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ON AN APPROXIMATION OPERATOR
AND ITS LIPSCHITZ CONSTANT
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Abstract. In this note we consider an approximation operator of Kantorovich
type in which expression appears a basic sequence for a delta operator and a
Sheffer sequence for the same delta operator. We give a convergence theorem for
this operator and we find its Lipschitz constant.
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1. INTRODUCTION

In this section we will remind some basic notions and results.
Let P be the linear space of all polynomials with real coefficients.
A polynomial sequence is a sequence of polynomials (pn) with deg pn = n

for all n ∈ N.
A sequence of binomial type (a binomial sequence) is a polynomial sequence

which satisfies the binomial identity

pn (x+ y) =
n∑
k=0

(n
k

)
pk (x) pn−k (y)

for all real x, y and n = 0, 1, 2, . . . .
The shift operator Ea : P → P is defined by Eap (x) = p (x+ a) .
A linear operator T with TEa = EaT for all real a is called a shift invariant

operator.
We recall that if T1 and T2 are shift invariant operators then T1T2 = T2T1.
A delta operator is a shift invariant operator for which Qx = const. 6= 0.
A polynomial sequence (pn) is called a basic sequence for a delta operator

Q if p0 (x) = 1, pn(0) = 0 and Qpn = npn−1, n = 1, 2, . . . .

Proposition 1. [9]. i) Every delta operator has a unique basic sequence.
ii) A polynomial sequence is a binomial sequence if and only if it is a basic

sequence for a delta operator Q.

The Pincherle derivative of an operator T is defined by T ′ = TX − XT,
where X is the multiplication operator, Xp(x) = xp(x).
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The Pincherle derivative of a shift invariant operator is also a shift invari-
ant operator and the Pincherle derivative of a delta operator is an invertible
operator.

A polynomial sequence (sn)n≥0 is called a Sheffer sequence relative to a
delta operator Q if s0 (x) = const 6= 0 and Qsn = nsn−1, n = 1, 2, . . . .

An Appell sequence is a Sheffer sequence relative to the derivative D.

Proposition 2. [9]. Let Q be a delta operator with the basic sequence (pn)
and (sn) a polynomial sequence. The following statements are equivalent:

i) sn is a Sheffer set relative to Q.
ii) There exists an invertible shift invariant operator S such that sn (x) =

S−1pn (x) .
iii) For all x, y ∈ R and n = 0, 1, 2, . . . the following identity holds:

sn (x+ y) =
n∑

k=n

(n
k

)
pk (x) sn−k (y) .

2. AN APPROXIMATION OPERATOR OF KANTOROVICH TYPE

In our paper [3] we considered some linear approximation operators defined
for all f ∈ C [0, 1] and x ∈ [0, 1] by

(1)
(
LQ,Sn f

)
(x) = 1

sn (1)

n∑
k=0

(n
k

)
pk (x) sn−k (1− x) f

(
k
n

)
,

where (pn) is the basic sequence for a delta operator Q and (sn) is a Sheffer
sequence for the same delta operator, sn(1) 6= 0, ∀n ∈ N, sn = S−1pn with S
an invertible shift invariant operator.

We remind that if p′k (0) ≥ 0 and sk (0) ≥ 0 for n = 0, 1, 2, . . . then the
operator LQ,Sn defined by (1) is positive.

In this note we want to introduce an integral operator of Kantorovich type
of the form

(2)
(
KQ,S
n f

)
(x) = (n+1)

sn(1)

n∑
k=0

(n
k

)
pk (x) sn−k (1− x)

∫ k+1
n+1

k
n+1

f (t) dt,

where f ∈ L1 ([0, 1]), x ∈ [0, 1] .
We mention that for S = I (that means sn = pn) these operators were

considered by O. Agratini in [1] and V. Miheşan in [6].
We recall that the expressions of the operator LQ,Sn on the test functions

ek (x) = xk, k = 0, 2 are (see [3]):(
LQ,Sn e0

)
(x) = e0 (x) ,(

LQ,Sn e1
)

(x) = ane1 (x) ,(
LQ,Sn e2

)
(x) = bnx

2 + x (an − bn − cn) ,
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where

an =
(
(Q′)−1sn−1

)
(1)

sn(1) , bn = n−1
n

(
(Q′)−2sn−2

)
(1)

sn(1) , cn = n−1
n

(
(Q′)−2(S−1)′Ssn−2

)
(1)

sn(1)

and Q′ is the Pincherle derivative of Q.

