SEQUENCES OF LINEAR OPERATORS RELATED TO CESÀRO-CONVERGENT SEQUENCES

MIRA-CRISTIANA ANISIU* ${ }^{*}$ and VALERIU ANISIU ${ }^{\dagger}$

Abstract

Given a Cesàro-convergent sequence of real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$, a sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of operators is defined on the Banach space $\mathcal{R}(I, F)$ of regular functions defined on $I=[0,1]$ and having values in a Banach space F, $$
\varphi_{n}(f)=\frac{1}{n} \sum_{k=1}^{n} a_{k} f\left(\frac{k}{n}\right)
$$

It is proved that if, in addition, the sequence $\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}$ is bounded, then $\varphi_{n}(f)$ converges to $a \cdot \int_{0}^{1} f$, where $a=\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}$. The converse of this statement is also true. Another result is that the supplementary condition can be dropped if the operators are considered on the space $\mathcal{C}^{1}(I, F)$.

MSC 2000. 47B38, 26E60.
Keywords. Linear operators, Cesàro-convergent sequences.

1. INTRODUCTION

Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers. It will be called Cesàro-convergent if the sequence of its Cesàro (arithmetic) means is convergent, i.e.

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n} \in \mathbb{R}
$$

For $x \in \mathbb{R},\lfloor x\rfloor$ will denote the greatest integer number $n \leq x$ (the integer part of x).

Given the interval $I=[0,1]$ and a Banach space $F \neq\{0\}$, we denote by $\mathcal{B}(I, F)$ the Banach space of bounded functions $f: I \rightarrow F$ endowed with the sup norm. The space $\mathcal{B}(I, F)$ contains as a subspace the set of "step-functions" $\mathcal{E}(I, F)=\left\{f: I \rightarrow F: \exists t_{0}, \ldots, t_{n} \in I, t_{0}=0<t_{1}<\ldots<t_{n}=1, \exists u_{k} \in F\right.$ so that $\left.\left.f\right|_{\left(t_{k-1}, t_{k}\right)}=u_{k}, k=1, \ldots, n\right\}$. In fact each $f \in \mathcal{E}(I, F)$ is a finite sum of functions having the form $\chi_{[\alpha, \beta]} \cdot u$, where $0 \leq \alpha \leq \beta \leq 1, u \in F$ and $\chi_{[\alpha, \beta]}$ is the characteristic function of the interval $[\alpha, \beta]$. We denote by $\mathcal{R}(I, F)$ the Banach space of regular functions (which admit side limits at each $t \in I$), endowed with the uniform norm $\|f\|=\sup _{t \in[0,1]}\|f(t)\|$. We mention that $\mathcal{R}(I, F)$ is the closure in $\mathcal{B}(I, F)$ of the subspace $\mathcal{E}(I, F)$, and it contains the

[^0]Banach space of continuous functions $\mathcal{C}(I, F)$. More details on these spaces of functions are to be found in [3, p. 137].

We define a sequence of operators associated to $\left(a_{n}\right)_{n \in \mathbb{N}}$, namely φ_{n} : $\mathcal{R}(I, F) \rightarrow F, n \in \mathbb{N}$

$$
\begin{equation*}
\varphi_{n}(f)=\frac{1}{n} \sum_{k=1}^{n} a_{k} f\left(\frac{k}{n}\right) . \tag{1}
\end{equation*}
$$

Proposition 1. The operator φ_{n} is linear and continuous, and its norm is given by

$$
\begin{equation*}
\left\|\varphi_{n}\right\|=\frac{1}{n} \sum_{k=1}^{n}\left|a_{k}\right| . \tag{2}
\end{equation*}
$$

