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perators and study their rate of convergence for functions of bounded variation.
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1. INTRODUCTION

Let W (0,∞) be the class of functions f which are locally integrable on
(0,∞) and are of polynomial growth as t→∞, i.e., for some positive r, there
holds f (t) = O (tr) , as t → ∞. We consider the Kantorovich variant V̂n of
the Baskakov operators associating to each function f ∈W (0,∞) the series

(1) V̂n(f ;x) = n
∞∑
k=0

vn+1,k (x)
∫
Ik

f (t) dt, x ∈ [0,∞),

where Ik = [k/n, (k + 1) /n] and

vn,k (x) =
(n+k−1

k

)
xk (1 + x)−n−k .

Note that the operators (1) are well defined, for sufficiently large n, provided
f ∈W (0,∞).

We mention a slightly different definition for the Kantorovich variant V ∗n of
the Baskakov operators, given by

(2) V ∗n (f ;x) = n
∞∑
k=0

vn,k (x)
∫
Ik

f (t) dt, x ∈ [0,∞),
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(see, e.g., [3, Eq. (9.2.3), p. 115]). The former definition (1) has the advantage
to satisfy the relation

(3) d
dxVn(F ;x) = V̂n(f ;x),

where F =
∫
f is a primitive of f and Vn denotes the ordinary Baskakov

operators given by

Vn(f ;x) =
∞∑
k=0

vn,k (x) f
(
k
n

)
.

In the present paper we introduce the Bézier variant of the operators (1).
For each function f ∈ W (0,∞) and α ≥ 1, we introduce the Bézier type
Baskakov-Kantorovich operators V̂n,α as

(4) V̂n,α(f ;x) = n
∞∑
k=0

Q
(α)
n+1,k (x)

∫
Ik

f (t) dt,

where

Q
(α)
n,k (x) = Jαn,k (x)− Jαn,k+1 (x)

and

Jn,k (x) =
∞∑
j=k

vn,j (x)

is the Baskakov-Bézier basis function. It is obvious that V̂n,α are positive
linear operators and V̂n,α(1;x) = 1. In the special case α = 1, the operators
V̂n,α reduce to the operators V̂n ≡ V̂n,1. Some basic properties of Jn,k are as
follows:

(i) Jn,k (x)− Jn,k+1 (x) = vn,k (x) , k = 0, 1, 2, . . . ;
(ii) J ′n,k (x) = (n+ 1) vn+1,k−1 (x) , k = 1, 2, 3, . . . ;

(iii) Jn,k (x) = (n+ 1)
∫ x

0
vn+1,k−1 (t) dt, k = 1, 2, 3, . . . ;

(iv) 0 < . . . < Jn,k+1 (x) < Jn,k (x) < . . . < Jn,1 (x) < Jn,0 (x) ≡ 1, x > 0;
(v) Jn,k is strictly increasing on [0,∞).

Rates of convergence on functions of bounded variation, for different Bézier
type operators, were studied in several papers, e.g., [6], [7], [8], [1]. In the
present paper we estimate the rate of convergence by the Baskakov-Kantoro-
vich-Bézier operators (4).

Furthermore, we find the limit of the sequence V̂n,α(f ;x) for bounded locally
integrable functions f having a discontinuity of the first kind in x ∈ (0,∞).
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2. THE MAIN RESULTS

As main result we derive the following estimate on the rate of convergence.

Theorem 1. Assume that f ∈W (0,∞) is a function of bounded variation
on every finite subinterval of (0,∞). Furthermore, let α ≥ 1, x ∈ (0,∞) and
λ > 1 be given. Then, for each r ∈ N, there exists a constant M (f, α, r, x),
such that, for sufficiently large n, the Baskakov-Kantorovich-Bézier operators
V̂n,α satisfy the estimate∣∣∣V̂n,α(f ;x)−

[
1

2α f (x+) +
(
1− 1

2α
)
f (x−)

]∣∣∣ ≤(5)

≤ 2αλ(1+x)+x
nx

n∑
k=1

x+x/
√
k∨

x−x/
√
k

(gx) + 7α
√

1+x
2
√

(n+1)x

∣∣f (x+)− f (x−)
∣∣+ M(f,α,r,x)

nr ,

where

(6) gx (t) =


f (t)− f (x−) , 0 ≤ t < x,
0, t = x,
f (t)− f (x+) , x < t <∞,

and
∨b
a (gx) is the total variation of gx on [a, b].

