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SOME REMARKS ON THE MONOTONE ITERATIVE TECHNIQUE

ADRIANA BUICA*

Abstract. We consider an abstract operator equation in coincidence form Lu =
N (u) and establish some comparison results and existence results via the mono-
tone iterative technique. We use a generalized iteration method developed by
Carl-Heikkila (1999). An application to a boundary value problem for a second-
order functional differential equation is considered.
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1. INTRODUCTION

Let X be a nonempty set and Z be an ordered metric space. Let us consider
the operator equation of the form

(1.1) Lu = Nu,
and the iterative scheme
(12) Lun+1 = Nun,

where L, N : X — Z.
In our work the operators L and N will satisfy some extended monotonicity
conditions, which are described exactly in the following definition.

DEFINITION 1.1. N is monotone increasing with respect to L if uy,us € X
and Lu; < Lus tmply that Nu; < Nus.

If in the last relation the reversed inequality holds, then N is monotone
decreasing with respect to L.

Let X be an ordered set. If Luy < Luo implies uy < us then L is said to be
inverse-monotone (see [8]) or of monotone-type (see [9]).

The plan of our paper is as follows. In Section 2 we deal with operator
inequalities corresponding with and extend the abstract Gronwall lemma
of Rus [6]. Let us mention that the result from [6] generalize some results
from [9] and [II]. In Section 3 we generalize some known existence results
for equation ([5, 10, 4, 1, 9]) involving monotone increasing or monotone
decreasing operators. We shall use a generalized iteration method developed
in [2]. In Section 4 we shall apply some of our results to implicit second
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order functional-differential equations. For another treatment of this type of
functional-differential equations it can be seen [7].

2. OPERATOR INEQUALITIES IN ORDERED METRIC SPACES

In this section we extend the notion of Picard operator [6], in Definition
and the abstract Gronwall lemma of Rus [6], in Theorem 2.3l The above
mentioned notion and result correspond, in our setting, with the case when
X = Z and L is the identity mapping of Z. As a consequence of Theorem [2.3]
we shall find a condition in Corollary[2.4] which assure the existence of ordered
lower and upper solutions for equation .

DEFINITION 2.1. N is Picard with respect to L if there exists a unique
v* € Z with the following properties.

(i) there exists u* € X such that Lu* = Nu* = v*;
(ii) N(X) C L(X);
(iii) for every up € X a sequence defined by is such that (Lup)n>0 18
convergent to v*.

EXAMPLE 2.1. If X = Z and N : Z — Z is Picard [6] then N is Picard
with respect to I, the identity mapping of Z. O

EXAMPLE 2.2. If L is inversable and N o L™ : Z — Z is Picard, then N is
Picard with respect to L. O

EXAMPLE 2.3. Let L, N : (0,00) — (—1,00) be given by L(u) = u? — 1 and
N(u) = y/u. Then N is Picard with respect to L. Let us mention that, also,
N is monotone increasing with respect to L. O

EXAMPLE 2.4. If Z is also a complete metric space, L is surjective and N
is contraction with respect to L then NN is Picard with respect to L. Let us
mention that N is contraction with respect to L if there exists 0 < a < 1 such
that for all uy,us € X, d(Nuy, Nug) < a-d(Luy, Lug).

For the proof of this result, also known as the Coincidence Theorem of
Goebel, we refer to [3]. O

LEMMA 2.2. If N is monotone increasing (or monotone decreasing or con-
traction) with respect to L then

Luy = Lug implies Nuy = Nus.
If L is inverse-monotone then L is injective.

Proof. Let us consider only that N is monotone increasing with respect to L.

If Luy = Lus then Luy < Lus and Lus < Luy. Thus, Nu; < Nus and
Nug < Nujp. This obviously implies the conclusion.

For the last statement we have to prove that, if L is of monotone type, then
Luy = Lus implies u; = uo. This can be done like above. O
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THEOREM 2.3. If N is monotone increasing with respect to L and N 1is
Picard with respect to L then

(i) Lug < Nug implies Lug < v*,

(ii) Lug > Nug implies Lug > v*.
If, in addition, L is of monotone type then

(j) Lug < Nug implies ug < u*,

(4j) Lug > Nug implies ug > u*.