Proof. The linearity is straightforward. Because $\left\|f\left(\frac{k}{n}\right)\right\| \leq\|f\|$, it follows

$$
\begin{equation*}
\left\|\varphi_{n}(f)\right\| \leq\left(\frac{1}{n} \sum_{k=1}^{n}\left|a_{k}\right|\right) \cdot\|f\|, \tag{3}
\end{equation*}
$$

hence φ_{n} is also continuous. To obtain the norm of φ_{n}, we use the inequality (3) and the function

$$
f_{0}(t)= \begin{cases}\left(\operatorname{sign} a_{k}\right) u, & \text { for } t=\frac{k}{n}, k=1, \ldots, n \\ 0, & \text { otherwise },\end{cases}
$$

where $u \in F$ and $\|u\|=1$. We have $f_{0} \in \mathcal{E}(I, F) \subseteq \mathcal{R}(I, F),\left\|f_{0}\right\|=1$ and $\varphi_{n}\left(f_{0}\right)=\left(\frac{1}{n} \sum_{k=1}^{n}\left|a_{k}\right|\right) \cdot u$, hence the equality 22 follows.

2. MAIN RESULTS

We are interested in finding conditions on the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in order to obtain the convergence of the sequence of linear operators (1). The theorem below guarantees the convergence of $\left(\varphi_{n}(f)\right)_{n \in \mathbb{N}}$ for each regular function $f \in \mathcal{F}(I, F)$. Beside the condition of Cesàro-convergence for $\left(a_{n}\right)_{n \in \mathbb{N}}$, the boundedness of a certain sequence related to this is imposed.

Theorem 2. Let there be given a regular function $f \in \mathcal{R}(I, F)$ and a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ of real numbers satisfying the conditions:

1. $\left(a_{n}\right)_{n \in \mathbb{N}}$ is Cesàro-convergent to a $\left(\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}=a\right)$;
2. the sequence $\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}$ is bounded.

Then the sequence $\left(\varphi_{n}(f)\right)_{n \in \mathbb{N}}$ is convergent and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi_{n}(f)=a \cdot \int_{0}^{1} f \tag{4}
\end{equation*}
$$

Proof. At first we shall prove (4) for functions f of the form

$$
\begin{equation*}
f=\chi_{[\alpha, \beta]} \cdot u, \text { where } 0 \leq \alpha \leq \beta \leq 1, u \in F \tag{5}
\end{equation*}
$$

We have

$$
\varphi_{n}(f)=\left(\frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\ \alpha n \leq k \leq \beta n}} a_{k}\right) \cdot u=\left(\frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\ k \leq \beta n}} a_{k}\right) \cdot u-\left(\frac{1}{n} \sum_{\substack{k \in \mathbb{N} \\ k<\alpha n}} a_{k}\right) \cdot u
$$

If $\alpha=0$ the conclusion follows obviously.
For $\alpha>0$ we denote $a_{n}^{*}=\frac{a_{1}+\ldots+a_{n}}{n}$ and we write the two sums in the above formula as

$$
\sum_{\substack{k \in \mathbb{N} \\ k \leq \beta n}} a_{k}=\lfloor\beta n\rfloor \cdot a_{\lfloor\beta n\rfloor}^{*}, \quad \sum_{\substack{k \in \mathbb{N} \\ k<\alpha n}} a_{k}=\lfloor\alpha n\rfloor \cdot a_{\lfloor\alpha n\rfloor}^{*}-a_{\lfloor\alpha n\rfloor} \cdot \theta_{n}
$$

where

$$
\theta_{n}=\left\{\begin{array}{l}
1, \text { for } \alpha n \in \mathbb{N} \\
0, \text { otherwise }
\end{array}\right.
$$

We finally obtain

$$
\varphi_{n}(f)=\left(\frac{\lfloor\beta n\rfloor}{n} \cdot a_{\lfloor\beta n\rfloor}^{*}-\frac{\lfloor\alpha n\rfloor}{n} \cdot a_{\lfloor\alpha n\rfloor}^{*}+\frac{a_{\lfloor\alpha n\rfloor}}{n} \cdot \theta_{n}\right) \cdot u
$$

We have $\lim _{n \rightarrow \infty} a_{\lfloor\alpha n\rfloor}^{*}=a$; but $\frac{a_{n}}{n}=a_{n}^{*}-\left(1-\frac{1}{n}\right) a_{n-1}^{*}$, hence $\lim _{n \rightarrow \infty} \frac{a_{n}}{n}=0$. It follows that in this case

$$
\lim _{n \rightarrow \infty} \varphi_{n}(f)=(\beta a-\alpha a) \cdot u=a \cdot \int_{0}^{1} f
$$

