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Abstract. In this paper we construct homogeneous numerical cubature formu-
las based on some numerical multivariate interpolation schemes.
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1. INTRODUCTION

Let D be a given domain in R2, f : D → R an integrable function on D and
Λ := {λ1f, . . . , λNf} some given information on f . Next, one suppose that
λif are values of f or of certain of its derivatives at some points of D, called
nodes.

One considers the cubature formula

Ixyf :=
∫∫
D

f(x, y)dxdy =
N∑
i=1

Aiλif +RN (f),

where Ai, i = 1, . . . , N are its coefficients and RN (f) is the remainder term.
The coming problem is to find the parameters of such a cubature formula

(coefficients, nodes) and to study the remainder term.
The most results has been obtained when D is a regular domain in R2

(rectangle, triangle) and the information (data) are regularly spaced. At this
class of cubature procedure belong the tensorial product and the cubature sum
rules.

Let D ∈ R2 be a rectangle, D = [a, b]× [c, d].
If Λx := {λxi f | i = 0, 1, . . . ,m} and Λy := {λyjf | j = 0, 1, . . . , n}, m,n ∈ N

are given sets of information on f with regard to x respectively y, one considers
the quadrature formulas

Ixf :=
∫ b

a
f(x, y)dx = (Qx1f)(·, y) + (Rx1f)(·, y)
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and
Iyf :=

∫ d

c
f(x, y)dy = (Qy1f)(x, ·) + (Ry1f)(x, ·),

where the quadrature rules Qx1 and Qy1 are given by

(Qx1f)(·, y) =
m∑
i=0

Ai(λxi f)(·, y),

respectively

(Qy1f)(x, ·) =
n∑
j=0

Bj(λyjf)(x, ·),

with Rx1 and Ry1 the corresponding remainder operators, i.e. Rx1 = Ix − Qx1 ,
Ry1 = Iy −Qy1.

It is easy to check the following decomposition of the double integral ope-
rator Ixy

(1) Ixy = Qx1Q
y
1 + (Rx1Iy + IxRy1 −R

x
1R

y
1)

and
Ixy = (Qx1Iy + IxQy1 −Q

x
1Q

y
1) +Rx1R

y
1.(2)

The identities (1) and (2) generate so called product cubature formula
(3) Ixyf = Qx1Q

y
1f + (Rx1Iy + IxRy1 −R

x
1R

y
1)f,

respectively the boolean-sum cubature formula
(4) Ixyf =

(
Qx1I

y + IxQy1 −Q
x
1Q

y
1
)
f +Rx1R

y
1f.

Let p1 and q1 be the approximation order of Qx1 , respectively Qy1: ord(Qx1)
= p1, ord(Qy1) = q1 [4].

From (3) and (4) it follows that the approximation order of the product for-
mula is min{p1, q1} while the approximation order of the boolean-sum formula
is p1 + q1.

Hence, the boolean-sum cubature rules has the remarkable property regar-
ding its highest approximation order.

Otherwise, the boolean-sum formula contains the simple integrals Ixf , re-
spectively Iyf . But, this simple integrals can be approximated, in a second
level of approximation, using new quadrature procedures.

From (4), one obtains
(5) Ixyf = Qf +Rf

with Q = Qx1Q
y
2 + Qx2Q

y
1 −Qx1Q

y
1 and R = Qx1R

y
2 + Qy1R

x
2 + Rx1R

y
1, where Qx2

and Qy2 are the quadrature rules used in the second level of approximation and
Rx2 , R

y
2 are the corresponding remainder operators.

As can be seen
ord(Q) = min{ord(Qx1) + ord(Qy1), ord(Qx2) + 1, ord(Qy2) + 1}.
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The quadrature rules Qx2 and Qy2 can be chosen in many ways. First of all,
it depends on the given information of the function f .

A natural way to choose them is such that the approximation order of the
initial boolean-sum formula to be preserved. It is obvious that its approxima-
tion order cannot be increased.

Definition 1. A cubature formula of the form (5) derived from the boolean-
sum formula (4) which preserves its approximation order is called a consistent
cubature formula.

Remark 1. The cubature formula (5) is consistent if the orders p2 and q2
of the quadrature procedures Qx2 , respectively Qy2, used in the second level of
approximation, satisfy the inequalities p2 ≥ p1 + q1− 1, q2 ≥ p1 + q1− 1. �

As the approximation order of the boolean-sum cubature cannot be in-
creased, it is preferable to choose the quadrature procedures Qx2 and Qy2 such
that each term of the remainder from (5) to have the same order of approxi-
mation.

Definition 2. A cubature formula, of the form (5), of which each term of
the remainder has the same order of approximation is called a homogeneous
cubature formula.

Remark 2. The cubature formula (5) is homogeneous if p2 = q2 = p1 +
q1 − 1.

