SOME REMARKS ON THE MONOTONE ITERATIVE TECHNIQUE

ADRIANA BUICĂ*

Abstract

We consider an abstract operator equation in coincidence form $L u=$ $N(u)$ and establish some comparison results and existence results via the monotone iterative technique. We use a generalized iteration method developed by Carl-Heikkila (1999). An application to a boundary value problem for a secondorder functional differential equation is considered. MSC 2000. $47 \mathrm{H} 15,47 \mathrm{H} 19,47 \mathrm{H} 07,34 \mathrm{~K} 10$. Keywords. Coincidence operator equation, monotone iterations, boundary value problem.

1. INTRODUCTION

Let X be a nonempty set and Z be an ordered metric space. Let us consider the operator equation of the form

$$
\begin{equation*}
L u=N u, \tag{1.1}
\end{equation*}
$$

and the iterative scheme

$$
\begin{equation*}
L u_{n+1}=N u_{n}, \tag{1.2}
\end{equation*}
$$

where $L, N: X \rightarrow Z$.
In our work the operators L and N will satisfy some extended monotonicity conditions, which are described exactly in the following definition.

Definition 1.1. N is monotone increasing with respect to L if $u_{1}, u_{2} \in X$ and $L u_{1} \leq L u_{2}$ imply that $N u_{1} \leq N u_{2}$.

If in the last relation the reversed inequality holds, then N is monotone decreasing with respect to L.

Let X be an ordered set. If $L u_{1} \leq L u_{2}$ implies $u_{1} \leq u_{2}$ then L is said to be inverse-monotone (see [8]) or of monotone-type (see [9]).

The plan of our paper is as follows. In Section 2 we deal with operator inequalities corresponding with (1.1) and extend the abstract Gronwall lemma of Rus [6]. Let us mention that the result from [6] generalize some results from [9] and [1]. In Section 3 we generalize some known existence results for equation (1.1) ($5,10,4,1,9)$ involving monotone increasing or monotone decreasing operators. We shall use a generalized iteration method developed in [2]. In Section 4 we shall apply some of our results to implicit second

[^0]order functional-differential equations. For another treatment of this type of functional-differential equations it can be seen [7].

2. OPERATOR INEQUALITIES IN ORDERED METRIC SPACES

In this section we extend the notion of Picard operator [6], in Definition 2.1, and the abstract Gronwall lemma of Rus [6], in Theorem 2.3. The above mentioned notion and result correspond, in our setting, with the case when $X=Z$ and L is the identity mapping of Z. As a consequence of Theorem 2.3 we shall find a condition in Corollary 2.4 , which assure the existence of ordered lower and upper solutions for equation (1.1).

Definition 2.1. N is Picard with respect to L if there exists a unique $v^{*} \in Z$ with the following properties.
(i) there exists $u^{*} \in X$ such that $L u^{*}=N u^{*}=v^{*}$;
(ii) $N(X) \subset L(X)$;
(iii) for every $u_{0} \in X$ a sequence defined by 1.2 is such that $\left(L u_{n}\right)_{n \geq 0}$ is convergent to v^{*}.

Example 2.1. If $X=Z$ and $N: Z \rightarrow Z$ is Picard [6] then N is Picard with respect to I, the identity mapping of Z.

Example 2.2. If L is inversable and $N \circ L^{-1}: Z \rightarrow Z$ is Picard, then N is Picard with respect to L.

Example 2.3. Let $L, N:(0, \infty) \rightarrow(-1, \infty)$ be given by $L(u)=u^{2}-1$ and $N(u)=\sqrt{u}$. Then N is Picard with respect to L. Let us mention that, also, N is monotone increasing with respect to L.

EXAMPLE 2.4. If Z is also a complete metric space, L is surjective and N is contraction with respect to L then N is Picard with respect to L. Let us mention that N is contraction with respect to L if there exists $0<a<1$ such that for all $u_{1}, u_{2} \in X, d\left(N u_{1}, N u_{2}\right) \leq a \cdot d\left(L u_{1}, L u_{2}\right)$.

