SOME REMARKS ON THE MONOTONE ITERATIVE TECHNIQUE

ADRIANA BUICĂ

Abstract. We consider an abstract operator equation in coincidence form \(Lu = N(u) \) and establish some comparison results and existence results via the monotone iterative technique. We use a generalized iteration method developed by Carl-Heikkila (1999). An application to a boundary value problem for a second-order functional differential equation is considered.

MSC 2000. 47H15, 47H19, 47H07, 34K10.

Keywords. Coincidence operator equation, monotone iterations, boundary value problem.

1. INTRODUCTION

Let \(X \) be a nonempty set and \(Z \) be an ordered metric space. Let us consider the operator equation of the form

\[
Lu = Nu,
\]

and the iterative scheme

\[
Lu_{n+1} = Nu_n,
\]

where \(L, N : X \to Z \).

In our work the operators \(L \) and \(N \) will satisfy some extended monotonicity conditions, which are described exactly in the following definition.

Definition 1.1. \(N \) is monotone increasing with respect to \(L \) if \(u_1, u_2 \in X \) and \(Lu_1 \leq Lu_2 \) imply that \(Nu_1 \leq Nu_2 \).

If in the last relation the reversed inequality holds, then \(N \) is monotone decreasing with respect to \(L \).

Let \(X \) be an ordered set. If \(Lu_1 \leq Lu_2 \) implies \(u_1 \leq u_2 \) then \(L \) is said to be inverse-monotone (see [8]) or of monotone-type (see [9]).

The plan of our paper is as follows. In Section 2 we deal with operator inequalities corresponding with [11] and extend the abstract Gronwall lemma of Rus [6]. Let us mention that the result from [6] generalize some results from [9] and [11]. In Section 3 we generalize some known existence results for equation (1.1) ([5, 10, 4, 1, 9]) involving monotone increasing or monotone decreasing operators. We shall use a generalized iteration method developed in [2]. In Section 4 we shall apply some of our results to implicit second...
order functional-differential equations. For another treatment of this type of functional-differential equations it can be seen [7].

2. OPERATOR INEQUALITIES IN ORDERED METRIC SPACES

In this section we extend the notion of Picard operator [6], in Definition 2.1, and the abstract Gronwall lemma of Rus [6], in Theorem 2.3. The above mentioned notion and result correspond, in our setting, with the case when $X = Z$ and L is the identity mapping of Z. As a consequence of Theorem 2.3, we shall find a condition in Corollary 2.4, which assure the existence of ordered lower and upper solutions for equation (1.1).

Definition 2.1. N is Picard with respect to L if there exists a unique $v^* \in Z$ with the following properties.

(i) there exists $u^* \in X$ such that $Lu^* = Nu^* = v^*$;

(ii) $N(X) \subset L(X)$;

(iii) for every $u_0 \in X$ a sequence defined by (1.2) is such that $(Lu_n)_{n \geq 0}$ is convergent to v^*.

Example 2.1. If $X = Z$ and $N : Z \to Z$ is Picard [6] then N is Picard with respect to I, the identity mapping of Z. □

Example 2.2. If L is inversable and $N \circ L^{-1} : Z \to Z$ is Picard, then N is Picard with respect to L. □

Example 2.3. Let $L, N : (0, \infty) \to (-1, \infty)$ be given by $L(u) = u^2 - 1$ and $N(u) = \sqrt{u}$. Then N is Picard with respect to L. Let us mention that, also, N is monotone increasing with respect to L. □

Example 2.4. If Z is also a complete metric space, L is surjective and N is contraction with respect to L then N is Picard with respect to L. Let us mention that N is contraction with respect to L if there exists $0 < a < 1$ such that for all $u_1, u_2 \in X$, $d(Nu_1, Nu_2) \leq a \cdot d(Lu_1, Lu_2)$.

For the proof of this result, also known as the Coincidence Theorem of Goebel, we refer to [3]. □

Lemma 2.2. If N is monotone increasing (or monotone decreasing or contraction) with respect to L then

$L u_1 = L u_2$ implies $N u_1 = N u_2$.

If L is inverse-monotone then L is injective.

