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GENERALIZED QUASICONVEX SET-VALUED MAPS

NICOLAE POPOVICT*

Abstract. The aim of this paper is to introduce a concept of quasiconvexity for
set-valued maps in a general framework, by only considering an abstract conve-
xity structure in the domain and an arbitrary binary relation in the codomain. It
is shown that this concept can be characterized in terms of usual quasiconvexity
of certain real-valued functions. In particular, we focus on cone-quasiconvex
set-valued maps with values in a partially ordered vector space.
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1. INTRODUCTION AND PRELIMINARIES

Several generalizations of the classical notions of convexity and quasicon-
vexity of real-valued functions have been given for vector-valued functions and
even for set-valued maps with values in a partially ordered vector space (see
e.g. [2]-[7]), the most natural of them being those which preserve the cha-
racteristic properties of convex and quasiconvex functions to have a convex
epigraph and convex lower level sets, respectively. The aim of this paper is
to extend the concept of quasiconvexity for set-valued maps in a very general
framework: on one hand, the domain will be a set endowed by a convexity
structure induced by a set-valued map I', the values of which will replace the
linear segments; on the other hand, the order induced by a convex cone in
the codomain will be replaced by a general binary relation 2. The class of
so-called (I, Q)-quasiconvex set-valued maps will be introduced in Section 2.
Then, by using a technique from [8], in Section 3 we shall characterize this
class in terms of quasiconvexity of certain real-valued functions.

Let us firstly recall some notions of Set-Valued Analysis (see e.g. [1]). Given
a set-valued map (i.e. a point to set function) ® : A ~ B between some sets
A and B, we denote by

Dom(®)={ze€ A : ®(z) #0}, Graph(®)={(z,y) € AxB : ye d(z)}

the domain and the graph of ®, respectively.
A set-valued map @' : A ~» B is said to be an extension of ® if Graph(®) C
Graph(®’), which means that ®(x) C ®'(z) for all x € A.
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The inverse &~ : B ~» A of ® is the set-valued map defined for all y € B
by
>l y)={rcA:ycda))l
For any U C A and V' C B the image of U by ® and the inverse image of
V by @ are:

eU) =], , @) and ®N(V)={zecAd: )NV #0}.

If U: B~ C is a set-valued map, the composition product Vo ® : A ~~ C
and the square product VO® : A ~» C of ¥ and ® are the set-valued maps
defined for all z € A by

Vo d(z)= Uyeq)(x) U(y) and Yod(x)= myecb(x) U(y).

2. (I", £2)-QUASICONVEX SET-VALUED MAPS

Throughout this paper X and Y will be two nonempty sets. We will in-
troduce a class of generalized quasiconvex set-valued maps defined on X with
values in Y.

To this aim, we endow the set X with an abstract convexity structure by
means of a set-valued map I' : X x X ~» X, which assigns to each pair
(x1,m2) € X x X a subset I'(z1,x2) of X (i.e. a generalized segment). We
say that a subset D of X is I'-convex, if I'(D x D) C D. We also consider a
set-valued map A : X x X ~» X which assigns to each pair (z1,z2) € X x X
the set A(z1,22) = {x1, 22}

On the other hand, we endow the set Y with a binary relation Q C Y x Y,
which will be regarded as a set-valued map €2 : Y ~~ Y by identifying it with
its graph.

DEFINITION 1. A set-valued map F : X ~ Y is called (T, Q)-quasiconver if
the set-valued map (Q~' o F)al is an extension of (2! o F)OA, i.e.

(1) Q7 NF(@@)nQ Y F(z2)) c QY F(x)), Vai, 29 € X, x € T(21,29).
REMARK 1. If the binary relation {2 satisfies the following additional con-

dition:

(2) QN y) N Nya) £0 for all yp,y0 € F(X),

then the domain Dom(F) is I'-convex whenever condition ([1)) holds. O

DEFINITION 2. A function f: D — Y, defined on a nonempty subset D of
X, is called (T',Q)-quasiconvez if the set-valued map F : X ~'Y, defined for
allz € X by

flx if xeD
F(x):{{(@)} if a:EX\D,

is (T, Q)-quasiconvez.
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REMARK 2. If D is a nonempty I'-convex subset of X, then a function
f:D =Y is (I',Q)-quasiconvex if and only if

(3) QN f(z)NQ (f(z2) c Q7 (f(x)), Vo290 €D, z €T (21,20). O

EXAMPLE 1. Suppose that Y is a partially ordered vector space, with the
order Q induced by a convex cone K C Y, ie. K+ K CR,K C K # () and

(4) Qy)=y— K forevery yevY.
Then a set-valued map F : X ~ Y is (I', Q)-quasiconvex if and only if
(F(x1))+ K)N (F(z2) + K) C F(z)+ K, Vzi,22 € X, v € I'(z1, 22).