For the proof of this result, also known as the Coincidence Theorem of Goebel, we refer to [3].

Lemma 2.2. If N is monotone increasing (or monotone decreasing or contraction) with respect to L then

$$
L u_{1}=L u_{2} \text { implies } N u_{1}=N u_{2}
$$

If L is inverse-monotone then L is injective.
Proof. Let us consider only that N is monotone increasing with respect to L.
If $L u_{1}=L u_{2}$ then $L u_{1} \leq L u_{2}$ and $L u_{2} \leq L u_{1}$. Thus, $N u_{1} \leq N u_{2}$ and $N u_{2} \leq N u_{1}$. This obviously implies the conclusion.

For the last statement we have to prove that, if L is of monotone type, then $L u_{1}=L u_{2}$ implies $u_{1}=u_{2}$. This can be done like above.

Theorem 2.3. If N is monotone increasing with respect to L and N is Picard with respect to L then
(i) $L u_{0} \leq N u_{0}$ implies $L u_{0} \leq v^{*}$,
(ii) $L u_{0} \geq N u_{0}$ implies $L u_{0} \geq v^{*}$.

If, in addition, L is of monotone type then
(j) $L u_{0} \leq N u_{0}$ implies $u_{0} \leq u^{*}$,
(jj) $L u_{0} \geq N u_{0}$ implies $u_{0} \geq u^{*}$.
Proof. Let us consider $u_{0} \in X$ such that $L u_{0} \leq N u_{0}$ and the sequence defined by (1.2) starting from u_{0}. The following relations hold,

$$
L u_{0} \leq N u_{0}=L u_{1} \leq N u_{1}=L u_{2} \leq N u_{2} \leq \ldots
$$

Thus, for all $n \geq 0$,

$$
L u_{0} \leq N u_{n},
$$

and, passing to the limit when $n \rightarrow \infty$,

$$
L u_{0} \leq v^{*} .
$$

The next relation can be proved similarly.
If, in addition, L is inverse-monotone, then, by Lemma 2.2. u^{*} given by Definition 2.1 is unique and, of course, $L u_{0} \leq L u^{*}$ implies $u_{0} \leq u^{*}$.

We say that $\underline{u} \in X$ is a lower solution of (1.1) if $L \underline{u} \leq N \underline{u}$. Similarly, $\bar{u} \in X$ is an upper-solution of (1.1) if $L \bar{u} \geq N \bar{u}$.

Corollary 2.4. Let us consider two operators $\underline{N}, \bar{N}: X \rightarrow Z$ such that they are monotone increasing with respect to L and Picard with respect to L. If

$$
\begin{equation*}
\underline{N} u \leq N u \leq \bar{N} u, \quad \text { for all } u \in X, \tag{2.1}
\end{equation*}
$$

then there exist \underline{u} a lower solution and \bar{u} an upper-solution of (1.1), such that

$$
L \underline{u} \leq L \bar{u} .
$$

If, in addition, L is of monotone type then,

$$
\underline{u} \leq \bar{u} .
$$

Proof. N and \bar{N} being Picard with respect to L, there exist \underline{u} such that

$$
L \underline{u}=\underline{N} \underline{u},
$$

and \bar{u} such that

$$
L \bar{u}=\bar{N} \bar{u} .
$$

Then, by 2.1, $L \underline{u} \leq N \underline{u}$ and $L \bar{u} \geq N \bar{u}$, which mean that \underline{u} is a lower solution and \bar{u} is a super-solution of (1.1).

Also by 2.1 the following inequality holds

$$
L \underline{u} \leq \bar{N} \underline{u} .
$$

We apply now Theorem 2.3 for \bar{N} and deduce that

$$
L \underline{u} \leq L \bar{u} .
$$

The last part of the conclusion follows in an obvious way.