Proof. Let us consider only that N is monotone increasing with respect to L. If $L u_1 = L u_2$ then $L u_1 \leq L u_2$ and $L u_2 \leq L u_1$. Thus, $N u_1 \leq N u_2$ and $N u_2 \leq N u_1$. This obviously implies the conclusion.

For the last statement we have to prove that, if L is of monotone type, then $L u_1 = L u_2$ implies $u_1 = u_2$. This can be done like above. □
THEOREM 2.3. If N is monotone increasing with respect to L and N is Picard with respect to L then

(i) $L u_0 \leq N u_0$ implies $L u_0 \leq v^*$,

(ii) $L u_0 \geq N u_0$ implies $L u_0 \geq v^*$.

If, in addition, L is of monotone type then

(j) $L u_0 \leq N u_0$ implies $u_0 \leq u^*$,

(jj) $L u_0 \geq N u_0$ implies $u_0 \geq u^*$.

Proof. Let us consider $u_0 \in X$ such that $L u_0 \leq N u_0$ and the sequence defined by (1.2) starting from u_0. The following relations hold,

$$L u_0 \leq N u_0 = L u_1 \leq N u_1 = L u_2 \leq N u_2 \leq \ldots .$$

Thus, for all $n \geq 0$,

$$L u_0 \leq N u_n,$$

and, passing to the limit when $n \to \infty$,

$$L u_0 \leq v^*.$$

The next relation can be proved similarly.

If, in addition, L is inverse-monotone, then, by Lemma 2.2, u^* given by Definition 2.1 is unique and, of course, $L u_0 \leq L u^*$ implies $u_0 \leq u^*$.

We say that $u^e \in X$ is a lower solution of (1.1) if

$$L u^e \leq N u^e ,$$

Similarly, $u^s \in X$ is an upper-solution of (1.1) if

$$L u^s \geq N u^s .$$

COROLLARY 2.4. Let us consider two operators $N, \tilde{N} : X \to Z$ such that they are monotone increasing with respect to L and Picard with respect to L.

If

(2.1)

$$N u \leq u \leq \tilde{N} u , \quad \text{for all } u \in X,$$

then there exist u a lower solution and \tilde{u} an upper-solution of (1.1), such that

$$L u \leq L \tilde{u}.$$

If, in addition, L is of monotone type then,

$$u \leq \tilde{u}.$$

Proof. N and \tilde{N} being Picard with respect to L, there exist y such that

$$L y = N y ,$$

and \tilde{u} such that

$$L \tilde{u} = \tilde{N} \tilde{u}.$$

Then, by (2.1) $L y \leq N y$ and $L \tilde{u} \geq N \tilde{u}$, which mean that y is a lower solution and \tilde{u} is a super-solution of (1.1).

Also by (2.1) the following inequality holds

$$L y \leq \tilde{N} y.$$
We apply now Theorem 2.3 for \bar{N} and deduce that

$$Lu \leq L\bar{u}.$$

The last part of the conclusion follows in an obvious way. □

3. OPERATOR EQUATIONS IN ORDERED BANACH SPACES

In this section we shall establish two existence results for equation (1.1), involving an operator N which is increasing with respect to L, in Theorem 3.2, respectively monotone decreasing with respect to L, in Theorem 3.3 We shall use a generalized iteration method developed in [2]. As it is mentioned in [2], this method enlarges the range of applications since neither L nor N need be continuous. In this spirit, Theorem 3.2 generalizes Theorem 3.1 in [4], and Theorem 3.3 generalizes Theorem 3 in [10] and Theorem 2 in [5] (these are given in the case $X = Z$ and $L = I$).

The following result is Proposition 3.4 from [2] and we shall use it to derive Theorem 3.2.

Proposition 3.1. Assume that the following conditions hold.

(i) There exists $u_\bar{u}$ a lower solution of (1.1), $u_\bar{u} \in W \subset X$;

(ii) N is monotone increasing with respect to L;

(iii) $L(W)$ is an ordered metric space and if (u_n) is a sequence in W such that the sequences (Lu_n) and (Nu_n) are increasing, then (Nu_n) converges in $L(W)$.

Then (1.1) has a solution u_* with the property

$$Lu_* = \min \{Lw \in L(W) \mid Lu \leq Lw \text{ and } Lw \geq Nw \}.$$

If, in addition, W is an ordered space and L is of monotone type, then u_* is the minimal solution of (1.1) in $W_0 = \{u \in W \mid Lu \leq Lu\}$.

