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SEQUENCES OF LINEAR OPERATORS
RELATED TO CESARO-CONVERGENT SEQUENCES

MIRA-CRISTIANA ANISIU* and VALERIU ANISIU'

Abstract. Given a Cesaro-convergent sequence of real numbers (an)nen, a se-
quence (@n)nen of operators is defined on the Banach space R(I, F') of regular
functions defined on I = [0, 1] and having values in a Banach space F,

on(f) =3 anf (£).

It is proved that if, in addition, the sequence (M)%N is bounded, then

n

@n(f) converges to a - fol f, where @ = limg_,o 2492 The converse of this

statement is also true. Another result is that the supplementary condition can
be dropped if the operators are considered on the space Cl(I, F).

MSC 2000. 47B38, 26E60.
Keywords. Linear operators, Cesaro-convergent sequences.

1. INTRODUCTION

Let (ap)nen be a sequence of real numbers. It will be called Cesdro-con-
vergent if the sequence of its Cesaro (arithmetic) means is convergent, i.e.

lim at...t+an cR.
n—00 n

For x € R, |z] will denote the greatest integer number n < x (the integer
part of x).

Given the interval I = [0,1] and a Banach space F' # {0}, we denote by
B(I,F) the Banach space of bounded functions f : I — F endowed with the
sup norm. The space B(I, F') contains as a subspace the set of “step-functions”
EIL,F)={f:1—-F:3ty,...,tpocl,tr=0<t1 <...<tp,=1,Ju, €F
so that f’(tk—lytk) =ug, k=1,...,n}. In fact each f € E(I,F) is a finite
sum of functions having the form x(o g - v, where 0 <a < 8 <1, u € F and
X[a,3) 18 the characteristic function of the interval [«, 5]. We denote by R(/, F)
the Banach space of reqular functions (which admit side limits at each t € I),
endowed with the uniform norm || f|| = sup,cpoq [ f(t)[. We mention that
R(I, F) is the closure in B(I, F) of the subspace £(, F'), and it contains the
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Banach space of continuous functions C(I, F'). More details on these spaces of
functions are to be found in [3, p. 137].
We define a sequence of operators associated to (ap)nen, namely ¢, :

R(I,F) = F, neN

(1) en(f) =

S=

z anf (£).

PROPOSITION 1. The operator ¢, is linear and continuous, and its norm is
given by

n
(2) lenll =3 D laxl -
k=1

Proof. The linearity is straightforward. Because H I (%) H < ||f]l, it follows

(3) len(H < (53 lawl) - 111,
k=1

hence ¢, is also continuous. To obtain the norm of ¢,, we use the inequality
and the function

| (signag)u, fort==E k=1,...,n
fot) = { 0, otherwige,

where u € F and |Ju| = 1. We have fo € E(I,F) C R(I,F), || fo]| = 1 and

en (fo) = (£ ]ﬁ:l lag|) - u, hence the equality 1} follows. O

2. MAIN RESULTS

We are interested in finding conditions on the sequence (ap)pen in order
to obtain the convergence of the sequence of linear operators . The theo-
rem below guarantees the convergence of (¢n(f)),cn for each regular function
f € F(I,F). Beside the condition of Cesaro-convergence for (ay)nen, the
boundedness of a certain sequence related to this is imposed.

THEOREM 2. Let there be given a regular function f € R(I,F) and a se-
quence (an)nen of real numbers satisfying the conditions:

ai+...+an — (l)'
’

1. (ap)nen is Cesaro-convergent to a (lim, o -

2. the sequence (lal‘;nﬂa"‘) o is bounded.
n

Then the sequence (0n(f)),cn @5 convergent and
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1
(4) Jim ga(f)=a- [ .
Proof. At first we shall prove for functions f of the form
(5) f = Xja,p -t where0 <a < <1, ueF.
We have
1 1 1
on(f)= (- Z ag ) u=(— Z ag ) u— (- Z ay | - u.
" ken " ken =y
an<k<pn k<pBn k<an
If a = 0 the conclusion follows obviously.
For a > 0 we denote a}, = @£ and we write the two sums in the above
formula as
Z ag = LﬁnJ ’ a’i@n]’ Z ak = LO(TLJ ’ atan] — Qlan]| - On,
keN keN
k<pBn k<an
where

0 — 1, foran € N
1 0, otherwise.

We finally obtain

16n] . Lan]

_ * aW"J
onl(f) = (T “Olgn) ~ = " Oan)

n

9n> - U.

1 — - an __ 1 1 an __
We have nlLIgO a*omJ = a; but 9 = a; — (1 — ﬁ) a;_;, hence nhﬁngo o =0. It

follows that in this case

1
lim gpn(f):(ﬁa—aa)-u:a-/o f.

n—o0

\a1|+--~+\an|)

n neN
being bounded, let us choose M such that Wﬂ < M for each n € N; let
also € > 0 be an arbitrary constant. From the definition of the space R(I, F)
it follows the existence of the functions f;, ¢ = 1,...,p of the type described

in ’ with || f — Y7, fil| < . We have

1 p p 1 1
son(f)—a/ofzwn(f—;fi)Jr;(@n(fi)—a/o f)=af (1-31).