3. OPERATOR EQUATIONS IN ORDERED BANACH SPACES

In this section we shall establish two existence results for equation (1.1), involving an operator N which is increasing with respect to L, in Theorem 3.2, respectively monotone decreasing with respect to L, in Theorem 3.3 We shall use a generalized iteration method developed in [2]. As it is mentioned in [2], this method enlarges the range of applications since neither L nor N need be continuous. In this spirit, Theorem 3.2 generalizes Theorem 3.1 in [4], and Theorem 3.3 generalizes Theorem 3 in 10] and Theorem 2 in [5] (these are given in the case $X=Z$ and $L=I$).

The following result is Proposition 3.4 from [2] and we shall use it to derive Theorem 3.2.

Proposition 3.1. Assume that the following conditions hold.
(i) There exists \underline{u} a lower solution of (1.1), $\underline{u} \in W \subset X$;
(ii) N is monotone increasing with respect to L;
(iii) $L(W)$ is an ordered metric space and if $\left(u_{n}\right)$ is a sequence in W such that the sequences $\left(L u_{n}\right)$ and $\left(N u_{n}\right)$ are increasing, then $\left(N u_{n}\right)$ converges in $L(W)$.
Then (1.1) has a solution u_{*} with the property

$$
L u_{*}=\min \{L w \in L(W) \mid L \underline{u} \leq L w \text { and } L w \geq N w\} .
$$

If, in addition, W is an ordered space and L is of monotone type, then u_{*} is the minimal solution of (1.1) in $W_{0}=\{u \in W \mid L \underline{u} \leq L u\}$.

We notice that the dual result is valid.
In the following results, i.e. Theorem 3.2 and Theorem $3.3, Z$ will be an ordered Banach space (OBS) with a normal cone K.

Let us remember, (see [5, 1, 10]) that the cone $K=\{v \in Z \mid v \geq 0\}$ is said to be normal if there exists $\delta>0$ such that $0 \leq v \leq w$ implies $\|v\| \leq \delta\|w\|$.

For $v \leq w$ the order interval $[v, w]$ is the set of all $u \in Z$ such that $v \leq u \leq w$. Every order interval for an OBS is bounded if and only if the cone K is normal. In an OBS with a normal cone, every monotone increasing sequence which has a convergent subsequence, is convergent.

A cone K is said to be regular if every monotone increasing sequence contained in some order interval, is convergent.

Theorem 3.2. Assume that the following conditions hold.
(i) \underline{u} is a lower solution and \bar{u} is a super-solution of (1.1) with $L \underline{u} \leq L \bar{u}$;
(ii) N is monotone increasing with respect to L;
(iii) $[L \underline{u}, L \bar{u}] \subset L(X)$;
(iv) K is regular or $[N \underline{u}, N \bar{u}] \cap N(X)$ is a compact subset of Z.

Then (1.1) has a solution u_{*} with the property

$$
L u_{*}=\min \{L w \in[L \underline{u}, L \bar{u}] \mid L w \geq N w\}
$$

and a solution u^{*} with the property

$$
L u^{*}=\max \{L w \in[L \underline{u}, L \bar{u}] \mid L w \leq N w\}
$$

If, in addition, L is of monotone type, then u_{*} is the minimal solution, and u^{*} the maximal solution of (1.1) in $[\underline{u}, \bar{u}]$.

Proof. Let us consider $W=\{u \in X \mid L \underline{u} \leq L u \leq L \bar{u}\}$. Then, using also (iii), $L(W)=[L \underline{u}, L \bar{u}]$, which is a closed subset of Z, thus is an ordered metric space.

Let $\left(u_{n}\right)$ be a sequence in W such that $\left(L u_{n}\right)$ and $\left(N u_{n}\right)$ are increasing. Using (i) and (ii), $L \underline{u} \leq L u_{n} \leq L \bar{u}$ imply that $L \underline{u} \leq N \underline{u} \leq N u_{n} \leq N \bar{u} \leq L \bar{u}$. Then $\left(N u_{n}\right)$ is an increasing sequence in the bounded (because K is normal) interval $L(W)$.

