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DIRECT AND INDIRECT APPROXIMATIONS TO POSITIVE
SOLUTION FOR A NONLINEAR REACTION-DIFFUSION PROBLEM

I. DIRECT (VARIATIONAL)

CǍLIN IOAN GHEORGHIU∗ and DAMIAN TRIF†

Abstract. We consider a nonlinear, second-order, two-point boundary value
problem that models some reaction-diffusion precesses. When the reaction term
has a particular form, f(u) = u3, the problem has a unique positive solution
that satisfies a conserved integral condition. We study the bifurcation of this
solution with respect to the length of the interval and it turns out that solution
bifurcates from infinity. In the first part, we obtain the numerical approxima-
tion to the positive solution by direct (variational) methods, while in the second
part we consider indirect numerical methods. In order to obtain directly accu-
rate numerical approximations to this positive solution, we characterize it by a
variational problem involving a conditional extremum. Then we carry out some
numerical experiments by usual finite elements method.
MSC 2000. 34B18, 34C23, 65L10, 65L60.
Keywords. nonlinear reaction-diffusion, positive solution, conserved integral,
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1. INTRODUCTION

We are concerned with the existence, uniqueness and numerical approxima-
tions of positive solutions for the semilinear parabolic problem

(1)
ut = uxx + up, 0 < x < L, t > 0,
u (0, t) = u (L, t) = 0, t > 0,
u (x, 0) = u0 (x) , 0 < x < L,

where u0 (x) satisfies the compatibility condition u0 (0) = u0 (L) = 0, with
any real p, p > 1 and L < ∞. We further assume that (1) has a stationary
positive solution ū, i.e. ū is a solution of boundary value problem

(2) uxx + up = 0, 0 < x < L,
u (0) = u (L) = 0.

The stationary problem (2) is in fact the problem 97-8 by Ph. Korman [10].
He invokes a phase-plane analysis to observe that the positive solution ū (x)

∗“T. Popoviciu” Institute of Numerical Analysis, P.O. Box 68–1, 3400 Cluj-Napoca, Ro-
mania, e-mail: ghcalin@ictp.acad.ro.
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is unique (ū (x) > 0 for x ∈ (0, L)) and asks to show that for p = 3 and for
any L this solution satisfies

(3)
∫ L

0
ū (x) dx = π√

2
which means that the integral of ū is conserved independently on L.

We have proved in [6] that the solution ū (x) of (2) satisfies

(4)
∫ L

0
u (x) dx =

√
2(p+ 1)u

3−p
2max (F (1)− F (0)) ,

where F (v) is the primitive function of v/
√

1− vp+1, v = u/umax and umax is
the maximum value of u on [0, L].

The condition (3) will play a key role in our analysis. This independence of
the length of the domain condition can be used successfully to approximate,
by a direct or indirect method, the solutions of the problems (1) and (2).

The interest in such stationary solutions, sometimes called dissipative struc-
tures, has been occasioned by their possible role in reflecting the correspond-
ing phenomena of pattern formation in developing organisms and in ecological
communities. Problems of type (1), in one or more spatial dimensions, have
been used also to model some biological phenomenon or technological pro-
cesses, but we do not go into much detail about applications in the various
fields mentioned above (see for example [8]).

The first goal of the present paper is an analysis of bifurcation issue for
problem (2). The particular form of reaction term in (2) make impossible
that analysis in the terms of Stuart-Watson method or two-time technique
(Matkowsky) as they are presented in [20]. Consequently, we try to find a
functional relationship between umax (the maximum value of ū(x) on (0, L))
and L. This turn out to be of the form Lumax = const., which shows that
indeed the bifurcation appears at infinity from the null solution. In fact the
problem (2) is autonomous, and when one attempts to solve it in a closed
form, encounters an integrand of the form 1/

√
1− t4. We estimate subsequent

integrals using a generalized mean value theorem suggested in [17].
The second aim of our paper is a direct approximation of the positive so-

lution ū(x) of (2) which satisfies (3). In this respect we built up a functional
defined on H1

0 (0, L) which has a positive lower bound. This functional is then
augmented introducing the restriction (3) by means of Lagrange’s multiplier
method. Eventually, we determine the corresponding Euler’s equations for this
new functional and use them to obtain the finite elements approximation to
ū(x). Thus, it is underlined the importance of the conserved integral condition
(3) in the numerical analysis of reaction-diffusion problem (2).