Remark 1. The exponent r in the O–term of Eq. (5) can be chosen arbi-
trary large. �

As an immediate consequence of Theorem 1 we obtain in the special case
α = 1 the following estimate for the Baskakov-Kantorovich operators V̂n.

Corollary 2. Under the assumptions of Theorem 1 there holds, for suffi-
ciently large n,∣∣∣V̂n(f ;x)− 1

2 [f (x+) + f (x−)]
∣∣∣ ≤

≤ 2λ(1+x)+x
nx

n∑
k=1

x+x/
√
k∨

x−x/
√
k

(gx) + 7
√

1+x
2
√

(n+1)x

∣∣f (x+)− f (x−)
∣∣+ M(f,1,r,x)

nr ,

where gx is as defined in Theorem 1.

Theorem 3. Let x ∈ (0,∞). If f ∈ L (0,∞) has a discontinuity of the first
kind in x, then we have

lim
n→∞

V̂n,α(f ;x) = 1
2α f (x+) +

(
1− 1

2α
)
f (x−) .

3. AUXILIARY RESULTS

In order to prove our main result we shall need the following lemmas.
Throughout the paper let er denote the monomials er (t) = tr, r = 0, 1, 2, . . . ,
and, for each real x, put ψx (t) = t− x.
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Lemma 4. [9, Lm. 1]. For all x > 0 and n, k ∈ N, there holds

Q
(α)
n,k (x) ≤ α vn,k (x) < α

√
1+x
2enx .

Lemma 5. [2, Cor. 3]. For each fixed x ∈ [0,∞) and m ∈ N0, the central
moments V̂n(ψmx ;x) of the Baskakov-Kantorovich operators (1) satisfy

V̂n(ψmx ;x) = O
(
n−b(m+1)/2c), as n→∞.

In particular, we have

V̂n(e0;x) = 1,
V̂n(e1;x) = x+ 1+2x

2n ,

V̂n(e2;x) = x2 + 3x2(3n+2)+6(n+1)x+1
3n2 ,

V̂n(ψ2
x;x) = 3x(1+x)(n+2)+1

3n2 .

Remark 2. Note that, given any λ > 1 and any x > 0, for all n sufficiently
large, we have the estimate

V̂n(ψ2
x;x) < λx(1+x)

n . �

Throughout the paper let

Kn,α (x, t) = n
∞∑
k=0

Q
(α)
n+1,k (x) χn,k (t) ,

where χn,k denotes the characteristic function of the interval [k/n, (k + 1) /n]
with respect to [0,∞). Given a function f ∈ W (0,∞), with this definition
there holds, for all sufficiently large n,

(7) V̂n,α(f ;x) =
∫ ∞

0
Kn,α (x, t) f (t) dt.

Furthermore, put

(8) λn,α (x, y) =
∫ y

0
Kn,α (x, t) dt.

Note that, in particular,

λn,α (x,∞) =
∫ ∞

0
Kn,α (x, u) du = 1.

Lemma 6. Let x ∈ (0,∞). For each λ > 1, and for all sufficiently large n,
we have:

λn,α (x, y) =
∫ y

0
Kn,α (x, t) dt ≤ λαx(1+x)

n(x−y)2 , 0 ≤ y < x,(9)

1− λn,α (x, z) =
∫ ∞
z

Kn,α (x, t) dt ≤ λαx(1+x)
n(z−x)2 , x < z <∞.(10)
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Proof. We first prove Eq. (9). There holds∫ y

0
Kn,α (x, t) dt ≤

∫ y

0
Kn,α (x, t) (x−t)2

(x−y)2 dt

≤ (x− y)−2 V̂n,α(ψ2
x;x)

≤ α (x− y)−2 V̂n,1(ψ2
x;x),

where we applied Lemma 4. Now Eq. (9) is a consequence of Remark 2. The
proof of Eq. (10) is similar. �

The following lemma is the well-known Berry-Esseen bound for the central
limit theorem of probability theory. It can be used to estimate upper and
lower bounds for the partial sums of Baskakov basis functions.

