Rev. Anal. Numér. Théor. Approx., vol. 31 (2002) no. 2, pp. 153-162 ictp.acad.ro/jnaat

$L^p\text{-}\mathsf{APPROXIMATION}\ (p\geq 1)$ BY STANCU-KANTOROVICH POLYNOMIALS

ZOLTÁN FINTA*

Abstract. We establish direct and converse estimates for a generalized Kantorovich polynomial operator depending on a positive parameter.

MSC 2000, 41A36.

Keywords. Stancu-Kantorovich polynomials, the second modulus of smoothness of Ditzian-Totik.

1. INTRODUCTION

In [6] is defined the following Kantorovich type polynomial:

(1)
$$K_n^{\alpha}(f,x) = (n+1) \sum_{k=0}^n w_{n,k}^{\alpha}(x) \cdot \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(u) \, du,$$

where $f \in L^1[0,1], \, \alpha \ge 0, \, x \in [0,1]$ and

$$w_{n,k}^{\alpha}(x) = \binom{n}{k} \frac{x^{(k,-\alpha)} (1-x)^{(n-k,-\alpha)}}{1^{(n,-\alpha)}},$$

$$(2) \qquad x^{(k,-\alpha)} = x(x+\alpha) \dots (x+(k-1)\alpha).$$

For $\alpha = 0, K_n^0$ is the Kantorovich operator K_n given by

(3)
$$K_n(f,x) = (n+1) \sum_{k=0}^n {n \choose k} x^k (1-x)^{n-k} \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} f(u) du.$$

The positive linear polynomial operator K_n^{α} is the Kantorovich variant of the following Stancu operator introduced in [7]:

$$B_n^{\alpha}(f,x) = \sum_{k=0}^n w_{n,k}^{\alpha}(x) f\left(\frac{k}{n}\right),$$

where f is a real function on [0,1], $x \in [0,1]$ and $\alpha \geq 0$. For $f \in C[0,1]$ it can be found in [2] an asymptotic relation of Voronovskaja type and direct results for the operator K_n^{α} , respectively.

^{*&}quot;Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, st. M. Kogălniceanu 1, 3400 Cluj-Napoca, Romania, e-mail: fzoltan@math.ubbcluj.ro.

The aim of the present paper is to give direct and converse results for the operators (1)–(2) in the spaces $L^p[0,1]$, $1 \le p \le \infty$ endowed with the norm

$$||f||_p = \left(\int_0^1 |f(x)|^p dx\right)^{\frac{1}{p}}, \ 1 \le p < \infty$$

(for $p = \infty$ we will always consider C[0,1] instead of $L^{\infty}[0,1]$ with $||f||_{\infty} = \sup\{|f(x)| : x \in [0,1]\}$).

In the following $\omega(f,\delta)_p$, $\omega^2(f,\delta)_p$ and $\omega_{\varphi}^2(f,\delta)_p$ denote the usual modulus of continuity and the second modulus of smoothness of $f \in L^p[0,1]$, $1 \le p \le \infty$ and the second modulus of smoothness of Ditzian-Totik [3] defined by $\omega_{\varphi}^2(f,\delta)_p = \sup_{0 < h \le \delta} \|\Delta_{h\varphi(x)}^2 f(x)\|_p$, where $f \in L^p[0,1]$, $1 \le p \le \infty$ and $\varphi(x) = \sqrt{x(1-x)}$, $x \in [0,1]$. Furthermore, we shall use the following K-functionals:

(4)
$$K_{2,\varphi}(f,t^2)_p = \inf\{\|f-g\|_p + t^2\|\varphi^2g''\|_p : g \in C^2[0,1]\},$$

(5)
$$\bar{K}_{2,\varphi}(f,t^2)_p = \inf\{\|f-g\|_p + t^2\|\varphi^2g''\|_p + t^4\|g''\|_p : g \in C^2[0,1]\}$$

(see [3]) and

(6)
$$K(f,t)_p = \inf \{ \|f - g\|_p + t^2 \|(\varphi^2 g')'\|_p : g \in C^2[0,1] \}$$

in view of [5].