=1

We consider now the general case f € R(I, F'). The sequence (

The norm of ¢, as given by , is |jen|| = w, hence

<M -e.

Q w7 =3 2] < ol - £ = 2 5
=1 i=1

Taking into account the first part of the proof, for each ¢ = 1,...,p there
exists n; € N so that H(pn(fz) —a- foleH < % for n > n;. It follows that for
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n > max n; we have
1=1,...,p

and the inequalities @, and imply that
1
H@n(f)—a'/o fH <M-e+e+la|-e, forn > N.

It follows that the conclusion holds also for the general case f € F(I,F). O

REMARK 1. The Cesaro-convergence of (ay)nen in Theorem [2| does not

\a1|+...+\an|)
n

necessarily imply the boundedness of ( For example, let the

sequence be given by

neN’

[ Vn, n odd
Y= = 1, n even.

Then
. { 1/y/n, n odd
ay, =
0, n even,
hence lim a) =0, but lim laaetlan] lan| = oo. O

n—00 n—00 n n—00

The condition of Cesaro-convergence imposed to the sequence (an)pen in
Theorem [2] is a natural one and cannot be relaxed, neither the boundedness

M)n oy In fact, Theorem [2[ does admit the following

of the sequence ( -

converse:

THEOREM 3. Let (¢n)nen be the sequence of linear operators associated
to the sequence of real numbers (ap)nen. If nh_)rgo on(f) exists for every f €
C(I,F)CR(I,F), then:

1. (an)nen is Cesdro-convergent to a (nh_>ngo

|a1|+...+|an\)
n neN

ai+t...tan — a)
n

)

2. the sequence ( is bounded.

Proof. The first conclusion follows by taking f(t) = u for each ¢t € I, with
w e F\ {0}. In this case ¢, (f) = “toting,

The norm of the operators ¢, in the space C(I, F') is the same as in .
Indeed, in the proof of Proposition [ the function fy can be modified to
a continuous and piecewise affine one which takes also the values (signay)u
on the points %, k = 1,...,n. From the principle of uniform boundedness

[4, p. 66] the second conclusion follows. O
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g

REMARK 2. Using a principle of condensation of singularities [2], one can
prove that the convergence in does not hold for “typical” continuous func-
tions. Even stronger principles of condensation of singularities [I] may be
applied. O

In what follows we shall prove that for the class of continuous functions
having also a continuous derivative, the condition of boundedness of the se-

joa |-+ lan]
quence (FHHEE) o

of uniform boundedness does not work, because C!(I, F) endowed with the
uniform norm is not a Banach space. The norm of ¢, is still the same. In this
case we have

is no longer necessary. In this setting, the principle

THEOREM 4. Let there be given a function f € CY(I,F) and a sequence
(an)nen of real numbers which is Cesdro-convergent to a ( le Gtedtn — g,
n—oo
Then
1
©) lim @u(f)=a- [ 1

n—oo

Proof. We write ¢, (f) successively as

n

en(f) =33 (kap — (k= 1) aj_y) £ (%)

i
L

WE

LS ki () < 1S ko (52)

1 k=1

Sk (£ (&) = £ (E2) +anr).
k=1

We bring now into the scene the continuous function g given by g(t) = ¢ f'(¢)
and express ¢, (f) in the form

i

(10)
on(h) = =S arb (£ (42) = £ (5) = 17(5) 1S i) + i)
—= S ek (£ (82) - £ (5) - 78) - 1 £ aioh) + L (1) + a1

Applying Theorem [2| for the function g and for the sequence (a)nen conver-
ai+..+ay, lat|+...+]a; |
n

gent to a, for which obviously lim m )neN is

n—oo
bounded (because of the convergence of (a}),cn) we get

N S S

(the last equality is a consequence of an integration by parts). The function
/! being uniformly continuous on I, given € > 0 and n sufficiently large, we

= a and (
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obtain as a consequence of a mean theorem [3 p. 154]

() -1 () =2 ()] <k s, ro-r (8] <5
te(k kLl

hence o
*k( (k+1) f(i)_lf H ZMek_n1M6<M€
Where M is a upper bound for the convergent sequence (|ay,|), oy - It follows
that
)4 ()
We take the limit in and get the conclusion. O

As an application of Theorem [2] we obtain a somehow surprising result,
proved directly for differentiable functions with bounded derivative in [5]: For
each a € [0, 1], there exist ¢, € {0,1} such that

hmstkf —a/f, Ve R(I,F).

n—oo M

To prove this equahty, we choose €, = a, = |(n+ 1)a] — |na|, n € N which
satisfy €, € {0,1} and lim,, 0o % =q.

Open question. It would be interesting to find out if the conclusion of
Theorem [2] also holds for a class of functions more general than the regular
ones as, for example, the Riemann integrable real-valued functions. For the
class of Lebesgue integrable functions the result does not hold, as the function
of Dirichlet type f: I — F =R,

() = arbitrary, t€[0,1]NQ
10, otherwise
shows.
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