Lemma 7. (Berry-Esseen) [4, p. 300], [5, p. 342]. Let (ξk)∞k=1 be a sequence
of independent and identically distributed random variables with the expecta-
tion E (ξ1) = a1, the variance E (ξ1 − a1)2 = σ2 > 0, E |ξ1 − a1|3 = ρ < ∞,
and let Fn stand for the distribution function of

∑n
k=1 (ξk − a1) / (σ

√
n). Then

there exists an absolute constant C, 1/
√

2π ≤ C < 0.82, such that for all t
and n, there holds ∣∣∣∣Fn (t)− 1√

2π

∫ t

−∞
e−u

2/2du
∣∣∣∣ ≤ Cρ

σ3√n
.

Lemma 8. [9, Lm. 3]. Let (ξk)∞k=1 be a sequence of independent random
variables with the same geometric distribution

P (ξ1 = k) = 1
1+x

(
x

1+x
)k
, k = 1, 2, 3, . . . ,

where x > 0 is a parameter. Then there holds

E (ξ1) = x,

E (ξ1 − Eξ1)2 = x2 + x,

E |ξ1 − Eξ1|3 ≤ 3x (1 + x)2 .

Lemma 9. For all x ∈ (0,∞), there holds∣∣∣ ∑
k>nx

vn+1,k (x)− 1
2

∣∣∣ ≤ 3
√

1+x√
(n+1)x

.

Proof. We follow the proof of [9, Lm. 5]. Let (ξk)∞k=1 be the sequence of
independent random variables as defined in Lemma 8. Then the probability
distribution of the random variable ηn =

∑n
k=1 ξk is

P (ηn = k) =
(n+k−1

k

)
xk

(1+x)n+k = vn,k (x) , k = 1, 2, 3, . . . .
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Therefore, we have ∑
k>(n−1)x

vn,k (x) = P
(
ηn > (n− 1)x

)
= 1− P

(
ηn − nx ≤ −x

)
= 1− Fn

(
−x√

nx(1+x)

)
.

Application of Lemma 7 in combination with Lemma 8 implies∣∣∣∣ ∑
k>(n−1)x

vn,k (x)− 1
2

∣∣∣∣ =

=
∣∣∣Fn ( −xσ

√
n

)
− 1

2

∣∣∣
=
∣∣∣Fn ( −xσ

√
n

)
− 1√

2π

∫ 0

−∞
e−t

2/2dt
∣∣∣

≤
∣∣∣Fn ( −xσ

√
n

)
− 1√

2π

∫ −x/(σ√n)
−∞

e−t
2/2dt

∣∣∣+ 1√
2π

∫ 0

−x/(σ√n)
e−t

2/2dt

≤ Cρ
σ3√n + x√

2πnσ

≤ 3·0.82
√

1+x√
nx

+ x√
2πnx(1+x)

< 2.5(1+x)√
nx(1+x)

+ 0.4x√
nx(1+x)

< 3
√

1+x√
nx

.

Replacing n by n+ 1 completes the proof. �

4. PROOF OF THE MAIN RESULTS

Proof of Theorem 1. Our starting-point is the identity

f (t) = 1
2α f (x+) +

(
1− 1

2α
)
f (x−) + f(x+)−f(x−)

2α signx (t)

+gx (t) + δx (t)
[
f (x)− 1

2α f (x+)−
(
1− 1

2α
)
f (x−)

]
,

where

signx (t) =


2α − 1, t > x,
0, t = x,
−1, t < x,

δx (t) = 1, t = x, and δx (t) = 0, t 6= x. Since V̂n,α(δx;x) = 0, we conclude∣∣∣V̂n,α(f ;x)−
[

1
2α f (x+) +

(
1− 1

2α
)
f (x−)

]∣∣∣ ≤
≤ 1

2α |f (x+)− f (x−)|
∣∣∣V̂n,α(signx (t) ;x)

∣∣∣+ ∣∣∣V̂n,α(gx;x)
∣∣∣ .(11)
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First, we estimate V̂n,α(signx (t) ;x) as follows. Choose k′ such that x ∈
[k′/n, (k′ + 1) /n). Hence,

V̂n,α(signx (t) ;x) =
k′−1∑
k=0

(−1)Q(α)
n+1,k (x)

+ nQ
(α)
n+1,k′ (x)

