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SEQUENCES OF LINEAR OPERATORS
RELATED TO CESÀRO - CONVERGENT SEQUENCES

MIRA-CRISTIANA ANISIU∗ and VALERIU ANISIU†

Abstract. Given a Cesàro-convergent sequence of real numbers (an)n∈N, a se-
quence (ϕn)n∈N of operators is defined on the Banach space R(I, F ) of regular
functions defined on I = [0, 1] and having values in a Banach space F ,

ϕn(f) = 1
n

n∑
k=1

akf
(

k
n

)
.

It is proved that if, in addition, the sequence
( |a1|+...+|an|

n

)
n∈N

is bounded, then
ϕn(f) converges to a ·

∫ 1
0 f, where a = limn→∞

a1+...+an
n

. The converse of this
statement is also true. Another result is that the supplementary condition can
be dropped if the operators are considered on the space C1(I, F ).
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1. INTRODUCTION

Let (an)n∈N be a sequence of real numbers. It will be called Cesàro-con-
vergent if the sequence of its Cesàro (arithmetic) means is convergent, i.e.

lim
n→∞

a1 + . . .+ an
n

∈ R.

For x ∈ R, bxc will denote the greatest integer number n ≤ x (the integer
part of x).

Given the interval I = [0, 1] and a Banach space F 6= {0} , we denote by
B(I, F ) the Banach space of bounded functions f : I → F endowed with the
sup norm. The space B(I, F ) contains as a subspace the set of “step-functions”
E(I, F ) = {f : I → F : ∃ t0, . . . , tn ∈ I, t0 = 0 < t1 < . . . < tn = 1, ∃ uk ∈ F
so that f |(tk−1,tk) = uk, k = 1, . . . , n}. In fact each f ∈ E(I, F ) is a finite
sum of functions having the form χ[α,β] · u, where 0 ≤ α ≤ β ≤ 1, u ∈ F and
χ[α,β] is the characteristic function of the interval [α, β]. We denote by R(I, F )
the Banach space of regular functions (which admit side limits at each t ∈ I),
endowed with the uniform norm ‖f‖ = supt∈[0,1] ‖f(t)‖. We mention that
R(I, F ) is the closure in B(I, F ) of the subspace E(I, F ), and it contains the
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Banach space of continuous functions C(I, F ). More details on these spaces of
functions are to be found in [3, p. 137].

We define a sequence of operators associated to (an)n∈N, namely ϕn :
R(I, F )→ F, n ∈ N

(1) ϕn(f) = 1
n

n∑
k=1

akf
(
k
n

)
.

Proposition 1. The operator ϕn is linear and continuous, and its norm is
given by

(2) ‖ϕn‖ = 1
n

n∑
k=1
|ak| .

Proof. The linearity is straightforward. Because
∥∥∥f ( kn)∥∥∥ ≤ ‖f‖ , it follows

(3) ‖ϕn(f)‖ ≤
(

1
n

n∑
k=1
|ak|

)
· ‖f‖ ,

hence ϕn is also continuous. To obtain the norm of ϕn, we use the inequality
(3) and the function

f0(t) =
{

(sign ak)u, for t = k
n , k = 1, . . . , n

0, otherwise,

where u ∈ F and ‖u‖ = 1. We have f0 ∈ E(I, F ) ⊆ R(I, F ), ‖f0‖ = 1 and
ϕn (f0) =

( 1
n

n∑
k=1
|ak|

)
· u, hence the equality (2) follows. �

2. MAIN RESULTS

We are interested in finding conditions on the sequence (an)n∈N in order
to obtain the convergence of the sequence of linear operators (1). The theo-
rem below guarantees the convergence of (ϕn(f))n∈N for each regular function
f ∈ F(I, F ). Beside the condition of Cesàro-convergence for (an)n∈N, the
boundedness of a certain sequence related to this is imposed.

Theorem 2. Let there be given a regular function f ∈ R(I, F ) and a se-
quence (an)n∈N of real numbers satisfying the conditions:

1. (an)n∈N is Cesàro-convergent to a (limn→∞
a1+...+an

n = a);
2. the sequence

(
|a1|+...+|an|

n

)
n∈N

is bounded.

Then the sequence (ϕn(f))n∈N is convergent and
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(4) lim
n→∞

ϕn(f) = a ·
∫ 1

0
f.

Proof. At first we shall prove (4) for functions f of the form

(5) f = χ[α,β] · u, where 0 ≤ α ≤ β ≤ 1, u ∈ F.

We have

ϕn(f) =
( 1
n

∑
k∈N

αn≤k≤βn

ak

)
· u =

( 1
n

∑
k∈N
k≤βn

ak

)
· u−

( 1
n

∑
k∈N
k<αn

ak

)
· u.