If K is regular, then $\left(N u_{n}\right)$ converges.
If $[N \underline{u}, N \bar{u}] \cap N(X)$ is compact, then $\left(N u_{n}\right)$ has a convergent subsequence. By the monotonicity of the sequence $\left(N u_{n}\right)$, it converges.

All the hypotheses of Proposition 3.1 are fulfilled. Hence, the conclusion follows.

Remark. If, in addition to the hypotheses of Theorem 3.2, N is continuous with respect to L then u^{*} can be obtained by 1.2 starting from \underline{u}, in the sense that a sequence defined by (1.2) with $u_{0}=\underline{u}$ is such that $\left(L u_{n}\right)$ converges to $L u^{*}$.

Let us mention that N is said to be continuous with respect to L if for every sequence $\left(L u_{n}\right)$ from $L(X)$ convergent to $L u^{*} \in L(X)$, the sequence $\left(N u_{n}\right)$ converges to $N u^{*}$.

Theorem 3.3. Assume that the following conditions hold.
(i) $L u \geq 0$ implies $N u \geq 0$;
(ii) N is monotone decreasing with respect to L;
(iii) if u_{0} and u_{1} are such that $L u_{0}=0, N u_{0}=L u_{1}$ then $N u_{1}>0$ and $\left[0, L u_{1}\right] \subset L(X)$
(iv) there exists $\alpha \in(-1,0)$ such that $N u \mu \leq \mu^{\alpha} N u$ for all $u \in X$ with $0 \leq L u \leq L u_{1}$, for u_{μ} given by $L u_{\mu}=\mu L u$, and for all $\mu \in(0,1)$;
(v) for every v, w with $0<v \leq w \leq L u_{1}$ there is $\mu \in(0,1)$ such that $\mu w \leq v$,
(vi) the cone K is regular or $\left[N u_{1}, N u_{0}\right] \cap N(X)$ is a compact subset of Z. Then (1.1) has a solution, u^{*} with $L u^{*}>0$.

Proof. For every $u \in X$, if \tilde{u} is such that $N u=L \tilde{u}$, let us define $\tilde{N} u=N \tilde{u}$. By Lemma 2.2, $\tilde{N} u$ does not depend on the choice of \tilde{u}, thus the operator $\tilde{N}: X \rightarrow Z$ is well-defined.
\tilde{N} is monotone increasing with respect to L. Indeed, $L u_{1} \leq L u_{2} \Rightarrow L \tilde{u_{1}}=$ $N u_{1} \geq N u_{2}=L \tilde{u_{2}} \Rightarrow \tilde{N} u_{1}=N \tilde{u_{1}} \leq N \tilde{u_{2}}=\tilde{N} u_{2}$.

Let us consider also u_{2}, u_{3} such that $N u_{1}=L u_{2}$ and $N u_{2}=L u_{3}$. By (i) and (iii), $L u_{1} \geq 0=L u_{0}$, which implies, by (ii), that $N u_{1} \leq N u_{0}$. Using the definitions of u_{2} and u_{1}, the following relation holds.

$$
\begin{equation*}
L u_{2} \leq L u_{1} . \tag{3.1}
\end{equation*}
$$

We shall focus our attention to the equation

$$
\begin{equation*}
L u=\tilde{N} u \tag{3.2}
\end{equation*}
$$

We shall prove that u_{2} is a lower solution and u_{1} is an upper solution of (3.2). This follows by the following implications.

$$
N u_{1} \geq 0=L u_{0} \Rightarrow L u_{2} \geq L u_{0} \Rightarrow N u_{2} \leq N u_{0} \Rightarrow \tilde{N} u_{1} \leq L u_{1},
$$

and

$$
N u_{2} \leq N u_{0} \Rightarrow L u_{3} \leq L u_{1} \Rightarrow N u_{3} \geq N u_{1} \Rightarrow \tilde{N} u_{2} \geq L u_{2}
$$

We use Theorem 3.2 and deduce that equation (3.2) has a solution u^{*}, i.e.