Lemma 3. If KQ,S
n is the linear operator defined by (2) then:(

KQ,S
n e0

)
(x) = e0 (x) ,(

KQ,S
n e1

)
(x) = n

n+1ane1 (x) + 1
2(n+1) ,(

KQ,S
n e2

)
(x) = 1

(n+1)2

{
x2n2bn + x[n2 (an − bn − cn) + nan] + 1

3

}
.

Proof. If we denote sn,k (x) = 1
sn(1)

(n
k

)
pk (x) sn−k (1− x) we have(

KQ,S
n e0

)
(x) = (n+ 1)

n∑
k=0

sn,k (x)
(
k+1
n+1 −

k
n+1

)
= 1 = e0 (x) ,

(
KQ,S
n e1

)
(x) = n

n+1

n∑
k=0

sn,k (x) kn + 1
2(n+1)

n∑
k=0

sn,k (x)

= n
n+1

(
LQ,Sn e1

)
(x) + 1

2(n+1)

(
LQ,Sn e0

)
(x)

= n
n+1ane1 (x) + 1

2(n+1) ,(
KQ,S
n e2

)
(x) = n2

(n+1)2

(
LQ,Sn e2

)
(x) + n

(n+1)2

(
LQ,Sn e1

)
(x)

+ 1
3(n+1)2

(
LQ,Sn e0

)
(x)

= 1
(n+1)2

{
x2n2bn + x

[
n2 (an − bn − cn) + nan

]
+ 1

3

}
. �

From this Lemma, the central moments of KQ,S
n defined by Ωn,k (x) =

KQ,S
n

(
(e1 − xe0)k , x

)
, k ∈ N are

Ωn,0 (x) = 1,

Ωn,1 (x) = 1
n+1

[
x (nan − (n+ 1)) + 1

2

]
and

Ωn,2 (x) = 1
(n+1)2

{
x2
[
n2 (bn − 2an + 1) + 2n (1− an)

]
+ x

[
n2 (an − bn − cn) + n (an − 1)− 1

]
+ 1

3

}
.

Theorem 4. Let KQ,S
n be the linear operator defined by (2) with p′k (0) ≥ 0

and sk (0) ≥ 0, ∀k ∈ N.
i) If f ∈ C [0, 1], limn→∞ an = limn→∞ bn = 1 then KQ,S

n converges
uniformly to f.

ii) If f ∈ Lp [0, 1] , limn→∞ an = limn→∞ bn = 1 then
∥∥KQ,S

n f − f
∥∥
p

= 0.
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Proof. In [3] we proved that if p′k (0) ≥ 0 and sk (0) ≥ 0, ∀k ∈ N then 0 ≤
cn ≤ min

{
(1− bn) /2, an − a2

n

}
, so from limn→∞ an = limn→∞ bn = 1 we have

limn→∞ cn = 0. Using Lemma 3 it results that limn→∞
(
KQ,S
n ei

)
(x) = ei (x)

for i = 0, 1, 2, and applying the convergence criterion of Bohman-Korovkin we
obtain the first affirmation.

The second assertion follows immediately because the Korovkin subspaces
in C [0, 1] are also Korovkin subspaces in Lp [0, 1] . �

3. LIPSCHITZ CONSTANTS FOR LQ,Sn AND KQ,S
n

In this section we want to find the Lipschitz constants for LQ,Sn and KQ,S
n

if f ∈ LipMα.
In [2] B.M. Brown, D. Elliot and D.F. Paget proved that the Bernstein

operator (Bn = LD,In ) preserves the Lipschitz constant of the function f
for α ∈ (0, 1] . V. Miheşan showed in [6] that all positive binomial opera-
tors (which can be obtained by LQ,Sn when S = I) preserve the Lipschitz
constant of the function f for α ∈ (0, 1] and if f ∈ Lip∗M (α, [0, 1]) then
LQ,In f ∈ Lip∗2M (α, [0, 1]), where

Lip∗M (α, [0, 1]) =
{
f ∈ C [0, 1] , ω2 (f, h) ≤Mhα, 0 < h ≤ 1

2
}
.