Proof. Let us consider ug € X such that Lug < Nug and the sequence
defined by (1.2 starting from wug. The following relations hold,

LUOSNUO:LulSNUlzL’U,QSNUQS....

Thus, for all n > 0,
Lug < Nup,

and, passing to the limit when n — oo,
Lug < v*.

The next relation can be proved similarly.
If, in addition, L is inverse-monotone, then, by Lemma u* given by
Definition [2.1|is unique and, of course, Lug < Lu* implies ug < u*. O

We say that u € X is a lower solution of (1.1)) if Lu < Nw. Similarly, u € X
is an upper-solution of (1.1)) if Lu > Nu.

COROLLARY 2.4. Let us consider two operators NN : X — Z such that
they are monotone increasing with respect to L and Picard with respect to L.

If

(2.1) Nu < Nu < Nu, for allu € X,

then there exist u a lower solution and u an upper-solution of , such that
Lu < Lu.

If, in addition, L is of monotone type then,

U< U
Proof. N and N being Picard with respect to L, there exist u such that

Lu= Nu,

and « such that -
Lu = Nu.

Then, by Lu < Nuand Lu > Nu, which mean that u is a lower solution

and w is a super-solution of ([1.1)).
Also by the following inequality holds

Lu< Nu.
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We apply now Theorem for N and deduce that
Lu < Lu.

The last part of the conclusion follows in an obvious way. O

3. OPERATOR EQUATIONS IN ORDERED BANACH SPACES

In this section we shall establish two existence results for equation ,
involving an operator N which is increasing with respect to L, in Theorem
respectively monotone decreasing with respect to L, in Theorem We shall
use a generalized iteration method developed in [2]. As it is mentioned in [2],
this method enlarges the range of applications since neither L nor N need be
continuous. In this spirit, Theorem generalizes Theorem 3.1 in [4], and
Theorem generalizes Theorem 3 in [I0] and Theorem 2 in [5] (these are
given in the case X = Z and L = I).

The following result is Proposition 3.4 from [2] and we shall use it to derive
Theorem [3.2]

PROPOSITION 3.1. Assume that the following conditions hold.

(i) There exists u a lower solution of (L), ue W C X;
(ii) N is monotone increasing with respect to L;
(iii) L(W) is an ordered metric space and if (uy,) is a sequence in W such
that the sequences (Luy) and (Nuy,) are increasing, then (Nuy) con-
verges in L(W).
Then has a solution us with the property
Lu, = min{Lw € L(W) | Lu < Lw and Lw > Nw }.

If, in addition, W is an ordered space and L is of monotone type, then uy is
the minimal solution of (1.1)) in Wy = {u € W | Lu < Lu}.

We notice that the dual result is valid.

In the following results, i.e. Theorem [3.2] and Theorem [3.3] Z will be an
ordered Banach space (OBS) with a normal cone K.

Let us remember, (see [5} 1], [10]) that the cone K = {v € Z | v > 0} is said
to be normal if there exists § > 0 such that 0 < v < w implies ||v|| < d]jw||.

For v < w the order interval [v, w] is the set of all u € Z such that v < u < w.
Every order interval for an OBS is bounded if and only if the cone K is normal.
In an OBS with a normal cone, every monotone increasing sequence which has
a convergent subsequence, is convergent.

A cone K is said to be regular if every monotone increasing sequence con-
tained in some order interval, is convergent.

THEOREM 3.2. Assume that the following conditions hold.

(i) w is a lower solution and u is a super-solution of (L.1)) with Lu < Lu;
(ii) N is monotone increasing with respect to L;
(i) [Lu, L] C L(X);
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(iv) K s reqular or [Nu, Nu| N N(X) is a compact subset of Z.
Then has a solution uy with the property
Lu, = min{Lw € [Lu, Lu] | Lw > Nw}
and a solution u* with the property
Lu* = max{Lw € [Lu, Lu] | Lw < Nw}.

If, in addition, L is of monotone type, then u, is the minimal solution, and
u* the mazimal solution of (L.1)) in [u, u].

Proof. Let us consider W = {u € X | Lu < Lu < Lu}. Then, using also
(iii), L(W') = [Lu, Lu], which is a closed subset of Z, thus is an ordered metric
space.