We notice that the dual result is valid.

In the following results, i.e. Theorem 3.2 and Theorem 3.3 Z will be an ordered Banach space (OBS) with a normal cone K.

Let us remember, (see [4, 11, 10]) that the cone $K = \{v \in Z \mid v \geq 0\}$ is said to be normal if there exists $\delta > 0$ such that $0 \leq v \leq w$ implies $|v| \leq \delta |w|$.

For $v \leq w$ the order interval $[v, w]$ is the set of all $u \in Z$ such that $v \leq u \leq w$. Every order interval for an OBS is bounded if and only if the cone K is normal.

In an OBS with a normal cone, every monotone increasing sequence which has a convergent subsequence, is convergent.

A cone K is said to be regular if every monotone increasing sequence contained in some order interval, is convergent.

Theorem 3.2. Assume that the following conditions hold.

(i) u is a lower solution and \bar{u} is a super-solution of (1.1) with $Lu \leq L\bar{u}$;

(ii) N is monotone increasing with respect to L;

(iii) $[Lu, L\bar{u}] \subset L(X)$;
By Lemma 2.2, \(\tilde{N} \) does not depend on the choice of \(\tilde{u} \), thus the operator \(\tilde{N} : X \to Z \) is well-defined.

(iv) \(K \) is regular or \([N\tilde{u}, N\tilde{u}] \cap N(X)\) is a compact subset of \(Z \).

Then \((1.1) \) has a solution \(u_* \) with the property

\[Lu_* = \min \{ Lw \in [L\tilde{u}, L\tilde{u}] \mid Lw \geq Nu \} \]

and a solution \(u^* \) with the property

\[Lu^* = \max \{ Lw \in [L\tilde{u}, L\tilde{u}] \mid Lw \leq Nu \}. \]

If, in addition, \(L \) is of monotone type, then \(u_* \) is the minimal solution, and \(u^* \) the maximal solution of \((1.1) \) in \([y, \bar{u}]\).

Proof. Let us consider \(W = \{ u \in X \mid Ly \leq Lu \leq L\tilde{u} \} \). Then, using also (iii), \(L(W) = [L\tilde{u}, L\tilde{u}] \), which is a closed subset of \(Z \), thus is an ordered metric space.

Let \((u_n) \) be a sequence in \(W \) such that \((Lu_n) \) and \((Nu_n) \) are increasing. Using (i) and (ii), \(Ly \leq Lu_n \leq L\tilde{u} \) imply that \(Ly \leq Nu_n \leq Nu \leq N\tilde{u} \leq L\tilde{u} \). Then \((Nu_n) \) is an increasing sequence in the bounded (because \(K \) is normal) interval \(L(W) \).

If \(K \) is regular, then \((Nu_n) \) converges.

If \([N\tilde{u}, N\tilde{u}] \cap N(X)\) is compact, then \((Nu_n) \) has a convergent subsequence. By the monotonicity of the sequence \((Nu_n) \), it converges.

All the hypotheses of Proposition 3.1 are fulfilled. Hence, the conclusion follows.

Remark. If, in addition to the hypotheses of Theorem 3.2, \(N \) is continuous with respect to \(L \) then \(u^* \) can be obtained by \((1.2) \) starting from \(u_i \), in the sense that a sequence defined by \((1.2) \) with \(u_0 = y \) is such that \((Lu_n) \) converges to \(Lu^* \).

Let us mention that \(N \) is said to be continuous with respect to \(L \) if for every sequence \((Lu_n) \) from \(L(X) \) convergent to \(Lu^* \in L(X) \), the sequence \((Nu_n) \) converges to \(Nu^* \).

Theorem 3.3. Assume that the following conditions hold.