We consider now the general case $f \in \mathcal{R}(I, F)$. The sequence $\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}$ being bounded, let us choose M such that $\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n} \leq M$ for each $n \in \mathbb{N}$; let also $\varepsilon>0$ be an arbitrary constant. From the definition of the space $\mathcal{R}(I, F)$ it follows the existence of the functions $f_{i}, i=1, \ldots, p$ of the type described in (5), with $\left\|f-\sum_{i=1}^{p} f_{i}\right\|<\varepsilon$. We have

$$
\varphi_{n}(f)-a \int_{0}^{1} f=\varphi_{n}\left(f-\sum_{i=1}^{p} f_{i}\right)+\sum_{i=1}^{p}\left(\varphi_{n}\left(f_{i}\right)-a \int_{0}^{1} f_{i}\right)-a \int_{0}^{1}\left(f-\sum_{i=1}^{p} f_{i}\right)
$$

The norm of φ_{n}, as given by 22 , is $\left\|\varphi_{n}\right\|=\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}$, hence

$$
\begin{equation*}
\left\|\varphi_{n}\left(f-\sum_{i=1}^{p} f_{i}\right)\right\| \leq\left\|\varphi_{n}\right\| \cdot\left\|f-\sum_{i=1}^{p} f_{i}\right\| \leq M \cdot \varepsilon \tag{6}
\end{equation*}
$$

Taking into account the first part of the proof, for each $i=1, \ldots, p$ there exists $n_{i} \in \mathbb{N}$ so that $\left\|\varphi_{n}\left(f_{i}\right)-a \cdot \int_{0}^{1} f_{i}\right\|<\frac{\varepsilon}{p}$ for $n \geq n_{i}$. It follows that for
$n \geq \max _{i=1, \ldots, p} n_{i}$ we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{p}\left(\varphi_{n}\left(f_{i}\right)-a \cdot \int_{0}^{1} f_{i}\right)\right\| \leq \varepsilon \tag{7}
\end{equation*}
$$

But

$$
\begin{equation*}
\left\|a \int_{0}^{1}\left(f-\sum_{i=1}^{p} f_{i}\right)\right\| \leq|a| \cdot \varepsilon \tag{8}
\end{equation*}
$$

and the inequalities (6), (7) and (8) imply that

$$
\left\|\varphi_{n}(f)-a \cdot \int_{0}^{1} f\right\| \leq M \cdot \varepsilon+\varepsilon+|a| \cdot \varepsilon, \text { for } n \geq \mathbb{N}
$$

It follows that the conclusion holds also for the general case $f \in \mathcal{F}(I, F)$.
Remark 1. The Cesàro-convergence of $\left(a_{n}\right)_{n \in \mathbb{N}}$ in Theorem 2 does not necessarily imply the boundedness of $\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}$. For example, let the sequence be given by

$$
a_{n}= \begin{cases}\sqrt{n}, & n \text { odd } \\ -\sqrt{n-1}, & n \text { even }\end{cases}
$$

Then

$$
a_{n}^{*}= \begin{cases}1 / \sqrt{n}, & n \text { odd } \\ 0, & n \text { even }\end{cases}
$$

hence $\lim _{n \rightarrow \infty} a_{n}^{*}=0$, but $\lim _{n \rightarrow \infty} \frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}=\lim _{n \rightarrow \infty}\left|a_{n}\right|=\infty$.
The condition of Cesàro-convergence imposed to the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in Theorem 2 is a natural one and cannot be relaxed, neither the boundedness of the sequence $\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}$. In fact, Theorem 2 does admit the following converse:

THEOREM 3. Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be the sequence (1) of linear operators associated to the sequence of real numbers $\left(a_{n}\right)_{n \in \mathbb{N}}$. If $\lim _{n \rightarrow \infty} \varphi_{n}(f)$ exists for every $f \in$ $\mathcal{C}(I, F) \subseteq \mathcal{R}(I, F)$, then:

1. $\left(a_{n}\right)_{n \in \mathbb{N}}$ is Cesàro-convergent to a $\left(\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}=a\right)$;
2. the sequence $\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}$ is bounded.