Before we state our theorems let us observe the dependence of the parameter α of n such that $\alpha = \alpha(n) \to 0$, as $n \to \infty$, when we approximate f by $K_n^{\alpha} f$ in $L^p[0,1]$, $1 \le p \le \infty$. Indeed, in this case $\lim_{n\to\infty} \|K_n^{\alpha} f - f\|_p = 0$ and in particular we have $\lim_{n\to\infty} \|K_n^{\alpha} (t^2, x) - x^2\|_1 = 0$. Simple computations show (or see [2, Lm 1.1, p. 72]) that

$$K_n^{\alpha}((t-x)^2,x) = x(1-x) \cdot \frac{\alpha(n^2-1)+(n-1)}{(\alpha+1)(n+1)^2} + \frac{1}{3(n+1)^2}$$

and

$$K_n^{\alpha}((t-x)^2, x) = K_n^{\alpha}(t^2, x) - x^2 - 2 x K_n^{\alpha}(t-x, x)$$
$$= K_n^{\alpha}(t^2, x) - x^2 - \frac{x(1-2x)}{n+1}.$$

Hence

$$||K_n^{\alpha}((t-x)^2,x)||_1 = \frac{1}{6} \cdot \frac{\alpha(n^2-1)+(n-1)}{(\alpha+1)(n+1)^2} + \frac{1}{3(n+1)^2}$$

and

$$||K_n^{\alpha}((t-x)^2, x)||_1 \le ||K_n^{\alpha}(t^2, x) - x^2||_1 + \frac{1}{4(n+1)} \to 0,$$
 as $n \to \infty$.

Thus

$$\lim_{n \to \infty} \frac{\alpha(n^2 - 1) + (n - 1)}{(\alpha + 1)(n + 1)^2} = 0$$

which is possible when $\alpha = \alpha(n) \to 0$, as $n \to \infty$.

In the following the constant C denotes a positive constant which can be different at each occurrence.

2. DIRECT THEOREMS

Our main result is the following

Theorem 1. Let $f \in L^p[0,1]$ where $1 \leq p \leq \infty$. Then there exists C > 0independent of n and f such that

(i)
$$||K_n^{\alpha}f - f||_p \le C \cdot (\omega_{\varphi}^2(f, n^{-1/2})_p + n^{-1}||f||_p)$$
, for $\alpha = \alpha(n) = \mathcal{O}(n^{-1})$
and $1 ;
(ii) $||K_n^{\alpha}f - f||_1 \le C \cdot (\omega_{\varphi}^2(f, n^{-1/2})_1 + n^{-1}||f||_1)$, for $\alpha = \alpha(n) = \mathcal{O}(n^{-4})$.$

(ii)
$$||K_n^{\alpha} f - f||_1 \le C \cdot (\omega_{\varphi}^2(f, n^{-1/2})_1 + n^{-1} ||f||_1), \text{ for } \alpha = \alpha(n) = \mathcal{O}(n^{-4}).$$

Proof of Theorem 1. (i) It is known the following representation of K_n^{α} by means of K_n [6]:

$$K_n^{\alpha}(f,x) = \frac{1}{B\left(\frac{x}{\alpha}, \frac{1-x}{\alpha}\right)} \cdot \int_0^1 t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} \cdot K_n(f,t) dt,$$

where B(a,b) denotes the Beta function. By expanding $K_n f$ by Taylor's formula we get

$$K_n(f,t) = K_n(f,x) + K'_n(f,x)(t-x) + \int_x^t (t-u)K''_n(f,u)du.$$

Hence

(7)
$$K_{n}^{\alpha}(f,x) - K_{n}(f,x) =$$

$$= \frac{1}{B(\frac{x}{\alpha}, \frac{1-x}{\alpha})} \cdot \int_{0}^{1} t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} \left[K_{n}(f,t) - K_{n}(f,x) \right] dt$$

$$= \frac{1}{B(\frac{x}{\alpha}, \frac{1-x}{\alpha})} \cdot \int_{0}^{1} t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} \left[K'_{n}(f,x)(t-x) + \int_{0}^{t} (t-u)K''_{n}(f,u) du \right] dt.$$