The content of the paper is as follows: in Section 2 we display some infor-
mation on the existence and uniqueness of the positive solution ū (x) of (2).
We obtain the condition (4) and review some properties of ū (x), including the
bifurcation from infinity.
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In section 3 we give the variational characterization of the positive solution
and obtain the numerical approximation ūh (x) of ū (x) by piecewise linear
finite elements. We proceed as usually in f.e.m., write down the discrete
analogous (18) of (2) and solve the resulting nonlinear algebraic system by
Newton’s method with initial guess satisfying (3).

2. SOME PROPERTIES OF Ū (X)

In his paper [11], Laetsch considers a problem of type (2) with a more general
reaction term. Specifically, he puts instead of up, λf (u) , with f (0) = 0 and
f (w) /w is a non-decreasing function of w for w > 0. Then the problem (2)
has exactly one positive solution for λ > 0 and as λ increases from 0, the
norms of the corresponding solutions decreases from +∞ to 0. He reduced the
problem of solving (2) to a quadrature and observed that all positive solutions
of (2), for λ > 0 are strictly positive and have exactly one maximum on (0, L).
They are also symmetric about the point x = L/2.

With these we can prove easy [6] the conditions (3) and (4). Multiplying
the differential equation in (2) with p = 3 by 2u′ (x), we write it in the form

(5)
[(
u′ (x)

)2]′ = −1
2
(
u4 (x)

)′
If we integrate (5) from 0 to x, 0 < x < L, we get the first integral

u′ (x)2 − u′ (0)2 = −1
2u (x)4 ,

or explicitly

(6) u′ (x) = ± 1√
2

√(√
2u′ (0)

)2
− u (x)4.

For the maximum value umax of u (x) on (0, L) we have from the first integral

(7) u2
max =

√
2u′ (0) .

From (6) and (7) we deduce∫ L

0
u (x) dx =

∫ L

0

udu
du
dx

= 2 · 1
2

∫ umax

0

√
2du2√

(√2u′(0))2−(u2)2

=
√

2 arcsin u2
√

2u′(0)

∣∣∣umax

0
= π√

2 .

We can apply the same strategy for the reaction term f (u) = up, p > 1, to
obtain (4).

The nondimensional form of problem (2) for p = 3 reads as follows:

(8)
{
θ′′ + λ2θ3 = 0, 0 < t < 1,
θ(0) = θ(1) = 0,

where um := maxx∈[0,L] u(x), λ := Lum and t := x/L.
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As the differential equation in (8) is autonomous, usual manipulations and
boundary condition in 0 imply:

(9) t =
√

2
λ

∫ θ

0

ds√
1− s4

, t ∈ (0, 1
2), θ ∈ (0, 1).

Here we used tacitly the symmetry of the positive solution about the middle
of the interval. To approximate the integral in (9) we use the extension of the
mean value theorem for integral suggested in [17]. Thus, there exists θt, such
that

(10) t =
√

2
λ

θ√
1− θ4

t

,

where 0 < θt < θ, limθ→0 θt/θ = 1/ (r + 1)1/r , for −1 < r < 0 for which
lims→0 1/(sr

√
1− s4) = 0. and observe that θt = O (θ) , as θ → 0 and 0 <

R < 1. If, motivated by the above asymptotics, we substitute Rθ for θt in (10),
we obtain the following approximation of the positive (and negative) solution
of (8):

(11) θ (t) = ±t√
1
λ2 +

√
1
λ4 + t4R4

.

in an arbitrary small neighborhood of t = 0.
Notice that the representation (11) retains all particularities of the exact

solution of (8): the symmetry, the smoothness and the asymptotics properties
near the boundary points. This entitles us to assimilate the behavior of θ′(0)
obtained from (11) with that corresponding to exact solution. In fact we get

(12) Lum = θ′(0)
√

2.

But from [6], as an intermediate result, θ′(0) does not depend on L. Thus (12)
means our bifurcation relationship. Thus, in the lack of a coherent strategy to
study bifurcation from infinity we have considered the above ad-hoc method.