Note that if the cone K generates Y, i.e. K — K =Y, then condition is
fulfilled.
In particular, if X is a vector space and I' is the usual convex hull, i.e.

(5) D(x1,me) = {tx1 + (1 —t)za : t€[0,1]} forall zy,29 € X,
then F': X ~ Y is (T, Q)-quasiconvex if and only if
(6) (F(z1) + K) N (F(x2) + K) C F(tay + (1 - t)z2) + K,

for all x1,29 € X, t € ]0,1].

According to Theorem [3| below, condition @ actually means that F'is K-
quasiconvex in the sense of Kuroiwa [5]. Moreover, if f : D — Y is a vector-
valued function defined on some nonempty convex subset D of X, then f is
(T, )-quasiconvex in the sense of Deﬁnition if and only if it is K-quasiconvex
in the sense of Dinh The Luc [6]. Finally, for Y = R and K = R, we recover
the classical notion of quasiconvexity of real-valued functions. O

The following result shows that (T, 2)-quasiconvexity naturally extends the
classical notion of quasiconvexity, since it can be characterized in terms of
certain generalized convex level sets (see e.g. [9] for other generalizations
based on convex level sets).

THEOREM 3. A set-valued map F : X ~ Y is (I',Q)-quasiconvez if and
only if for every y € Y the generalized level set F~1(Qy)) = {r € X
F(z) N Q(y) # 0} is I'-convex.

Proof. Firstly observe that F~1(Q(y)) = {z € X : y € Q7 1(F(x))} for all
yey.

Now, assume that F' : X ~ Y is (I',Q)-quasiconvex and fix an arbitrary
y €Y. Let 21,70 € F71(Q(y)). Then we have y € Q7 1(F(x1)) N Q™1 (F(x2))
and by it follows that y € Q™1 (F(x)) for all z € I'(z1, 22), which means
that I'(z1,72) C F~1(Q(y)). Thus the set F~1(Q(y)) is T-convex.

Conversely, suppose that for each y € Y the set F~'(Q(y)) is I'-convex.
Let 71,29 € X and yo € Q71 (F(z1)) N Q7 Y(F(x2)). Then 21 € F~1(Q(yo))
and z2 € F~1(Q(yo)). Since the set F~1(Q(yo)) is I-convex, we infer that
D(z1,29) C F~HQyo)), ie. yo € Q' (F(z)) for all € T'(z1,x2). Thus
holds. O
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COROLLARY 4. A function f : D — Y, defined on a nonempty I'-convex
subset D of X, is (I',Q)-quasiconvex if and only if the level set f~1(Q(y)) =
{zreD : f(x) € Uy)} is I'-convez, for everyy €Y.

Proof. In view of Remark 2] the conclusion directly follows from Theorem 3]
O

To conclude this section, consider the particular case where ¥ = R is en-
dowed with the usual order relation 2., defined by with K =Ry, i.e.

Qy)=y—Ry={zeR : z2<y} foral yekR

For any set-valued map G : X ~» R with nonempty compact values, we
denote by pug : X — R the lower marginal function of G, defined for all
r € X by

pa(z) = inf G(x).

LEMMA 5. Let G : X ~ R be a set-valued map with nonempty compact va-
lues. Then G is (I',Qy)-quasiconvez if and only if the lower marginal function
e X — R s (T, Qy,)-quasiconvez.

Proof. By Theorem G is (I, Q,,)-quasiconvex if and only if for every y € R
the set G~1(€,(y)) is T-convex. On the other hand, by Corollary |4| (note that
the domain X of ug is I'-convex) it follows that pg is (I, 2y, )-quasiconvex if
and only if for each y € R the set u&l(Qu(y)) is I'-convex. Actually, for all
y € R we have:

G Quly) = {zeX : Glx)nQly) # 0}
= {zeX : d3z€G(x) st. z<y}
= {reX : inf G(z) <y}
= {zeX : pe@) € W} = ng ()

since G(z) is nonempty compact for every € X. Thus the desired equivalence
holds. O

3. (I, ©2)-QUASICONVEXITY VIA (I, Q7)-QUASICONVEXITY

The aim of this section is to characterize (I", 2)-quasiconvex set-valued maps
in terms of certain (I', 2,,)-quasiconvex set-valued maps and their lower mar-
ginal functions. As in [8], our approach is essentially based on the concept of
properly characteristic function associated to a binary relation.