By simple computations we obtain

(8)
$$\int_0^1 t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} (t-x) dt = 0$$

and

(9)
$$\int_0^1 t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} (t-x)^2 dt = \frac{\alpha x (1-x)}{1+\alpha} \cdot B\left(\frac{x}{\alpha}, \frac{1-x}{\alpha}\right).$$

Then, in view of (7), (8) and [3, Lm. 9.6.1, p. 140] we have

$$|K_n^{\alpha}(f,x) - K_n(f,x)| \leq$$

$$\leq \frac{1}{B\left(\frac{x}{\alpha}, \frac{1-x}{\alpha}\right)} \cdot \int_0^1 t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} \cdot \frac{|t-x|}{x(1-x)} \left| \int_x^t u(1-u) |K_n''(f,u)| du \right| dt.$$

In what follows the proof is standard using the Hardy-Littlewood maximal function:

$$M(G, x) = \sup_{t} \left| \frac{1}{x - t} \int_{x}^{t} G(v) dv \right|,$$

where $G(v) = v(1-v)|K_n''(f,v)|, v \in [0,1]$. Then, by (10), (9) and the inequality $||M(G)||_p \leq p/(p-1) ||G||_p$, true for 1 , we obtain

On the other hand, in view of [3, (9.3.5) and (9.3.7), p. 118] we have from (11) for every $g \in C^2[0,1]$:

$$||K_{n}^{\alpha}f - K_{n}f||_{p} \leq C \frac{\alpha}{1+\alpha} (||\varphi^{2}K_{n}''(f-g)||_{p} + ||\varphi^{2}K_{n}''(g)||_{p})$$

$$\leq C \frac{\alpha}{1+\alpha} (n ||f-g||_{p} + ||\varphi^{2}g''||_{p})$$

$$= C \frac{\alpha n}{1+\alpha} (||f-g||_{p} + \frac{1}{n} ||\varphi^{2}g''||_{p}).$$

Hence $||K_n^{\alpha}f - K_nf||_p \leq CK_{2,\varphi}(f, n^{-1})_p$, for $\alpha = \mathcal{O}(n^{-1})$. Using the equivalence of $K_{2,\varphi}(f, n^{-1})_p$, with $\omega_{\varphi}^2(f, n^{-1/2})_p$ (see [3, Th. 2.1.1, p. 11]) and [3, Th. 9.3.2, p. 117], we get (i).

(ii) In this case we need the following lemma:

LEMMA 2. If $\alpha = \alpha(n) = \mathcal{O}(n^{-4})$ then for $w_{n,k}^{\alpha}$ defined by (2) we have $\|w_{n,k}^{\alpha}\|_1 = \mathcal{O}(1/(n+1))$. Moreover, for $K_n^{\alpha}f$ defined by (1) there exists C independent of n and f such that $\|K_n^{\alpha}f\|_1 \leq C\|f\|_1$.

Proof of Lemma 2. Let $x \in [1/(2n^2), 1 - (1/(2n^2))]$. Then

(12)
$$w_{n,k}^{\alpha}(x)/w_{n,k}^{0}(x) =$$

$$= \frac{1}{(1+\alpha)(1+2\alpha)\dots(1+(n-1)\alpha)} \cdot (1+\frac{\alpha}{x}) \left(1+\frac{2\alpha}{x}\right) \cdot \dots \cdot \left(1+\frac{(k-1)\alpha}{x}\right) \cdot \left(1+\frac{\alpha}{x-1}\right) \left(1+\frac{2\alpha}{1-x}\right) \dots \left(1+\frac{(n-k-1)\alpha}{1-x}\right)$$

$$\leq \left(1+\frac{n\alpha}{x}\right)^{k-1} \left(1+\frac{n\alpha}{1-x}\right)^{n-k-1}$$