(i) \(Lu \geq 0 \) implies \(Nu \geq 0 \);

(ii) \(N \) is monotone decreasing with respect to \(L \);

(iii) if \(u_0 \) and \(u_1 \) are such that \(Lu_0 = 0 \), \(Nu_0 = Lu_1 \) then \(Nu_1 > 0 \) and \([0, Lu_1] \subset L(X)\);

(iv) there exists \(\alpha \in (-1, 0) \) such that \(Nu \mu \leq \mu^\alpha Nu \) for all \(u \in X \) with \(0 \leq Lu \leq Lu_1 \), for \(u_\mu \) given by \(Lu_\mu = \mu Lu \), and for all \(\mu \in (0, 1) \);

(v) for every \(v, w \) with \(0 < v \leq w \leq Lu_1 \) there is \(\mu \in (0, 1) \) such that \(\mu v \leq w \);

(vi) the cone \(K \) is regular or \([Nu_1, Nu_0] \cap N(X)\) is a compact subset of \(Z \).

Then \((1.1) \) has a solution, \(u^* \) with \(Lu^* > 0 \).

Proof. For every \(u \in X \), if \(\tilde{u} \) is such that \(Nu = L\tilde{u} \), let us define \(\tilde{N}u = Nu \).

By Lemma 2.2, \(\tilde{N}u \) does not depend on the choice of \(\tilde{u} \), thus the operator \(\tilde{N} : X \to Z \) is well-defined.
\(\tilde{N} \) is monotone increasing with respect to \(L \). Indeed, \(Lu_1 \leq Lu_2 \Rightarrow Lu_1 = Nu_1 \geq Nu_2 = L\tilde{u}_2 \Rightarrow \tilde{N}u_1 \leq \tilde{N}\tilde{u}_2 = Nu_2 \).

Let us consider also \(u_2, u_3 \) such that \(Nu_1 = Lu_2 \) and \(Nu_2 = Lu_3 \). By (i) and (iii), \(Lu_1 \geq 0 = Lu_0 \), which implies, by (ii), that \(Nu_1 \leq Nu_0 \). Using the definitions of \(u_2 \) and \(u_1 \), the following relation holds.

\[
\text{(3.1)} \quad Lu_2 \leq Lu_1.
\]

We shall focus our attention to the equation \(\text{(3.2)} \quad Lu = \tilde{N}u \).

We shall prove that \(u_2 \) is a lower solution and \(u_1 \) is an upper solution of \(\text{(3.2)} \).

This follows by the following implications.

\[
\text{If } Nu_1 \geq 0 = Lu_0 \Rightarrow Lu_2 \geq Lu_0 \Rightarrow Nu_2 \leq Nu_0 \Rightarrow \tilde{N}u_1 \leq \tilde{N}u_2 \nabla.
\]

We use Theorem 3.2 and deduce that equation \(\text{(3.2)} \) has a solution \(u^* \), i.e.

\[
\text{(3.1)} \quad Lu^* = \tilde{N}u^*,
\]

with the property

\[
Lu^* = \min \{Lw \in [Lu_2, Lu_1] \mid Lw \geq Nu \}.
\]

Let us consider \(\tilde{u}^* \) such that

\[
\text{If } Lu^* = L\tilde{u}^* \text{ then, the existence of a solution for } \text{(1.1)} \text{ is proved. Using (iii), (iv) and (v) we shall prove that this always holds. First, let us notice that } 0 < L\tilde{u}^* \leq L\tilde{u}^* \leq Lu_1 \text{. According to (v), let } \mu_0 = \sup \{\mu \in (0, 1) \mid \mu L\tilde{u}^* \leq Lu^* \}. \quad \text{Clearly, } \mu_0 L\tilde{u}^* \leq Lu^* \text{. We have to prove that } \mu_0 = 1. \text{ Then, } L\tilde{u}^* = Nu^* \leq N\tilde{u}_{\mu_0}^* = \mu_0^\alpha \tilde{N}u^* = \mu_0^\alpha Lu^* \text{. Here, } \tilde{u}_{\mu_0}^* \text{ is such that } L\tilde{u}_{\mu_0}^* = \mu_0 L\tilde{u}^* \text{. Consequently, } \mu_0^\alpha \leq \mu_0, \text{ that is } -\alpha \geq 1, \text{ a contradiction. Thus, } Lu^* = L\tilde{u}^*. \]

\[\Box \]

4. APPLICATION

In this section we shall establish a weak maximum principle for the functional-differential operator

\[
Lu = -u'' - \lambda u(g(x))
\]

and an existence result for the following boundary value problem for a second order implicit functional-differential equation.

\[
\text{(4.1)} \quad \begin{cases}
-u''(x) = f(x, u(g(x)), u(x), -u''(x), u(x)), \text{ a.a. } x \in (0, 1) \\
u \in H^2(0, 1) \cap H^1_0(0, 1).
\end{cases}
\]
Let us list the following hypotheses.