$$
L u^{*}=\tilde{N} u^{*},
$$

with the property

$$
L u^{*}=\min \left\{L w \in\left[L u_{2}, L u_{1}\right] \mid L w \geq N w\right\}
$$

Let us consider \tilde{u}^{*} such that

$$
L \tilde{u}^{*}=N u^{*} .
$$

By the definition of $\tilde{N}, L u^{*}=N \tilde{u}^{*}$. And now, using also again the definition of \tilde{N}, we obtain

$$
L \tilde{u}^{*}=\tilde{N} \tilde{u}^{*} .
$$

If $L u^{*}=L \tilde{u}^{*}$ then, the existence of a solution for (1.1) is proved. Using (iii), (iv) and (v) we shall prove that this always holds. First, let us notice that $0<$ $L u^{*} \leq L \tilde{u}^{*} \leq L u_{1}$. According to (v), let $\mu_{0}=\sup \left\{\mu \in(0,1] \mid \mu L \tilde{u}^{*} \leq L u^{*}\right\}$. Clearly, $\mu_{0} L \tilde{u}^{*} \leq L u^{*}$. We have to prove that $\mu_{0}=1$. Then, $L \tilde{u}^{*}=N u^{*} \leq$ $N \tilde{u}_{\mu_{0}}^{*} \leq \mu_{0}^{\alpha} N \tilde{u}^{*}=\mu_{0}^{\alpha} L u^{*}$. Here, $\tilde{u}_{\mu_{0}}^{*}$ is such that $L \tilde{u}_{\mu_{0}}^{*}=\mu_{0} L \tilde{u}^{*}$. Consequently, $\mu_{0}^{-\alpha} \leq \mu_{0}$, that is $-\alpha \geq 1$, a contradiction. Thus, $L u^{*}=L \tilde{u}^{*}$.

4. APPLICATION

In this section we shall establish a weak maximum principle for the functi-onal-differential operator

$$
L u=-u^{\prime \prime}-\lambda u(g(x))
$$

and an existence result for the following boundary value problem for a second order implicit functional-differential equation.

$$
\left\{\begin{array}{l}
-u^{\prime \prime}(x)=f\left(x, u(g(x)), u(x),-u^{\prime \prime}(x)\right), \text { a.a. } x \in(0,1) \tag{4.1}\\
u \in H^{2}(0,1) \cap H_{0}^{1}(0,1) .
\end{array}\right.
$$

Let us list the following hypotheses.
(g1) the function $g:[0,1] \rightarrow[0,1]$ is continuous.
(f1) the function $f:(0,1) \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ is Caratheodory and there exists a continuous function $\varphi:[0,1] \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
|f(x, u, v, w)| \leq \varphi(x, u, v), \text { a.a. } x \in(0,1), u, v, w \in \mathbb{R}
$$

(f2) f is monotone increasing with respect to the last three variables.
Let us denote

$$
\begin{gathered}
N u=f\left(x, u(x), u(g(x)),-u^{\prime \prime}\right) \\
Z=L^{2}(0,1), \quad X=H^{2}(0,1) \cap H_{0}^{1}(0,1)
\end{gathered}
$$

Then, we obtain two operators $L, N: X \rightarrow Z$ and the BVP can be written in the following form (with $\lambda=0$).

$$
\begin{equation*}
L u=N u, u \in X \tag{4.2}
\end{equation*}
$$

Let us notice that (f1) and the inclusion $X \subset C[0,1]$ imply that N is well-defined. Also, for our existence result, we shall not need another growth condition for the function f.

Next we shall prove that, when $0 \leq \lambda<8$, the weak maximum principle holds for the functional-differential operator L.

TheOrem 4.1. If $0 \leq \lambda<8$ then $L: X \rightarrow Z$ is surjective and it is inversemonotone.