$$\leq (1+2\alpha n^{3})^{k-1} \cdot (1+2\alpha n^{3})^{n-k-1} = (1+2\alpha n^{3})^{n-2},$$

where $0 \le k \le n$. Since $w_{n,k}^{\alpha}$ is a polynomial of degree n we can use [3, Th. 8.4.8, p. 108] translated from [-1,1] to [0,1] to obtain the estimate

$$||w_{n,k}^{\alpha}||_{1} \leq C ||w_{n,k}^{\alpha}||_{L^{1}[1/(2n^{2}),1-(1/(2n^{2}))]}$$

$$\leq C (1+2 \alpha n^{3})^{n-2} ||w_{n,k}^{0}||_{L^{1}[1/(2n^{2}),1-(1/(2n^{2}))]}$$

$$< C (1+2 \alpha n^{3})^{n-2} ||w_{n,k}^{0}||_{1}.$$

On the other hand $||w_{n,k}^0||_1 = \mathcal{O}(1/(n+1))$ and

$$(1 + 2\alpha n^3)^{n-2} = \left[(1 + 2\alpha n^3)^{1/(2\alpha n^3)} \right]^{2\alpha n^3(n-2)} = \mathcal{O}(1)$$

for $\alpha = \mathcal{O}(n^{-4})$. Hence $||w_{n,k}^{\alpha}||_1 = \mathcal{O}(1/(n+1))$.

Using this last estimation we obtain

$$\int_{0}^{1} |K_{n}^{\alpha}(f,x)| dx \leq \int_{0}^{1} \sum_{k=0}^{n} w_{n,k}^{\alpha}(x) \left\{ (n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(u)| du \right\} dx
\leq \sum_{k=0}^{n} \int_{0}^{1} w_{n,k}^{\alpha}(x) dx (n+1) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}} |f(u)| du
\leq C ||f||_{1},$$

which was to be proved.

Now let E(n) = [1/n, 1 - (1/n)] and $x \in E(n)$. By expanding the function $g \in C^2[0,1]$ by Taylor's formula we get

$$g(t) = g(x) + g'(x) (t - x) + \int_{x}^{t} (t - u)g''(u)du.$$

Hence, in view of $K_n^{\alpha}(t-x,x) = (1-2x)/(2(n+1))$ [2, Lm. 1.1, p. 72] we have

$$(13) ||K_{n}^{\alpha}g - g||_{L^{1}(E(n))} \le$$

$$\le \int_{E(n)} |g'(x)| \cdot |K_{n}^{\alpha}(t - x, x)| dx + \int_{E(n)} |K_{n}^{\alpha}(\int_{x}^{t} (t - u)g''(u) du; x)| dx$$

$$= \int_{E(n)} |g'(x)| \cdot \left| \frac{1 - 2x}{2(n+1)} \right| dx + \int_{E(n)} |K_{n}^{\alpha}(\int_{x}^{t} (t - u)g''(u) du; x)| dx$$

$$\le \frac{1}{2(n+1)} \cdot ||g'||_{1} + \int_{E(n)} |K_{n}^{\alpha}(\int_{x}^{t} (t - u)g''(u) du; x)| dx.$$

Furthermore we shall use some typical ideas which can be found in [3, Ch. 9, p. 145]. Thus we point out only that estimate which is different of the standard one. This happens at the evaluation of I_n , more precisely we have to prove for $x \in E(n)$

$$\sum_{k \in D(l,n,x)} w_{n,k}^{\alpha}(x) \left(\left| \frac{k}{n} - x \right| + \frac{1}{n} \right) \le \frac{C}{(l+1)^4} \cdot \left(\varphi(x) n^{-\frac{1}{2}} \right)$$