If α = 0 the conclusion follows obviously.
For α > 0 we denote a∗n = a1+...+an

n and we write the two sums in the above
formula as∑

k∈N
k≤βn

ak = bβnc · a∗bβnc,
∑
k∈N
k<αn

ak = bαnc · a∗bαnc − abαnc · θn,

where
θn =

{
1, for αn ∈ N
0, otherwise.

We finally obtain

ϕn(f) =
(bβnc

n
· a∗bβnc −

bαnc
n
· a∗bαnc +

abαnc
n
· θn

)
· u.

We have lim
n→∞

a∗bαnc = a; but an
n = a∗n −

(
1− 1

n

)
a∗n−1, hence lim

n→∞
an
n = 0. It

follows that in this case

lim
n→∞

ϕn(f) = (βa− αa) · u = a ·
∫ 1

0
f.

We consider now the general case f ∈ R(I, F ). The sequence
( |a1|+...+|an|

n

)
n∈N

being bounded, let us choose M such that |a1|+...+|an|
n ≤M for each n ∈ N; let

also ε > 0 be an arbitrary constant. From the definition of the space R(I, F )
it follows the existence of the functions fi, i = 1, . . . , p of the type described
in (5), with

∥∥f −∑p
i=1 fi

∥∥ < ε. We have

ϕn(f)− a
∫ 1

0
f = ϕn

(
f −

p∑
i=1

fi
)

+
p∑
i=1

(
ϕn(fi)− a

∫ 1

0
fi
)
− a

∫ 1

0

(
f −

p∑
i=1

fi
)
.

The norm of ϕn, as given by (2), is ‖ϕn‖ = |a1|+...+|an|
n , hence

(6)
∥∥∥ϕn(f − p∑

i=1
fi
)∥∥∥ ≤ ‖ϕn‖ · ∥∥∥f − p∑

i=1
fi
∥∥∥ ≤M · ε.

Taking into account the first part of the proof, for each i = 1, . . . , p there
exists ni ∈ N so that

∥∥ϕn(fi) − a ·
∫ 1

0 fi
∥∥ < ε

p for n ≥ ni. It follows that for



138 Mira-Cristiana Anisiu and Valeriu Anisiu 138

n ≥ max
i=1,...,p

ni we have

(7)
∥∥∥ p∑
i=1

(
ϕn(fi)− a ·

∫ 1

0
fi
)∥∥∥ ≤ ε.

But

(8)
∥∥∥a ∫ 1

0

(
f −

p∑
i=1

fi
)∥∥∥ ≤ |a| · ε,

and the inequalities (6), (7) and (8) imply that∥∥∥ϕn(f)− a ·
∫ 1

0
f
∥∥∥ ≤M · ε+ ε+ |a| · ε, for n ≥ N.

It follows that the conclusion holds also for the general case f ∈ F(I, F ). �

Remark 1. The Cesàro-convergence of (an)n∈N in Theorem 2 does not
necessarily imply the boundedness of

( |a1|+...+|an|
n

)
n∈N. For example, let the

sequence be given by

an =
{ √

n, n odd
−
√
n− 1, n even.

Then
a∗n =

{
1/
√
n, n odd

0, n even,

hence lim
n→∞

a∗n = 0, but lim
n→∞

|a1|+...+|an|
n = lim

n→∞
|an| =∞. �

The condition of Cesàro-convergence imposed to the sequence (an)n∈N in
Theorem 2 is a natural one and cannot be relaxed, neither the boundedness
of the sequence

( |a1|+...+|an|
n

)
n∈N. In fact, Theorem 2 does admit the following

converse:

Theorem 3. Let (ϕn)n∈N be the sequence (1) of linear operators associated
to the sequence of real numbers (an)n∈N. If lim

n→∞
ϕn(f) exists for every f ∈

C(I, F ) ⊆ R(I, F ), then:
1. (an)n∈N is Cesàro-convergent to a ( lim

n→∞
a1+...+an

n = a);

2. the sequence
( |a1|+...+|an|

n

)
n∈N is bounded.

Proof. The first conclusion follows by taking f(t) = u for each t ∈ I, with
u ∈ F \ {0} . In this case ϕn(f) = a1+...+an

n u.
The norm of the operators ϕn in the space C(I, F ) is the same as in (1).