DEFINITION 6. A function w:Y XY — R is said to be:

(i) characteristic for Q, if for any y,z € Y we have
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w(y,z) <0 if and only if y € Q(z),
i.e., Graph(Q71) = {(y,2) €Y xY : w(y,z) <0}.

(ii) properly characteristic for Q, if in addition to (i) there exists 2 € Y
such that

max{w(y1, 2), w(yz,2)} <0 < w(ys, £),

whenever max{w(y1, 2),w(ye, 2)} < w(ys, 2), for some y1,y2,y3,2 €Y.
EXAMPLE 2. The function w : Y x Y — R defined for all (y,2) € Y x Y by

0, if yeQ(z)
w(y, 2) :{ Ui e v\ a0

is properly characteristic for 2. ]

ExaMPLE 3. Let Y be a topological vector space, partially ordered by a
closed convex cone K with nonempty interior, and let €2 be given by . As
shown in [8], for any fixed point e € int K, the function w : Y x Y — R defined
for all (y,z) €Y xY by

(7) w(y,z) =inf{teR : ye Qz+te) =z+te— K}

is properly characteristic for 2. In this case, for any fixed z € Y, the function
w(+,2) : Y — R represents the ”smallest strictly monotonic function at z” in
the sense of Dinh The Luc [6]. Note that this function is continuous (this
property will be used further to obtain an application of Corollary @ ]

Given a function w : ¥ x Y — R and a set-valued map F' : X ~ Y, for
each z € Y we denote by w(F(-),z) : X ~» R the set-valued map defined for
all x € X by

w(F(z),2z) = {w(y,2) = y € Fa)}.

THEOREM 7. Let F': X ~~Y be a set-valued map. If the function w :Y X
Y — R is characteristic for Q2 and the set-valued map w(F(-), z) is (I', Q) -qua-
siconvex for each z € Y, then F is (I, Q)-quasiconvez.

Proof. Suppose to the contrary that F is not (I",Q2)-quasiconvex. Then
there exist some x1, 72 € X, z € Q7Y (F(z1)) N Q1 (F(x2)) and zg € T'(21, 22)
with z € Q71 (F(x0)). Hence
(8) Qz)NF(x1) # 0, Q(z) N F(x2) # 0, and
(9) Q(z) N F(xo) = 0.

By we infer the existence of y; € F(z1) and y2 € F(x2) with y; € Q(2)
and y2 € Q(z). Since w is characteristic for €, it follows that w(y;,2z) < 0
and w(yz, z) < 0, which means that 0 € Q1 (w(y1, 2)) N Q,  (w(y2, 2)). Hence
0 € Q (w(F(x1),2) N, H(w(F(x2),2)). Taking into account that w(F(-), 2)
is (T, ©,)-quasiconvex and recalling that z¢ € I'(z1,22) we can deduce that
0 € QY (w(F(xg),2)). This means that there exists some yo € F(xq) such



204 Nicolae Popovici 6

that 0 € Q, (w(yo, 2)), i.e. w(yo,2) < 0. The function w being characteristic
for 2 we infer that yo € Q(z) N F(z0), i.e. a contradiction with (). O

THEOREM 8. Let F': X ~»Y be a set-valued map and let w : Y XY — R be

a properly characteristic function for 2. Assume that the following condition
holds:
(C)  For every x € X there exists y, € F(x) such that

(10) WYz, 2) <w(y,z) forall ye F(z), z€Y.

Then the following assertions are equivalent:
(i) F is (T',Q)-quasiconvex;
(ii) w(F(+),2) is (I',Q)-quasiconvex for each z € Y.

Proof. The implication (ii) = (i) was already proven in Theorem In
order to prove the converse implication, assume that F is (T", Q)-quasiconvex
and suppose to the contrary that w(F(-),2) is not (I',Q,)-quasiconvex for
a certain Z € Y. Then there exist z1,22 € X and z3 € I'(z1,x2) such that
QN (w(F(r1),2)NQ, Y(w(F(x2),2)) ¢ QY (w(F(z3), 2)). Thus we can choose
a number o € (w(F(z1),2) +Ry) N (w(F(z2),2) + Ry) \ (w(F(x3),2) + Ry).
Hence there are some points y; € F(z1) and ys € F(z2) with

(11) max{w(y1, 2), w(y2,2)} <a <w(y,z) forall ye F(x3).