Theorem 5. If f ∈ LipMα, α ∈ (0, 1] , then LQ,Sn f ∈ LipMaαnα.

Proof. Let x ≤ y be any two points of [0, 1]. Using the binomial identity
for pn we can write(

LQ,Sn f
)

(y) = 1
sn(1)

n∑
j=0

(n
j

)
pj
(
x+ (y − x)

)
sn−j (1− y) f( jn)

= 1
sn(1)

n∑
j=0

(n
j

)
sn−j (1− y) f( jn)

j∑
k=0

(j
k

)
pk (x) pj−k (y − x) .

If we change the order of summation and note j − k = l then we obtain(
LQ,Sn f

)
(y) =(3)

= 1
sn(1)

n∑
k=0

n−k∑
l=0

n!
k!l!(n−k−l)!pk (x) pl (y − x) sn−k−l (1− y) f

(
k+l
n

)
,

(
LQ,Sn f

)
(x) = 1

sn(1)
n∑
k=0

(n
k

)
pk (x) sn−k

(
(y − x) + (1− y)

)
f
(
k
n

)
= 1

sn(1)
n∑
k=0

(n
k

)
pk (x) f

(
k
n

) n−k∑
l=0

(n−k
l

)
pl (y − x) sn−k−l (1− y) f

(
k
n

)
,

(
LQ,Sn f

)
(x) =(4)

= 1
sn(1)

n∑
k=0

n−k∑
l=0

n!
k!l!(n−k−l)!pk (x) pl (y − x) sn−k−l (1− y) f

(
k
n

)
.
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From (3) and (4) we have∣∣∣ (LQ,Sn f
)

(y)−
(
LQ,Sn f

)
(x)

∣∣∣ =

= 1
sn(1)

n∑
k=0

n−k∑
l=0

n!
k!l!(n−k−l)!pk (x) pl (y − x) sn−k−l (1− y)

∣∣∣f (k+l
n

)
− f

(
k
n

) ∣∣∣.
Because f ∈ LipMα we have

∣∣∣f (k+l
n

)
− f

(
k
n

)∣∣∣ ≤M (
l
n

)α
so we obtain∣∣∣(LQ,Sn f

)
(y)−

(
LQ,Sn f

)
(x)
∣∣∣ ≤

≤ M
sn(1)

n∑
k=0

n−k∑
l=0

n!
k!l!(n−k−l)!pk (x) pl (y − x) sn−k−l (1− y)

(
l
n

)α
= M

sn(1)

n∑
l=0

n−l∑
k=0

(n−l
k

)
pk (x) sn−k−l (1− y)

(n
l

)
pl (y − x)

(
l
n

)α
= M

sn(1)

n∑
l=0

(n
l

)
pl (y − x) sn−l (x+ 1− y)

(
l
n

)α
= MLQ,Sn (xα; y − x) .

We remind that for a convex function f we have f(anx) ≤
(
LQ,Sn f

)
(x) (see [3]).

Since the function g (x) = −xα, α ∈ (0, 1], is convex on [0, 1] we obtain(
LQ,Sn xα; y − x

)
≤
(
an (y − x)

)α
and we get ∣∣∣ (LQ,Sn f

)
(y)−

(
LQ,Sn f

)
(x)

∣∣∣ ≤Maαn (y − x)α .

Therefore LQ,Sn f ∈ LipMaαn
α. �

Theorem 6. If f ∈ LipMα, α ∈ (0, 1], then KQ,S
n f ∈ LipNnα, where

Nn = M
( nan
n+1

)α
.

Proof. We can write KQ,S
n f = LQ,Sn hn, where

hn (x) =
∫ 1

0
f
(
t+nx
n+1

)
dt,

|hn (x)− hn (y)| =
∣∣∣∣∫ 1

0

[
f
(
t+nx
n+1

)
− f

( t+ny
n+1

)]
dt
∣∣∣∣

≤M
∣∣∣ t+nxn+1 −

t+ny
n+1

∣∣∣α ≤M(
n
n+1

)α |x− y|α .
So, f ∈ LipMα implies hn ∈ LipM( n

n+1 )αα. From KQ,S
n f = LQ,Sn hn and the

previous theorem we obtain the conclusion. �
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