Let (uy) be a sequence in W such that (Lu,) and (Nu,) are increasing.
Using (i) and (ii), Lu < Lu, < Lu imply that Lu < Nu < Nu, < Nu < L.
Then (Nu,) is an increasing sequence in the bounded (because K is normal)
interval L(W).

If K is regular, then (Nu,) converges.

If [Nu, Nu]N N(X) is compact, then (Nu,) has a convergent subsequence.
By the monotonicity of the sequence (Nuy,), it converges.

All the hypotheses of Proposition [3.1] are fulfilled. Hence, the conclusion
follows. O

REMARK. If, in addition to the hypotheses of Theorem N is contin-
uous with respect to L then u* can be obtained by starting from u, in
the sense that a sequence defined by with ug = wu is such that (Lu,)
converges to Lu*.

Let us mention that N is said to be continuous with respect to L if for every
sequence (Lu,) from L(X) convergent to Lu* € L(X), the sequence (Nuy,)
converges to Nu*. O

THEOREM 3.3. Assume that the following conditions hold.
(i) Lu > 0 implies Nu > 0;
(ii) N is monotone decreasing with respect to L;
(iii) if up and uy are such that Lug = 0, Nuy = Luy then Nu; > 0 and
[0, Luy] € L(X);
(iv) there exists a € (—1,0) such that Nup < p*Nu for all u € X with
0 < Lu < Luy, for u, given by Lu, = pLu, and for all p € (0,1);
(v) for every v,w with 0 < v < w < Luy there is pr € (0,1) such that
pw < v,
(vi) the cone K is reqular or [Nuy, Nug) N N(X) is a compact subset of Z.
Then has a solution, u* with Lu* > 0.

Proof. For every u € X, if @ is such that Nu = Lu, let us define Nu = Ni.
By Lemma Nu does not depend on the choice of @, thus the operator
N : X — Z is well-defined.
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N is monotone increasing with respect to L. Indeed, Lu; < Lug =, L =
Nui > Nug = Lup = Nul = Nu1 < Nup = NUQ.

Let us consider also ug,us such that Nu; = Lug and Nug = Lus. By (i)
and (iii), Lu; > 0 = Lug, which implies, by (ii), that Nu; < Nug. Using the
definitions of uy and w1, the following relation holds.

(3.1) LUQ S Lul.
We shall focus our attention to the equation
(3.2) Lu = Nu.

We shall prove that us is a lower solution and w; is an upper solution of .
This follows by the following implications.
Nui > 0= Lug = Lus > Luyg = Nug < Nug = Nul < Luq,
and .
Nus < Nug = Luz < Lu; = Nug > Nuj = Nug > Lus.
We use Theorem and deduce that equation has a solution u*, i.e.
Lu* = Nu*,
with the property
Lu* = min{Lw € [Lug, Lu;] | Lw > Nw}.
Let us consider 4* such that
Lu* = Nu*.

By the definition of N, Lu* = N@*. And now, using also again the definition

of N, we obtain )
Lua* = Nu*.

If Lu* = La* then, the existence of a solution for (|1.1)) is proved. Using (iii),
(iv) and (v) we shall prove that this always holds. First, let us notice that 0 <
Lu* < Lua* < Luj. According to (v), let up = sup{p € (0,1] | pLa* < Lu*}.
Clearly, pgLu* < Lu*. We have to prove that ug = 1. Then, Lu* = Nu* <
Ny, < pgNu* = pgLu*. Here, ), is such that Lay, = poLu*. Consequently,
po ® < po, that is —a > 1, a contradiction. Thus, Lu* = Lua*. U

4. APPLICATION

In this section we shall establish a weak maximum principle for the functi-
onal-differential operator

Lu = —u" — \u(g(x))
and an existence result for the following boundary value problem for a second
order implicit functional-differential equation.

—u"(z) = f(z,u(g(x)),u(x), —u"(z)), a.a. x € (0,1)
(4.1) {ueH%Qnmﬂiqn.
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Let us list the following hypotheses.

(gl) the function g : [0,1] — [0, 1] is continuous.
(f1) the function f : (0,1) x R® — R is Caratheodory and there exists a
continuous function ¢ : [0,1] x R? — R such that

|f (2, u,v,w)| < p(x,u,v), a.a. z € (0,1),u,v,w € R.

(f2) f is monotone increasing with respect to the last three variables.