Proof. In order to prove that L is surjective we study the solvability of the following equation for an arbitrary $w \in Z$.

$$
\begin{equation*}
L u=w, u \in X \tag{4.3}
\end{equation*}
$$

Let us consider the following integral operator.

$$
A_{w}: C[0,1] \rightarrow C[0,1], \quad A_{w} u=\int_{0}^{1} G(x, s)[\lambda u(g(s))+w(s)] \mathrm{d} s
$$

The Green function $G:[0,1] \times[0,1] \rightarrow R$ is given by

$$
G(x, s)=\left\{\begin{array}{l}
s(1-x), \text { if } s \leq x \\
x(1-s), \text { if } s \geq x
\end{array}\right.
$$

Then equation (4.3) is equivalent to

$$
A_{w} u=u, u \in C[0,1] .
$$

By o straightforward calculation, the following relation can be proved

$$
\left\|A_{w} u_{1}-A_{w} u_{2}\right\|_{C} \leq \lambda \cdot \frac{1}{8}\left\|u_{1}-u_{2}\right\|_{C}
$$

Thus, A_{w} is a contraction on the Banach space $C[0,1]$, so it has a unique fixed point. Hence, L is surjective.

In order to prove that L is inverse-monotone, because L is linear it is sufficient to prove that $L u \leq 0$ implies $u \leq 0$.

Let $u^{*} \in X$ be such that $L u^{*} \leq 0$. Let us denote by $w^{*}(x)=L u^{*}(x)$. Then $w^{*}(x) \leq 0$ and $A_{w^{*}} u^{*}=u^{*}$.

The operator $A_{w^{*}}$ is Picard and monotone increasing and, in this case, it is easy to see that $A(0) \leq 0$. Then, by Theorem 2.3 (or Theorem 4.1 in [6]) $u^{*} \leq 0$.

The following theorem is an existence result for the BVP considered at the beginning of this section.

THEOREM 4.2. If conditions (g1), (f1) and (f2) hold and there exists a subsolution \underline{u} and an upper solution \bar{u} for problem (6) with

$$
-\underline{u}^{\prime \prime} \leq-\bar{u}^{\prime \prime}
$$

then (6) has a solution.
Proof. This follows easily by Theorem 3.2. Let us omit the details and notice only some useful facts.
$Z=L^{2}(0,1)$ is an ordered Banach space with a regular cone (see [1]).
$[L \underline{u}, L \bar{u}] \subset L(X)$ because L is surjective.
The condition (f2) and that L is inverse-monotone imply that N is monotone increasing with respect to L.

REFERENCES

[1] Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18, pp. 621-709, 1976.
[2] Carl, S. and Heikkila, S., Operator and differential equations in ordered spaces, J. Math. Anal. Appl., 234, pp. 31-54, 1999.
[3] Goebel, K., A coincidence theorem, Bull. Acad. Pol. Sc., 16, pp. 733-735, 1968.
[4] Nieto, J., An abstract monotone iterative technique, Nonlinear Analysis T.M.A., 28, pp. 1923-1933, 1997.
[5] Precup, R., Monotone iterations for decreasing maps in ordered Banach spaces, Proc. Scientific Communications Meeting of "Aurel Vlaicu" University, Arad, 14A, pp. 105108, 1996.
[6] Rus, I. A., Picard operators and applications, Seminar on fixed point theory, BabeşBolyai University, Preprint 3, pp. 3-36, 1996.
[7] Rus, I. A., Principles and Applications of the Fixed Point Theory, Editura Dacia, ClujNapoca, 1979 (in Romanian).
[8] Schroder, J., Operator Inequalities, Academic Press, 1980.
[9] Zeidler, E., Nonlinear Functional Analysis and Its Applications I, Springer-Verlag, 1993.
[10] Zhitao, Z., Some new results about abstract cones and operators, Nonlinear Analysis, 37, pp. 449-455, 1999.
[11] Zima, M., The abstract Gronwall lemma for some nonlinear operators, Demonstratio Mathematica, 31, pp. 325-332, 1998.

Received by the editors: April 4, 2000.

[^0]: *"Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, st. Kogălniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: abuica@math.ubbcluj.ro.