Proof. The first conclusion follows by taking $f(t)=u$ for each $t \in I$, with $u \in F \backslash\{0\}$. In this case $\varphi_{n}(f)=\frac{a_{1}+\ldots+a_{n}}{n} u$.

The norm of the operators φ_{n} in the space $\mathcal{C}(I, F)$ is the same as in (1). Indeed, in the proof of Proposition 1, the function f_{0} can be modified to a continuous and piecewise affine one which takes also the values $\left(\operatorname{sign} a_{k}\right) u$ on the points $\frac{k}{n}, k=1, \ldots, n$. From the principle of uniform boundedness [4, p. 66] the second conclusion follows.

Remark 2. Using a principle of condensation of singularities [2], one can prove that the convergence in (4) does not hold for "typical" continuous functions. Even stronger principles of condensation of singularities [1 may be applied.

In what follows we shall prove that for the class of continuous functions having also a continuous derivative, the condition of boundedness of the sequence $\left(\frac{\left|a_{1}\right|+\ldots+\left|a_{n}\right|}{n}\right)_{n \in \mathbb{N}}$ is no longer necessary. In this setting, the principle of uniform boundedness does not work, because $\mathcal{C}^{1}(I, F)$ endowed with the uniform norm is not a Banach space. The norm of φ_{n} is still the same. In this case we have

Theorem 4. Let there be given a function $f \in \mathcal{C}^{1}(I, F)$ and a sequence
 Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \varphi_{n}(f)=a \cdot \int_{0}^{1} f \tag{9}
\end{equation*}
$$

Proof. We write $\varphi_{n}(f)$ successively as

$$
\begin{aligned}
\varphi_{n}(f) & =\frac{1}{n} \sum_{k=1}^{n}\left(k a_{k}^{*}-(k-1) a_{k-1}^{*}\right) f\left(\frac{k}{n}\right) \\
& =\frac{1}{n} \sum_{k=1}^{n} k a_{k}^{*} f\left(\frac{k}{n}\right)-\frac{1}{n} \sum_{k=1}^{n-1} k a_{k}^{*} f\left(\frac{k+1}{n}\right) \\
& =\sum_{k=1}^{n-1} a_{k}^{*} \frac{k}{n}\left(f\left(\frac{k}{n}\right)-f\left(\frac{k+1}{n}\right)\right)+a_{n}^{*} f(1) .
\end{aligned}
$$

We bring now into the scene the continuous function g given by $g(t)=t f^{\prime}(t)$ and express $\varphi_{n}(f)$ in the form

$$
\begin{align*}
& \varphi_{n}(f)=-\sum_{k=1}^{n-1} a_{k}^{*} \frac{k}{n}\left(f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)-\frac{1}{n} f^{\prime}\left(\frac{k}{n}\right)\right)-\frac{1}{n} \sum_{k=1}^{n-1} a_{k}^{*} \frac{k}{n} f^{\prime}\left(\frac{k}{n}\right)+a_{n}^{*} f(1) \tag{10}\\
&=-\sum_{k=1}^{n-1} a_{k}^{*} \frac{k}{n}\left(f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)-\frac{1}{n} f^{\prime}\left(\frac{k}{n}\right)\right)-\frac{1}{n} \sum_{k=1}^{n} a_{k}^{*} g\left(\frac{k}{n}\right)+\frac{1}{n} a_{n}^{*} f^{\prime}(1)+a_{n}^{*} f(1) .
\end{align*}
$$

Applying Theorem 2 for the function g and for the sequence $\left(a_{n}^{*}\right)_{n \in \mathbb{N}}$ convergent to a, for which obviously $\lim _{n \rightarrow \infty} \frac{a_{1}^{*}+\ldots+a_{n}^{*}}{n}=a$ and $\left(\frac{\left|a_{1}^{*}\right|+\ldots+\left|a_{n}^{*}\right|}{n}\right)_{n \in \mathbb{N}}$ is bounded (because of the convergence of $\left.\left(a_{n}^{*}\right)_{n \in \mathbb{N}}\right)$ we get