Let y,, € F(x3) be a point which satisfies with z = z3. Then, by applying

for y = ya,, it follows that max{w(y1, 2), w(y2, 2)} < w(yzs,2) and, by

taking into account that function w is properly characteristic for €2, we infer

the existence of some 2 € Y such that

(12) max{w(y1, £), w(y2,2)} <0 < w(Yas, 2).

On the other hand, by using with x = x3 and z = 2, we obtain that

W(Yzg, 2) < w(y, 2) for all y € F(x3). Thus, by we infer that
max{w(y1, 2), w(y2, 2)} <0 <w(y,2) forall ye F(x3).

Since w is characteristic for €2, the above condition means that y; € Q(2),
yo € Q(2) and y € Y \ Q(2) for all y € F(x3). Hence

2 Q7N (F (1)) N Q7 (F(22)) \ Q7 (F(23)),
which yields
Q7H(F(21)) QY (F(22)) ¢ Q7 (F(a3)),
i.e. a contradiction with the hypothesis (i). O

REMARK 3. If F': X ~» Y is single-valued, ie. if F(z) = {f(x)} for all
x € X, where f : X — Y is a function, then condition (C) becomes trivial.
Therefore Theorem [8| extends similar results from [6]—[8], which have been
obtained for single-valued functions. O
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REMARK 4. If F' is not single-valued, some additional assumptions must be
imposed on F' and w in order to ensure (C), as for example conditions (C;)
and (C2) below:

(C1) For each z € X, there exists a smallest element y, in F'(x) with respect
to €, i.e.

Yy € F(x)NQ(y) forall ye F(x);

(C9) For each z € Y, the function w(-, 2) : Y — R is monotonic with respect
to Q, i.e.

wly,2) <w(y,z) forall yeY,y eQy).

Note that in the particular case presented in Example [3| the function w
given by satisfies condition (Cz). In this case, by imposing the assumption
(C1) on F we ensure (C) in Theorem [§] (see Corollary [9|for an application). [

REMARK 5. If the function w is characteristic, but not properly character-
istic for €, the implication (i) = (i4) in Theorem 8| fails to be true, even if
condition (C) is fulfilled.

Indeed, consider the particular case where X = [—1, 1] is endowed with the
classical T given by and let Y = R? be endowed with the order relation
Q given by with K = R%. As shown in [§], the function w : ¥ x Y — R,
defined by

~1, ifyeQz)\271(2)
w(y,z) =< 0, ifyeQ(z)n2i(z)
1, ifyeY\Qz)

is characteristic, but not properly characteristic for 2. Consider the vec-
tor-valued function f = (f1, f2) : X — Y defined for all x € X by

(0,z), ifxze[-1,0]

f(@) = (fi(z), fa(z)) = {(—x,O), if z € [0,1].

It can be easily seen that f is K-quasiconvex, since its scalar components
fi: X -5 Rand fy: X — R are quasiconvex in the classical sense (see e.g. [0]
and [3] for a detailed study of K-quasiconvex vector-valued functions). Hence
the single-valued map F : X ~» Y, defined for all z € X by F(z) = {f(x)},
is (T, 2)-quasiconvex. On the other hand, in view of Remark |3 condition (C)
holds. However, by choosing the point z = (0,0), it is a simple exercise to
check that the set-valued map w(F(-),z): X ~» R is given by

{-1}, ifze[-1,1]\{0}

w(F(x),2) = {p(x)} = {{0}7 if z =0,

which is not (I, ,)-quasiconvex, since the associate function ¢ : X — R is
not quasiconvex in the classical sense. O
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We conclude by presenting a characterization of (I, Q)-quasiconvex
set-valued map with values in a topological space in terms of (I, €2, )-quasicon-
vexity of real-valued functions.

COROLLARY 9. In addition to the hypotheses of Theorem (8], assume that:
Y is a nonempty topological space, F' has nonempty compact values, and w is
continuous with respect to the first argument. Then F is (I',Q)-quasiconvez if
and only if for each z € Y the lower marginal function of the set-valued map
w(F(),z) is (', Qy)-quasiconver.

Proof. Since F' has nonempty compact values and w is continuous with
respect to the first argument, it follows that for every z € Y the set-valued
map w(F(-),z) has nonempty compact values. Hence the conclusion follows
directly from Lemma [f| and Theorem [§ O

Note that, in view of Example [3] and Remark [4, Corollary [9] may be ap-
plied to characterize those (T', Q2)-quasiconvex set-valued maps with values in
a topological ordered vector space, which have nonempty compact values, each
value containing a smallest element.
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