\((g1)\) the function \(g : [0, 1] \rightarrow [0, 1]\) is continuous.

\((f1)\) the function \(f : (0, 1) \times \mathbb{R}^3 \rightarrow \mathbb{R}\) is Caratheodory and there exists a continuous function \(\varphi : [0, 1] \times \mathbb{R}^2 \rightarrow \mathbb{R}\) such that

\[|f(x, u, v, w)| \leq \varphi(x, u, v), \text{ a.a. } x \in (0, 1), u, v, w \in \mathbb{R}.\]

\((f2)\) \(f\) is monotone increasing with respect to the last three variables.

Let us denote

\[Nu = f(x, u(x), u(g(x)), -u''),\]

\[Z = L^2(0, 1), \quad X = H^2(0, 1) \cap H^1_0(0, 1).\]

Then, we obtain two operators \(L, N : X \rightarrow Z\) and the BVP can be written in the following form (with \(\lambda = 0\)).

\[(4.2) \quad Lu = Nu, \quad u \in X.\]

Let us notice that \((f1)\) and the inclusion \(X \subset C[0, 1]\) imply that \(N\) is well-defined. Also, for our existence result, we shall not need another growth condition for the function \(f\).

Next we shall prove that, when \(0 \leq \lambda < 8\), the weak maximum principle holds for the functional-differential operator \(L\).

Theorem 4.1. If \(0 \leq \lambda < 8\) then \(L : X \rightarrow Z\) is surjective and it is inverse-monotone.

Proof. In order to prove that \(L\) is surjective we study the solvability of the following equation for an arbitrary \(w \in Z\).

\[(4.3) \quad Lu = w, \quad u \in X.\]

Let us consider the following integral operator.

\[A_w : C[0, 1] \rightarrow C[0, 1], \quad A_w u = \int_0^1 G(x, s)[\lambda u(g(s)) + w(s)]ds.\]

The Green function \(G : [0, 1] \times [0, 1] \rightarrow \mathbb{R}\) is given by
\[G(x, s) = \begin{cases}
 s(1 - x), & \text{if } s \leq x \\
 x(1 - s), & \text{if } s \geq x.
\end{cases} \]

Then equation (4.3) is equivalent to
\[A_w u = u, \quad u \in C[0, 1]. \]

By a straightforward calculation, the following relation can be proved
\[\|A_w u_1 - A_w u_2\|_C \leq \lambda \cdot \frac{1}{5}\|u_1 - u_2\|_C. \]

Thus, \(A_w \) is a contraction on the Banach space \(C[0, 1] \), so it has a unique fixed point. Hence, \(L \) is surjective.

In order to prove that \(L \) is inverse-monotone, because \(L \) is linear it is sufficient to prove that \(Lu \leq 0 \) implies \(u \leq 0 \).

Let \(u^* \in X \) be such that \(Lu^* \leq 0 \). Let us denote by \(w^*(x) = Lu^*(x) \). Then \(w^*(x) \leq 0 \) and \(A_w u^* = u^* \).

The operator \(A_{w^*} \) is Picard and monotone increasing and, in this case, it is easy to see that \(A(0) \leq 0 \). Then, by Theorem 2.3 (or Theorem 4.1 in [6]) \(u^* \leq 0 \). □

The following theorem is an existence result for the BVP considered at the beginning of this section.

Theorem 4.2. If conditions (g1), (f1) and (f2) hold and there exists a sub-solution \(\overline{u} \) and an upper solution \(\bar{u} \) for problem (6) with
\[-\overline{u}'' \leq -\bar{u}'' \]
then (6) has a solution.

Proof. This follows easily by Theorem 3.2. Let us omit the details and notice only some useful facts.

\(Z = L^2(0, 1) \) is an ordered Banach space with a regular cone (see [1]).

\[[Lu, \bar{u}] \subset L(X) \] because \(L \) is surjective.

The condition (f2) and that \(L \) is inverse-monotone imply that \(N \) is monotone increasing with respect to \(L \). □

REFERENCES

Received by the editors: April 4, 2000.