(∫ x

k′/n
(−1) dt+

∫ (k′+1)/n

x
(2α − 1) dt

)
+

∞∑
k=k′+1

(2α − 1)Q(α)
n+1,k (x)

= 2α
∞∑

k=k′+1
Q

(α)
n+1,k (x) + nQ

(α)
n+1,k′ (x)

∫ (k′+1)/n

x
2αdt− 1 ,

since
∞∑
j=0

Q
(α)
n+1,j (x) = 1. Noting

0 ≤ nQ(α)
n+1,k′ (x)

∫ (k′+1)/n

x
2αdt ≤ 2α Q(α)

n+1,k′ (x)

we conclude∣∣∣V̂n,α(signx (t) ;x)
∣∣∣ ≤ ∣∣∣∣2α ∞∑

k=k′+1
Q

(α)
n+1,k (x)− 1

∣∣∣∣+ 2α Q(α)
n+1,k′ (x)

=
∣∣∣2αJαn+1,k′+1 (x)− 1

∣∣∣+ 2α Q(α)
n+1,k′ (x) .

Application of the inequality |aα − bα| ≤ α |a− b|, for 0 ≤ a, b ≤ 1, and α ≥ 1,
yields ∣∣∣2αJαn+1,k′+1 (x)− 1

∣∣∣ ≤ α2α
∣∣∣Jn+1,k′+1 (x)− 1

2

∣∣∣
= α2α

∣∣∣∣ ∞∑
k=k′+1

vn+1,k (x)− 1
2

∣∣∣∣
= α2α

∣∣∣∣ ∞∑
k>nx

vn+1,k (x)− 1
2

∣∣∣∣.
Therefore, by Lemma 9 and Lemma 4, we obtain

(12)
∣∣∣V̂n,α(signx (t) ;x)

∣∣∣ ≤ α2α 3
√

1+x√
(n+1)x

+ 2α α
√

1+x√
2e(n+1)x

< 7α·2α−1√1+x√
(n+1)x

.

In order to complete the proof of the theorem we need an estimate of
V̂n,α(gx;x). We use the integral representation (7) and decompose [0,∞) into
three parts as follows

V̂n,α(gx;x) =
(∫ x−x/

√
n

0
+
∫ x+x/

√
n

x−x/
√
n

+
∫ ∞
x+x/

√
n

)
Kn,α (x, t) gx (t) dt(13)

= I1 + I2 + I3, say.
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We start with I2. For t ∈ [x− x/
√
n, x+ x/

√
n], we have

|gx (t)| ≤
x+x/

√
n∨

x−x/
√
n

(gx)

and thus

(14) |I2| ≤
x+x/

√
n∨

x−x/
√
n

(gx) ≤ 1
n

n∑
k=1

x+x/
√
k∨

x−x/
√
k

(gx) .

Next we estimate I1. Put y = x − x/
√
n. Using integration by parts with

Eq. (8) we have

I1 =
∫ y

0
gx (t) dtλn,α (x, t) = gx (y)λn,α (x, y)−

∫ y

0
λn,α (x, t) dtgx (t) .

Since |gx (y)| = |gx (y)− gx (x)| ≤
∨x
y (gx), we conclude

|I1| ≤
x∨
y

(gx) λn,α (x, y) +
∫ y

0
λn,α (x, t) dt

(
−

x∨
t

(gx)
)
.

Since y = x − x/
√
n ≤ x, Eq. (9) of Lemma 6 implies, for each λ > 1 and

n sufficiently large,

|I1| ≤ αλx(1+x)
n(x−y)2

x∨
y

(gx) + αλx(1+x)
n

∫ y

0
1

(x−t)2 dt
(
−

x∨
t

(gx)
)
.

Integrating the last term by parts, we obtain

|I1| ≤ αλx(1+x)
n

(
x−2

x∨
0

(gx) + 2
∫ y

0

∨x
t (gx)

(x− t)3 dt
)
.

Replacing the variable y in the last integral by x− x/
√
n, we get∫ x−x/

√
n

0

x∨
t

(gx) (x− t)−3 dt =
n−1∑
k=1

∫ x/
√
k

x/
√
k+1

x∨
x−t

(gx) t−3dt

≤ 1
2x2

n∑
k=1

x∨
x−x/

√
k

(gx) .