Let us denote

Nu = f(xa u(x)vu(g(x))v _u”)7

Z =L*0,1), X = H*(0,1) N H}(0,1).

Then, we obtain two operators L, N : X — Z and the BVP can be written in
the following form (with A = 0).

(4.2) Lu= Nu, ue X.

Let us notice that (f1) and the inclusion X C C[0,1] imply that N is
well-defined. Also, for our existence result, we shall not need another growth
condition for the function f.

Next we shall prove that, when 0 < A < 8, the weak maximum principle
holds for the functional-differential operator L.

THEOREM 4.1. If 0 < A < 8 then L : X — Z is surjective and it is inverse-
monotone.

Proof. In order to prove that L is surjective we study the solvability of the
following equation for an arbitrary w € Z.

(4.3) Lu=w, ueX.
Let us consider the following integral operator.
1
Ay :C[0,1] = C[0,1], Ayu :/ Gz, ) Mulg(s)) + w(s)]ds.
0

The Green function G : [0, 1] x [0,1] — R is given by
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[ s(l—ux),ifs<z
G(:E’S)_{ z(1—s), if s > x.

Then equation is equivalent to
Apu =u, ue C0,1].
By o straightforward calculation, the following relation can be proved
[Awur — Apus|lc < X~ gllur — ugflc-

Thus, A, is a contraction on the Banach space C[0, 1], so it has a unique
fixed point. Hence, L is surjective.

In order to prove that L is inverse-monotone, because L is linear it is suffi-
cient to prove that Lu < 0 implies u < 0.

Let u* € X be such that Lu* < 0. Let us denote by w*(z) = Lu*(z). Then
w*(z) <0 and Ayp+u* = u*.

The operator A~ is Picard and monotone increasing and, in this case, it
is easy to see that A(0) < 0. Then, by Theorem (or Theorem 4.1 in [6])
u* <0. ]

The following theorem is an existence result for the BVP considered at the
beginning of this section.

THEOREM 4.2. If conditions (gl), (f1) and (£2) hold and there exists a sub-
solution u and an upper solution u for problem (6) with

< —i
then (6) has a solution.

Proof. This follows easily by Theorem Let us omit the details and
notice only some useful facts.

Z = L*(0,1) is an ordered Banach space with a regular cone (see [I]).

[Lu, Lu] C L(X) because L is surjective.

The condition (f2) and that L is inverse-monotone imply that N is monotone
increasing with respect to L. O

REFERENCES

[1] AMANN, H., Fized point equations and nonlinear eigenvalue problems in ordered Banach
spaces, SIAM Rev., 18, pp. 621-709, 1976.

[2] CARL, S. and HEIKKILA, S., Operator and differential equations in ordered spaces, J.
Math. Anal. Appl., 234, pp. 31-54, 1999.

[3] GOEBEL, K., A coincidence theorem, Bull. Acad. Pol. Sc., 16, pp. 733-735, 1968.

[4] NiETO, J., An abstract monotone iterative technique, Nonlinear Analysis T.M.A., 28,
pp. 1923-1933, 1997.

[5] PRECUP, R., Monotone iterations for decreasing maps in ordered Banach spaces, Proc.
Scientific Communications Meeting of “Aurel Vlaicu” University, Arad, 14A, pp. 105—
108, 1996.

[6] Rus, 1. A., Picard operators and applications, Seminar on fixed point theory, Babes-
Bolyai University, Preprint 3, pp. 3-36, 1996.



9 On the monotone iterative technique 151

[7] Rus, 1. A., Principles and Applications of the Fized Point Theory, Editura Dacia, Cluj-
Napoca, 1979 (in Romanian).
[8] SCHRODER, J., Operator Inequalities, Academic Press, 1980.
[9] ZEIDLER, E., Nonlinear Functional Analysis and Its Applications I, Springer-Verlag,
1993.
[10] ZHITAO, Z., Some new results about abstract cones and operators, Nonlinear Analysis,
37, pp. 449-455, 1999.
[11] ZmA, M., The abstract Gronwall lemma for some nonlinear operators, Demonstratio
Mathematica, 31, pp. 325—-332, 1998.

Received by the editors: April 4, 2000.



	1. INTRODUCTION
	2. Operator inequalities in ordered metric spaces
	3. Operator equations in ordered Banach spaces
	4. Application
	References