For example, let be

Ixyf =
∫ h

0

∫ h

0
f(x, y)dxdy,

and

(Qx1f)(·, y) = hf
(
h
2 , y

)
, respectively (Qy1f)(x, ·) = hf

(
x, h2

)
the gaussian quadrature rules. Then for boolean-sum cubature formula, we
have

Ixyf = h

∫ h

0
f
(
h
2 , y

)
dy + h

∫ h

0
f
(
x, h2

)
dx− h2f

(
h
2 ,

h
2

)
+RS(f),

where
RS(f) = h6

576f
(2,2)(ξ, η). �

In order to get a homogeneous numerical cubature formula we must use,
in a second level of approximation, some quadrature rules Qx2 and Qy2 with
ord(Qx2) = ord(Qy2) = 5. Such quadrature rules can be

(Qx2f)(·, y) = h
2 [f(0, y) + f(h, y)] + h2

12 [f (1,0)(0, y)− f (1,0)(h, y)]

with
(Rx2f)(·, y) = h5

720f
(4,0)(ξ1, y),
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respectively

(Qy2f)(x, ·) = h
2 [f(x, 0) + f(x, h)] + h2

12 [f (0,1)(x, 0)− f (0,1)(x, h)]

with
(Ry2f)(x, ·) = h5

720f
(0,4)(x, η1).

It follows:

Theorem 1. If f (4,0)
(
·, h2
)
, f (0,4)

(
h
2 , ·
)
∈ C[0, h] and f (2,2) ∈ C(Dh), with

Dh = [0, h]× [0, h], then we have the homogeneous cubature formula∫
Dh

∫
f(x, y)dxdy =(6)

= h2

2

[
f
(
h
2 , 0

)
+ f

(
h
2 , h

)
+ f

(
0, h2

)
+ f

(
h, h2

)
− 2f

(
h
2 ,

h
2

)]
+h3

12

[
f (1,0)

(
0, h2

)
− f (1,0)

(
h, h2

)
+ f (0,1)

(
h
2 , 0

)
− f (0,1)

(
h
2 , h

)]
+R(f),

where

(7) R(f) = h6

144

[
1
5f

(4,0)
(
h
2 , η1

)
+ 1

5f
(0,4)

(
ξ, h2

)
+ 1

4f
(2,2)(ξ, η)

]
.

Next, we try to construct such homogeneous cubature formulas using inter-
polation formulas derived from a boolean-sum interpolation formula and not
only.

It is know [2] that if P x1 and P y1 are univariate interpolation operators, from
the corresponding boolean-sum formula

f = P x1 ⊕ P
y
1 f +Rx1R

y
1f

can be derived using in a second level of approximation, some new operators
P x2 and P y2 , a numerical approximation formula, i.e.

(8) f = (P x1 P
y
2 + P x2 P

y
1 − P

x
1 P

y
1 )f + (P x1 R

y
2 + P y1R

x
2 +Rx1R

y
1)f.

Now, if f is an integrable function on D = [a, b]× [c, d] then it is obviously
that ∫∫

D

f(x, y)dxdy =
∫∫
D

(P x1 P
y
2 + P x2 P

y
1 − P

x
1 P

y
1 )f(x, y)dxdy +R(f),

where
R(f) =

∫∫
D

((P x1 R
y
2 + P y1R

x
2 +Rx1R

y
1)f)(x, y)dxdy

is a numerical integration formula.
For f : Dh → R, one considers

Λx =
{
f
(
h
m i, ·

)
| i = 0, 1, . . . ,m

}
, Λy =

{
f
(
·, hnj

)
| j = 0, 1, . . . , n

}
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Sx1 f and Sx3 f the linear respectively the cubic spline that interpolates f with
regard to Λx and Sy1f, S

y
3f the corresponding splines that interpolates f with

regard to Λy, i.e.

(Sx1 f)(x, ·) =
m∑
i=0

s1
i (x)f

(
h
m i, ·

)
, (Sx3 f)(x, ·) =

m∑
i=0

s3
i (x)f

(
h
m i, ·

)
,

(Sy1f)(·, y) =
n∑
j=0

s1
j (y)f

(
·, hnj

)
, (Sy3f)(·, y) =

n∑
j=0

s3
j (y)f

(
·, hnj

)
,

where s1
i , s

3
i , s

1
j , s

3
j are the corresponding cardinal splines.

Theorem 2. Let f be an integrable function on Dh.∫
Dh

∫
f(x, y)dxdy =

m∑
i=0

n∑
j=0

(A1
iB

3
j +A3

iB
1
j −A1

iB
1
j )f

(
h
m i,

h
nj
)

+Rmn(f)

where

A1
i =

∫ h

0
s1
i (x)dx, A3

i =
∫ h

0
s3
i (x)dx, B1

j =
∫ h

0
s1
j (y)dy, B3

j =
∫ 3

0
s3
j (y)dy

is a homogeneous cubature formula.