Hence

(15) |I1| ≤ 2αλ(1+x)
nx

n∑
k=1

x∨
x−x/

√
k

(gx) .

Finally, we estimate I3. We put

g̃x (t) =
{
gx (t) , 0 ≤ t ≤ 2x,
gx (2x) , 2x < t <∞,
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and divide I3 = I31 + I32, where

I31 =
∫ ∞
x+x/

√
n
Kn,α (x, t) g̃x (t) dt

and
I32 =

∫ ∞
2x

Kn,α (x, t) [gx (t)− gx (2x)] dt.

With y = x+ x/
√
n the first integral can be written in the form

I31 = lim
R→+∞

{
gx (y) [1− λn,α (x, y)] + g̃x (R) [λn,α (x,R)− 1] +

+
∫ R

y
[1− λn,α (x, t)] dtg̃x (t)

}
.

By Eq. (10) of Lemma 6, we conclude, for each λ > 1 and n sufficiently large,

|I31| ≤ αλx(1+x)
n lim

R→+∞

{∨y

x
(gx)

(y−x)2 + |g̃x(R)|
(R−x)2 +

∫ R

y

1
(t−x)2 dt

( t∨
x

(g̃x)
)}

= αλx(1+x)
n

{∨y

x
(gx)

(y−x)2 +
∫ 2x

y

1
(t−x)2 dt

( t∨
x

(gx)
)}
.

In a similar way as above we obtain∫ 2x

y

1
(t−x)2 dt

( t∨
x

(gx)
)
≤ x−2

2x∨
x

(gx)−
∨y
x (gx)

(y − x)2 + x−2
n−1∑
k=1

x+x/
√
k∨

x

(gx)

which implies the estimate

(16) |I31| ≤ 2αλ(1+x)
nx

n∑
k=1

x+x/
√
k∨

x

(gx) .

Lastly, we estimate I32. By assumption, there exists an integer r, such that
f (t) = O

(
t2r
)
, as t→∞. Thus, for a certain constant M > 0 depending only

on f , x and r, we have

|I32| ≤ Mn
∞∑
k=0

Q
(α)
n+1,k (x)

∫ ∞
2x

χn,k (t) t2rdt

≤ αMn
∞∑
k=0

vn+1,k (x)
∫ ∞

2x
χn,k (t) t2rdt,

where we used Lemma 4. Obviously, t ≥ 2x implies t ≤ 2 (t− x) and it follows

|I32| ≤ 22rαMV̂n(ψ2r
x ;x).

Because the central moments of the Baskakov-Kantorovich operators (1) sat-
isfy V̂n(ψ2r

x ;x) = O (n−r), as n→∞ [2, Cor. 3], we arrive at
(17) I32 = O

(
n−r

)
, as n→∞.
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Collecting the estimates (14), (15), (16), and (17), we obtain with regard to
Eq. (13)

(18)
∣∣∣V̂n,α(gx;x)

∣∣∣ ≤ 2αλ(1+x)+x
nx

n∑
k=1

x+x/
√
k∨

x−x/
√
k

(gx) +O
(
n−r

)
, as n→∞.

Finally, combining (11), (12), (18), we obtain (5). This completes the proof
of Theorem 1. �

Proof of Theorem 3. Since the function ψ2
x given by ψ2

x (t) = (t− x)2 is
of bounded variation on every finite subinterval of [0,∞), we deduce from
Theorem 1 that, for all x ∈ (0,∞),

lim
n→∞

V̂n,α(ψ2
x;x) = 0.

If f ∈ L∞ (0,∞), then gx defined as in (6) is also bounded and is continuous
at the point x. By the Korovkin theorem, we conclude

lim
n→∞

V̂n,α(gx;x) = gx (x) = 0.

Therefore, the right-hand side of Inequality (11) tends to zero as n→∞. This
completes the proof of Theorem 3. �
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operators for bounded variation functions, J. Approx. Theory, 95, pp. 369–387, 1998.
[8] Zeng, X. M. and Chen, W., On the rate of convergence of the generalized Durrmeyer

type operators for functions of bounded variation, J. Approx. Theory, 102, pp. 1–12,
2000.

[9] Zeng, X. M. and Gupta, V., Rate of convergence of Baskakov-Bézier type operators
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