Indeed, in the proof of Proposition 1, the function f0 can be modified to
a continuous and piecewise affine one which takes also the values (sign ak)u
on the points k

n , k = 1, . . . , n. From the principle of uniform boundedness
[4, p. 66] the second conclusion follows. �
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Remark 2. Using a principle of condensation of singularities [2], one can
prove that the convergence in (4) does not hold for “typical” continuous func-
tions. Even stronger principles of condensation of singularities [1] may be
applied. �

In what follows we shall prove that for the class of continuous functions
having also a continuous derivative, the condition of boundedness of the se-
quence

( |a1|+...+|an|
n

)
n∈N is no longer necessary. In this setting, the principle

of uniform boundedness does not work, because C1(I, F ) endowed with the
uniform norm is not a Banach space. The norm of ϕn is still the same. In this
case we have

Theorem 4. Let there be given a function f ∈ C1(I, F ) and a sequence
(an)n∈N of real numbers which is Cesàro-convergent to a ( lim

n→∞
a1+...+an

n = a).
Then

(9) lim
n→∞

ϕn(f) = a ·
∫ 1

0
f.

Proof. We write ϕn(f) successively as

ϕn(f) = 1
n

n∑
k=1

(
ka∗k − (k − 1) a∗k−1

)
f
(
k
n

)

= 1
n

n∑
k=1

ka∗kf
(
k
n

)
− 1

n

n−1∑
k=1

ka∗kf
(
k+1
n

)

=
n−1∑
k=1

a∗k
k
n

(
f
(
k
n

)
− f

(
k+1
n

))
+ a∗nf(1).

We bring now into the scene the continuous function g given by g(t) = tf ′(t)
and express ϕn(f) in the form

ϕn(f) = −
n−1∑
k=1

a∗k
k
n

(
f
(
k+1
n

)
− f

(
k
n

)
− 1

nf
′( kn)

)
− 1

n

n−1∑
k=1

a∗k
k
nf
′( kn) + a∗nf(1)

(10)

=−
n−1∑
k=1

a∗k
k
n

(
f
(
k+1
n

)
− f

(
k
n

)
− 1

nf
′( kn)

)
− 1

n

n∑
k=1

a∗kg( kn) + 1
na
∗
nf
′(1) + a∗nf(1).

Applying Theorem 2 for the function g and for the sequence (a∗n)n∈N conver-
gent to a, for which obviously lim

n→∞
a∗1+...+a∗n

n = a and
( |a∗1|+...+|a∗n|

n

)
n∈N is

bounded (because of the convergence of (a∗n)n∈N) we get

lim
n→∞

1
n

n∑
k=1

a∗kg
(
k
n

)
= a ·

∫ 1

0
g = a · f(1)− a ·

∫ 1

0
f

(the last equality is a consequence of an integration by parts). The function
f ′ being uniformly continuous on I, given ε > 0 and n sufficiently large, we



140 Mira-Cristiana Anisiu and Valeriu Anisiu 140

obtain as a consequence of a mean theorem [3, p. 154]∥∥∥f (k+1
n

)
− f

(
k
n

)
− 1

nf
′
(
k
n

) ∥∥∥ ≤ 1
n sup
t∈( k

n
, k+1

n
)

∥∥∥f ′(t)− f ′ ( kn)∥∥∥ < ε
n ,

hence∥∥∥∥ n−1∑
k=1

a∗k
k
n

(
f
(
k+1
n

)
− f

(
k
n

)
− 1

nf
′
(
k
n

) )∥∥∥∥ ≤ n−1∑
k=1

Mε
n2 k = n−1

2n Mε ≤Mε,

where M is a upper bound for the convergent sequence (|a∗n|)n∈N . It follows
that

lim
n→∞

n−1∑
k=1

a∗k
k
n

(
f
(
k+1
n

)
− f

(
k
n

)
− 1

nf
′
(
k
n

) )
= 0.

We take the limit in (10) and get the conclusion. �

As an application of Theorem 2 we obtain a somehow surprising result,
proved directly for differentiable functions with bounded derivative in [5]: For
each a ∈ [0, 1] , there exist εn ∈ {0, 1} such that

lim
n→∞

1
n

n∑
k=1

εkf
(
k
n

)
= a ·

∫ 1

0
f, ∀f ∈ R(I, F ).

To prove this equality, we choose εn = an = b(n+ 1)ac − bnac , n ∈ N which
satisfy εn ∈ {0, 1} and limn→∞

a1+...+an
n = a.

Open question. It would be interesting to find out if the conclusion of
Theorem 2 also holds for a class of functions more general than the regular
ones as, for example, the Riemann integrable real-valued functions. For the
class of Lebesgue integrable functions the result does not hold, as the function
of Dirichlet type f : I → F = R,

f(t) =
{

arbitrary, t ∈ [0, 1] ∩Q
0, otherwise

shows.
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