Remark 1. There do exist some literature gathered around the subject
of existence, uniqueness, bifurcation and stability of solutions of (1). Thus,
in his work [12], Matkowsky considers the stability of the null solution by
asymptotic methods. He imposes on the reaction term f (u) some technical
conditions and avoids computational difficulties when takes into account only
this solution. In the works of Ambrosetti and Rabinowitz [1], Aronson and
Weinberger [2], Crandal and Rabinowitz [3],[4], Keller and Cohen [9], Simpson
and Cohen [18], Sattinger [14], [15], [16] and Turner [19], to quote but a few,
the authors take the advantage of a linear term in the full reaction term f (u).
Consequently, these analyses are useless for our purposes. �
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3. THE VARIATIONAL CHARACTERIZATION OF THE POSITIVE SOLUTION

As is apparent from [6], some solvers contributed to a considerable insight
into the nature of the solutions of (2). They used exclusively direct manipula-
tion of the equation. With respect to the positive solution, a more penetrating
discussion requires to study of an appropriate variational problem whose so-
lution must satisfy (2) and (3).

The obvious choice, namely, the variational problem

(V1) find u ∈ H1
0 (0, L),

∫ L

0

(
u′v′ − u3v

)
dx = 0, ∀v ∈ H1

0 (0, L),

of which (2) represents the Euler’s equation, proves to be utterly unsuitable
for our purposes. The main reason is that, the family of extremals of this
problem which pass through a point (0, 0) for definiteness, do not form a field,
and consequently, the classical sufficient criteria for the existence of extrema,
due to Jacobi, become unapplicable (see [5, ch. 8]). We have to notice at this
point that we have failed in our attempt to show that the functional

J1(v) :=
∫ L

0
((v′)2 − v4)dx, J1 : H1

0 (0, L)→ R,

has a positive minimum.
Instead, using an idea from [13], we introduce the following generalized

Rayleigh quotient (functional)

(13) J : H1
0 (0, L)→ R, J(v) :=

(∫ L

0
(v′)2dx

)2/∫ L

0
v4dx ,

and prove the following result.

Lemma 1. The functional J(v) defined in (13) has a positive lower bound
on H1

0 (0, L).

Proof. Recall that for any y ∈ H1
0 (0, L) the Poincaré’s inequality affirms

that
π2
∫ L

0
y2dx ≤ L2

∫ L

0
(y′)2dx.

For y(x) = v2(x), this implies another useful inequality

(14) π2
∫ L

0
v4dx ≤ (2L)2

∫ L

0
(vv′)2dx

Cauchy-Schwarz inequality, the left hand side boundary condition, and the
inequality (14), enable one to write successively:

v2(x) =
(∫ x

0
v′(t)dt

)2
≤ x

∫ x

0

(
v′
)2 dt < L

∫ L

0

(
v′
)2 dt,

(
π

2L
)2 ∫ L

0
v4dx ≤ L

∫ L

0

(
v′
)2(∫ L

0

(
v′
)2 dt

)
dx = L

(∫ L

0

(
v′
)2 dx

)2

.
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This means that
J(v) ≥

(
π
2
)2 1

L3 , ∀v ∈ H1
0 (0, L). �

Our main result is concentrated in the following theorem.

Theorem 2. Given condition (3), a function u(x) that extremizes the func-
tional J(·), defined by (13), satisfies—for an appropriate choice of multiplier
µ—the Euler’s equation corresponding to the functional

J∗∗ : H1
0 (0, L)→ R, J∗∗(v) := J(v) + µ

∫ L

0
vdx.

Thus, the function u(x) and the multiplier µ can be determined from the
system of equations

(15)


∫ L

0
(u′v′ − u3v)dx = µ

4

∫ L

0
vdx, ∀v ∈ H1

0 (0, L),∫ L

0
udx = π√

2 .

Proof. First, we observe that a function u that minimizes J(·) satisfies the
necessary condition of extremum

(16)
∫ L

0

((
u′
)2 − u4

)
dx = 0.

