ) +s3@)sh ) -t (@)sh@))f (20 25) 4 (Run ) (a.9).

i=04=0

Now,

(9) / / o, y)dady = (QQY + QEQY — Q*QY)f + Rum(f)
D

with

ZiA}f(ﬁzi,y), (Q1f) ZB 7 (. 25).
(@A) ZA3 (Biy). (@D =SB (.45),
j=0

where

Ron(F) = [ [ (STRY + SYRS + RERY f(2. y)dady.

But in general the degree of exactness (“dex”) of the linear spline operators
are: dex(S7) = dex(S{) = 0 and dex(S§) = dex(S¥) = 1, so dex(Qf) =
dex(QY) = 0, dex(Q%) = dex(Q¥) = 1. It follows that [3] ord(Qf) = ord(QY) =
2, ord(Q%) = ord(Q¥) = 3. Hence

ord(Q5) = ord(Q4) = ord(QF) + ord(QY) — 1. O
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REMARK 3. Taking into account that if

f(@) = (S)(@) + (Rf)(x)

is a natural spline interpolation formula then

/abf(x)dx = /ab(Sf)(ﬂf)dm + /ab(Rf)(x)dx

is an optimal quadrature formula in sense of Sard [7], formula (9) is also an
almost optimal cubature formula [9]. O

Some particular cases

(C1) Let S§ and S} be the Lagrange-type linear spline operators that in-
terpolate the data

Aﬁf:{f(o,y),f(%,y),f(h,y)}, resp. AZ{:{f(l‘,@,f(%%),f(x,h)}

and S§ and SY the Hermite-type cubic spline operators that interpolate

5= {£0,9), F1900,9),  (%:9) , F(h ), FO () }

respectively

Ay = {f(2,0), FOV (2,0, f (. 5) , (. h), OV (@, 1)}
Let also
f= (8785 + 5557 = STS)f + (S{R5 + STR; + RiRY) f
be the spline interpolation formula generated by the operators ST, 57, S5 and

SY using two level of approximation with R, Ry, R, RY the corresponding
remainder operators.

THEOREM 3. If f € C4Y(Dy,) then

[ radedy = [[(spsy+ 45t = SiSt) @ )dedy + (Ruaf) (a0,
Dy, Dy
where

(Ruaf)(ay) = [ [(SVRS + STRS + BiRY) f (2, y)dady
Dy,

is a homogeneous cubature formula of order 6.

Proof. We must check that dex(ST) = 1 and dex(5§) = 3. By the symmetry
of the data it follows that also dex(SY) = 1 and dex(S%) = 3.
We have

(STF)(@,y) = s0(@) f(0,y) + s1(2)f (5,9) + s2(2) (R, y)
with

o) =13+ (- 8) . )= Fot (o—8) . ox) =3 (o= 8)..
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Now it‘ is easy to verify that STe; = e; for i = 0,1 and STes = ez, with
ei(x) =o'
We also have

(S5F)(2,y) = s00(x) £(0,y) + sor(x) f1O(0,y) + s10(2) f (%79)
+ s20(2) f (B, ) + s21.(2) 0 f (B, y)

with
10,3 _ 9.2 16 h\3
s00(7) = 1+ 332° — 332° — 35 (T — 3 L
3
3 7.2 4 h
801(37)—$+h2$3*ﬁ33 *ﬁ(fﬂ §)+
3
_ 16,3, 12 .2 | 32 h
510(7) = — 3327 + 337° + 33 (m— §>+,
3
_6.3_3 .2 16 h
520(7) = pz2” = 2 —;T(J«"—§>+
3
1 1 4 h
Szl(w)——h*$3+ﬁx2+ﬁ($—§)+-
But Sje; = e; for i =0,1,2,3. O

REMARK 4. The corresponding quadrature rules are

(QEN(y) = /0 "(s25) @ pdn = 4 [£0.9) + 2f (By) + £

with
h3
(REF)(y) = =35 /20 € w)
and
h
(QEF)(vy) = /0 (S5 ) (@, y)do
= 2 [£0.9) + 5500,9) +2f (5,9) + F(h,y) — 5100 (h,y)]

where

( gf)(v y) = 11h5520f(4’0) (E%y)' U

(C2) If in the particular case (C1) is taken instead of the Hermite-type cubic

spline operators the next Birkhoff-type cubic spline operators S§ and SY that
interpolate the date

A3 = {000, + £ (5.y) + 00y},

respectively

Ag _ {f(o,l)@7 0), f (x, %) ’f(o,l)(m, h)}
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then we obtain a homogeneous cubature formula of the order 6. Certainly,
this is the case if dex(Q%) = dex(Q¥) = 3, where

(QEF)(- / (S2f) (@, y)dz and  (QYF)(x / (8Y)(z, y)d

But
(S5)(@,y) = 501 (@) SO0, 9) + s10(2)f (55) + 21(2) FE0 (B, ),
where
sor(z) = =L +x—gpa?, sp(r) =1, sa(r) = -2+ a2t
By a straightforward computation one obtains that
S3 =e;, fori=0,1,2,
i.e. dex(S3) = 2. Hence dex(Q%) > 2. Taking into account that

(@D (y) = =5 FE00,9) + hf (5,y) + 51O (h,y)

it follows that dex(Q3) = 3.
(C3) Let f be an integrable function on the standard triangle

Ty :={(x,y) eR*[ 2 >0, y >0, x4y < h}.

For f € B;12(0,0) [6], one considers the Birkhoff-type bivariate polynomial
operator say Bs that interpolates the date

Ap = {f(0,0) + f9(0,0), F*1(0,0), £©2(0,0), f(h,0), f(0,h)},

i.e.

(Baf)(z,y) = =24 £(0,0) + 21 720 (0, 0) + 2y 11 (0, 0)
+ YR FOD £(0,0) + £ (h,0) + £ F(0,h).
It follows that
Q2(f) = B [f(0,0) — & F20(0,0) 4 & f1.D (0, 0)
— 12 £02)(0,0) + £(h,0) + f(0,h)].

It is easy to check that dex(Q2) = 2. In other words Q2(f) = f for all
f € P2 (the set of the bivariate polynomials of the total degree at most 2).
Now, let us consider the cubature formula

(10) [[ 1@ dady = Qo) + Bats).
Th

Using the Peano-type theorem for bivariate case [1], one obtains

Ro(f) = 155 [~ 3/OO(€.0) + FO(€1,0) = 7O (0.7) — fOD (€2.m)]

So, the cubature formula (10) is a homogeneous one, of order 5.
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