Proof. The bivariate interpolation formula (8) becomes f = Sxy13 f + Rmnf
with Sxy13 = Sx1S

y
3 + Sx3S

y
1 − Sx1S

y
1 and Rmn = Sx1R

y
3 + Sy1R

x
3 +Rx1R

y
1, or

f(x, y) =
m∑
i=0

n∑
j=0

[s1
i (x)s3

j (y)+s3
i (x)s1

j (y)−s1
i (x)s1

j (y)]f
(
h
m i,

h
nj
)
+(Rmnf)(x, y).

Now,

(9)
∫
Dh

∫
f(x, y)dxdy = (Qx1Q

y
3 +Qx3Q

y
1 −Q

x
1Q

y
1)f +Rmn(f)

with

(Qx1f)(·, y) =
m∑
i=0

A1
i f
(
h
m i, y

)
, (Qy1f)(x, ·) =

n∑
j=0

B1
j f
(
x, hnj

)
,

(Qx3f)(·, y) =
m∑
i=0

A3
i f
(
h
m i, y

)
, (Qy3f)(x, ·) =

n∑
j=0

B3
j f
(
x, hnj

)
,

where
Rmn(f) =

∫
Dh

∫
(Sx1R

y
3 + Sy1R

x
3 +Rx1R

y
1)f(x, y)dxdy.

But in general the degree of exactness (“dex”) of the linear spline operators
are: dex(Sx1 ) = dex(Sy1 ) = 0 and dex(Sx3 ) = dex(Sy3 ) = 1, so dex(Qx1) =
dex(Qy1) = 0, dex(Qx3) = dex(Qy3) = 1. It follows that [3] ord(Qx1) = ord(Qy1) =
2, ord(Qx3) = ord(Qy3) = 3. Hence

ord(Qx3) = ord(Qy3) = ord(Qx1) + ord(Qy1)− 1. �
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Remark 3. Taking into account that if
f(x) = (Sf)(x) + (Rf)(x)

is a natural spline interpolation formula then∫ b

a
f(x)dx =

∫ b

a
(Sf)(x)dx+

∫ b

a
(Rf)(x)dx

is an optimal quadrature formula in sense of Sard [7], formula (9) is also an
almost optimal cubature formula [9]. �

Some particular cases

(C1) Let Sx1 and Sy1 be the Lagrange-type linear spline operators that in-
terpolate the data

Λx1 =
{
f(0, y), f

(
h
2 , y

)
, f(h, y)

}
, resp. Λy1 =

{
f(x, 0), f

(
x, h2

)
, f(x, h)

}
and Sx3 and Sy3 the Hermite-type cubic spline operators that interpolate

Λx3 =
{
f(0, y), f (1,0)(0, y), f

(
h
2 , y

)
, f(h, y), f (1,0)(h, y)

}
,

respectively

Λy3 =
{
f(x, 0), f (0,1)(x, 0), f

(
x, h2

)
, f(x, h), f (0,1)(x, h)

}
.

Let also
f = (Sx1S

y
3 + Sx3S

y
1 − S

x
1S

y
1 )f + (Sy1Rx3 + Sx1R

y
3 +Rx1R

y
1)f

be the spline interpolation formula generated by the operators Sx1 , S
y
1 , S

x
3 and

Sy3 using two level of approximation with Rx1 , R
y
1, R

x
3 , R

y
3 the corresponding

remainder operators.

Theorem 3. If f ∈ C(4,4)(Dh) then∫
Dh

∫
f(x, y)dxdy =

∫
Dh

∫
(Sx1S

y
3 + Sy3S

y
1 − S

x
1S

y
1 )f(x, y)dxdy + (R13f)(x, y),

where
(R13f)(x, y) =

∫
Dh

∫
(Sy1Rx3 + Sx1R

y
3 +Rx1R

y
1)f(x, y)dxdy

is a homogeneous cubature formula of order 6.

Proof. We must check that dex(Sx1 ) = 1 and dex(Sx3 ) = 3. By the symmetry
of the data it follows that also dex(Sy1 ) = 1 and dex(Sy3 ) = 3.

We have
(Sx1 f)(x, y) = s0(x)f(0, y) + s1(x)f

(
h
2 , y

)
+ s2(x)f(h, y)

with
s0(x) = 1− 2

hx+ 2
h

(
x− h

2

)
+
, s1(x) = 2

hx−
4
h

(
x− h

2

)
+
, s2(x) = 2

h

(
x− h

2

)
+
.
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Now it is easy to verify that Sx1 ei = ei for i = 0, 1 and Sx1 e2 = e2, with
ei(x) = xi.