In order to handle the condition (3) we have to introduce a new dependent
variable z(x) by z(x) :=

∫ x
0 u(s)ds, z(0) = 0, z(L) = π√

2 and z′(x) = u(x).
With this, consider the functional

J∗ : H1
0 (0, L)×H1(0, L)→ R, J∗(v) := J(v) +

∫ L

0
µ(x)(v(x)− z′(x))dx,

for a sufficiently regular function µ(x).
The necessary conditions of extremum for J∗ are

dJ∗(u+εv,z)
dε

∣∣∣
ε=0

= 0 and dJ∗(u,z+ηy)
dη

∣∣∣
η=0

= 0.

The first one, in combination with (16), implies

(17)
∫ L

0
(u′v′ − u3v)dx = 1

4

∫ L

0
µ(x)v(x)dx, ∀v ∈ H1

0 (0, L),

and the second one leads to∫ L

0
µ(x)y′(x)dx = 0, ∀y ∈ H1(0, L).

For sufficiently smooth y ∈ H1
0 (0, L), such that the fundamental lemma of

variational calculus apply, the last integral equality ensures that µ′(x) = 0.
Consequently, the Lagrange’s multiplier µ reduces to a real parameter.

Thus, (17) and (3) imply (15). More than that,
dJ∗(u+εv,z)

dε

∣∣∣
ε=0

= 0
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means the first equation in the system (15). This completes the proof. �

We have to underline that all problems of extremum we have encountered
are meant on the whole Sobolev space H1

0 (0, L) equipped with the usual norm.
The positive solution u(x) of the system (15) is a weak approximation to the

positive solution ū(x) of (2) and (3). To find numerically this approximation
we discretize the equations in (15) using classical f.e.m.

The positive solution is approximated by

uh (x) =
N∑
k=1

ckϕk (x) ,

where the piecewise linear function ϕk (x) satisfies ϕk(xj) = 0 for k 6= j and
ϕk(xk) = 1, xk = kh for k = 0, 1, . . . , N + 1 and h = L/(N + 1).

For each N , uh must be a solution of the discrete analogous of (15),

(18)


∫ L

0

(
u′hϕ

′
k − u3

hϕk
)

dx = µ
4

∫ L

0
ϕkdx, for k = 1, . . . , N,∫ L

0
uhdx = π√

2

which becomes a nonlinear algebraic system, F (c) = 0, for the unknowns
c = (c1, . . . , cN , µ). Here F = (F1, . . . , FN , FN+1) and

Fn(c) = cn−1
h − 2cn

h + cn+1
h + c3

n−1h

20 + c2
n−1cnh

10 + 3cn−1c2
nh

20(19)

+2c3
nh
5 + 3c2

ncn+1h
20 + cnc2

n+1h

10 + c3
n+1h

20 + µ
4h

for n = 1, . . . , N , where we put c0 = cN+1 = 0, in order to impose the
boundary conditions and

(20) FN+1(c) = h
N∑
n=1

cn − π√
2

We solve this nonlinear system by Newton’s method. Starting with an initial
guess of the form c0

k = xk(L − xk), for k = 1, . . . , N , and µ = 10, Newton’s
method implies the following sequence of iterations by solving the sequence of
linear systems

F ′(cα)(cα+1 − cα) = −F (cα), for α = 0, 1, . . . .
This means that, for every α, we have to solve a linear algebraic system, until
for a given ε,

∥∥cα+1 − cα
∥∥ < ε. In spite of that, the method is not so ex-

pensive because of the sparsity of the Jacobian F ′(cα) =
(∂Fi(cα)

∂ck

)
i,k=1,...,N+1.

We remark that whenever the f.e.m. is applied directly to the problem (2),
i.e. the integral condition (3) is ignored, the attracting basin of the positive
solution becomes very narrow. Consequently, Newton’s method converges to
the positive solution only for initial approximation u0

h(x) sufficiently close to
this solution. That is why we have incorporated the integral condition (3)
in the above algorithm. The numerical experiments with this (most of them
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reported in [7] confirm the fact that the attracting basin of the positive solu-
tion becomes larger. This underlines the importance of the integral condition
(3) and furnishes an effective algorithm for the numerical computation of the
positive solution to problem (2).
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