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} a_{k}^{*} g\left(\frac{k}{n}\right)=a \cdot \int_{0}^{1} g=a \cdot f(1)-a \cdot \int_{0}^{1} f
$$

(the last equality is a consequence of an integration by parts). The function f^{\prime} being uniformly continuous on I, given $\varepsilon>0$ and n sufficiently large, we
obtain as a consequence of a mean theorem [3, p. 154]

$$
\left\|f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)-\frac{1}{n} f^{\prime}\left(\frac{k}{n}\right)\right\| \leq \frac{1}{n} \sup _{t \in\left(\frac{k}{n}, \frac{k+1}{n}\right)}\left\|f^{\prime}(t)-f^{\prime}\left(\frac{k}{n}\right)\right\|<\frac{\varepsilon}{n},
$$

hence

$$
\left\|\sum_{k=1}^{n-1} a_{k}^{*} \frac{k}{n}\left(f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)-\frac{1}{n} f^{\prime}\left(\frac{k}{n}\right)\right)\right\| \leq \sum_{k=1}^{n-1} \frac{M \varepsilon}{n^{2}} k=\frac{n-1}{2 n} M \varepsilon \leq M \varepsilon,
$$

where M is a upper bound for the convergent sequence $\left(\left|a_{n}^{*}\right|\right)_{n \in \mathbb{N}}$. It follows that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} a_{k}^{*} \frac{k}{n}\left(f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)-\frac{1}{n} f^{\prime}\left(\frac{k}{n}\right)\right)=0 .
$$

We take the limit in (10) and get the conclusion.
As an application of Theorem 2 we obtain a somehow surprising result, proved directly for differentiable functions with bounded derivative in [5]: For each $a \in[0,1]$, there exist $\varepsilon_{n} \in\{0,1\}$ such that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \varepsilon_{k} f\left(\frac{k}{n}\right)=a \cdot \int_{0}^{1} f, \quad \forall f \in \mathcal{R}(I, F) .
$$

To prove this equality, we choose $\varepsilon_{n}=a_{n}=\lfloor(n+1) a\rfloor-\lfloor n a\rfloor, n \in \mathbb{N}$ which satisfy $\varepsilon_{n} \in\{0,1\}$ and $\lim _{n \rightarrow \infty} \frac{a_{1}+\ldots+a_{n}}{n}=a$.

Open question. It would be interesting to find out if the conclusion of Theorem 2 also holds for a class of functions more general than the regular ones as, for example, the Riemann integrable real-valued functions. For the class of Lebesgue integrable functions the result does not hold, as the function of Dirichlet type $f: I \rightarrow F=\mathbb{R}$,

$$
f(t)= \begin{cases}\text { arbitrary, } & t \in[0,1] \cap \mathbb{Q} \\ 0, & \text { otherwise }\end{cases}
$$

shows.

REFERENCES

[1] Anisiu, V., A principle of double condensation of singularities using σ-porosity, "BabeşBolyai" Univ., Fac. of Math., Research Seminaries, Seminar on Math. Analysis, Preprint Nr. 7, pp. 85-88, 1985.
[2] Cobzaş, S. and Muntean, I., Condensation of singularities and divergence results in approximation theory, J. Approx. Theory, 31, pp. 148-153, 1981.
[3] Dieudonné, J., Fondements de l'analyse moderne, Paris, Gauthier-Villars, 1963.
[4] Dunford, N. and Schwartz, J. T., Linear Operators. Part 1: General Theory, John Wiley \& Sons, New York, 1988.
[5] Trif, T., On a problem from the Mathematical Contest, County Stage, Gazeta Matematică CVI (11), pp. 394-396, 2001 (in Romanian).

Received by the editors: January 14, 2002.

[^0]: *"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 3400 Cluj-Napoca, Romania (mira@ictp.acad.ro).
 \dagger "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, st. Kogălniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: anisiu@math.ubbcluj.ro.