We also have

(Sx3 f)(x, y) = s00(x)f(0, y) + s01(x)f (1,0)(0, y) + s10(x)f
(
h
2 , y

)
+ s20(x)f(h, y) + s21(x)f (1,0)f(h, y)

with

s00(x) = 1 + 10
h3x

3 − 9
h2x

2 − 16
h3

(
x− h

2

)3

+
,

s01(x) = x+ 3
h2x

3 − 7
2hx

2 − 4
h2

(
x− h

2

)3

+

s10(x) = − 16
h3x

3 + 12
h2x

2 + 32
h3

(
x− h

2

)3

+
,

s20(x) = 6
h3x

3 − 3
h2x

2 − 16
h3

(
x− h

2

)3

+

s21(x) = − 1
h2x

3 + 1
2hx

2 + 4
h2

(
x− h

2

)3

+
.

But Sη3ei = ei for i = 0, 1, 2, 3. �

Remark 4. The corresponding quadrature rules are

(Qx1f)(·, y) :=
∫ h

0
(Sx1 f)(x, y)dx = h

4

[
f(0, y) + 2f

(
h
2 , y

)
+ f(h, y)

]
,

with

(Rx1f)(·, y) = −h
3

48f
(2,0)(ξ1, y)

and

(Qx3f)(·, y) :=
∫ h

0
(Sx3 f)(x, y)dx

= h
4

[
f(0, y) + h

12f
(1,0)(0, y) + 2f

(
h
2 , y

)
+ f(h, y)− h

12f
(1,0)(h, y)

]
,

where
(Rx3f)(·, y) = h5

11520f
(4,0)(ξ2, y). �

(C2) If in the particular case (C1) is taken instead of the Hermite-type cubic
spline operators the next Birkhoff-type cubic spline operators Sx3 and Sy3 that
interpolate the date

Λx3 =
{
f (1,0)(0, y) + f

(
h
2 , y

)
+ f (1,0)(h, y)

}
,

respectively
Λy3 =

{
f (0,1)(x, 0), f

(
x, h2

)
, f (0,1)(x, h)

}
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then we obtain a homogeneous cubature formula of the order 6. Certainly,
this is the case if dex(Qx3) = dex(Qy3) = 3, where

(Qx3f)(·, y) =
∫
Dh

∫
(Sx3 f)(x, y)dx and (Qy3f)(x, ·) =

∫
Dh

∫
(Sy3 )(x, y)dy.

But
(Sx3 f)(x, y) = s01(x)f (1,0)(0, y) + s10(x)f

(
h
2 , y

)
+ s21(x)f (1,0)(h, y),

where
s01(x) = −3h

8 + x− 1
2hx

2, s10(x) = 1, s21(x) = −h
8 + 1

2hx
2.

By a straightforward computation one obtains that
Sx3 = ei, for i = 0, 1, 2,

i.e. dex(Sx3 ) = 2. Hence dex(Qx3) ≥ 2. Taking into account that

(Qx3f)(·, y) = −h2

24f
(1,0)(0, y) + hf

(
h
2 , y

)
+ h2

24f
(1,0)(h, y)

it follows that dex(Qx3) = 3.
(C3) Let f be an integrable function on the standard triangle

Th := {(x, y) ∈ R2| x ≥ 0, y ≥ 0, x+ y ≤ h}.
For f ∈ B1,2(0, 0) [6], one considers the Birkhoff-type bivariate polynomial

operator say B2 that interpolates the date

ΛB = {f(0, 0) + f (2,0)(0, 0), f (1,1)(0, 0), f (0,2)(0, 0), f(h, 0), f(0, h)},
i.e.

(B2f)(x, y) = h−x−y
h f(0, 0) + x(x−h)

2 f (2,0)(0, 0) + xyf (1,1)(0, 0)

+ y(y−h)
2 f (0,2)f(0, 0) + x

hf(h, 0) + y
hf(0, h).

It follows that
Q2(f) = h2

6
[
f(0, 0)− h2

4 f
(2,0)(0, 0) + h2

4 f
(1,1)(0, 0)

− h2

4 f
(0,2)(0, 0) + f(h, 0) + f(0, h)

]
.

It is easy to check that dex(Q2) = 2. In other words Q2(f) = f for all
f ∈ P2

2 (the set of the bivariate polynomials of the total degree at most 2).
Now, let us consider the cubature formula

(10)
∫
Th

∫
f(x, y)dxdy = Q2(f) +R2(f).

Using the Peano-type theorem for bivariate case [1], one obtains

R2(f) = h5

120

[
−7

3f
(3,0)(ξ, 0) + f (2,1)(ξ1, 0)− 7

3f
(0,3)(0, η)− f (1,2)(ξ2, η1)

]
.

So, the cubature formula (10) is a homogeneous one, of order 5.
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