(see [3, (9.6.11), p. 146]). But this follows from $w_{n,k}^{\alpha}(x) \leq w_{n,k}^{0}(x) \cdot (1+n^{2}\alpha)^{n-2}$ (see the proof of Lemma 2), where $x \in E(n)$ and $\alpha = \mathcal{O}(n^{-4})$ implies $(1 + n^{2}\alpha)^{n-2} = \mathcal{O}(1)$, as $n \to \infty$. Therefore

$$\sum_{k \in D(l,n,x)} w_{n,k}^{\alpha}(x) \left(\left| \frac{k}{n} - x \right| + \frac{1}{n} \right) \leq \sum_{k \in D(l,n,x)} C w_{n,k}^{0}(x) \left(\left| \frac{k}{n} - x \right| + \frac{1}{n} \right) \\ \leq \frac{C}{(l+1)^{4}} \cdot \left(\varphi(x) \ n^{-1/2} \right)$$

using [3, (9.6.11), p. 146]. In conclusion

$$\int_{E(n)} \left| K_n^{\alpha} \left(\int_x^t (t - u) g''(u) du; x \right) \right| dx \le \frac{C}{n} \|\varphi^2 g''\|_1$$

and from (13) we obtain

$$||K_n^{\alpha}g - g||_{L^1(E(n))} \le \frac{C}{n} (||g'||_1 + ||\varphi^2g''||_1).$$

Hence, in view of [3, §9.6, p. 140] we get

(14)
$$||K_n^{\alpha} g - K_n g||_{L^1(E(n))} \le \frac{C}{n} \left(||g'||_1 + ||\varphi^2 g''||_1 \right).$$

Now let $x \in [0,1] \setminus E(n)$ and $g \in C^2[0,1]$. Using the modified Taylor's formula

$$K_n(g,t) = K_n(g,x) + K'_n(g,x)(t-x) +$$

$$+ (t-x) \int_0^1 \left[K'_n(g,x+u(t-x)) - K'_n(g,x) \right] du,$$

(8) and the representation of K_n^{α} by means of K_n we obtain

$$|K_{n}^{\alpha}(g,x) - K_{n}(g,x)| =$$

$$= \left| \frac{1}{B(\frac{x}{\alpha}, \frac{1-x}{\alpha})} \cdot \int_{0}^{1} t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} \left[K'_{n}(g,x)(t-x) + (t-x) \int_{0}^{1} \left\{ K'_{n}(g,x+u(t-x)) - K'_{n}(g,x) \right\} du \right] dt \right|$$

$$\leq \frac{1}{B(\frac{x}{\alpha}, \frac{1-x}{\alpha})} \cdot \int_{0}^{1} t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} |t-x| \cdot \int_{0}^{1} \left| K'_{n}(g,x+u(t-x)) - K'_{n}(g,x) \right| du dt \leq$$

$$\leq \frac{1}{B(\frac{x}{\alpha}, \frac{1-x}{\alpha})} \cdot \int_{0}^{1} t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} |t-x| \cdot \omega (K'_{n}(g), |t-x|)_{1} dt$$

$$\leq \frac{1}{B(\frac{x}{\alpha}, \frac{1-x}{\alpha})} \int_{0}^{1} t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} |t-x| (n^{2}|t-x|+1) \omega (K'_{n}(g), n^{-2})_{1} dt$$

$$= \frac{\omega (K'_{n}(g), n^{-2})_{1}}{B(\frac{x}{\alpha}, \frac{1-x}{\alpha})} \cdot \int_{0}^{1} t^{\frac{x}{\alpha}-1} (1-t)^{\frac{1-x}{\alpha}-1} [n^{2}(t-x)^{2} + |t-x|] dt.$$

On the other hand, in view of Cauchy's inequality and (9) we have

$$\int_{0}^{1} t^{\frac{x}{\alpha} - 1} (1 - t)^{\frac{1 - x}{\alpha} - 1} |t - x| dt \leq
\leq \left(\int_{0}^{1} t^{\frac{x}{\alpha} - 1} (1 - t)^{\frac{1 - x}{\alpha} - 1} dt \right)^{\frac{1}{2}} \cdot \left(\int_{0}^{1} t^{\frac{x}{\alpha} - 1} (1 - t)^{\frac{1 - x}{\alpha} - 1} (t - x)^{2} dt \right)^{\frac{1}{2}}
= \sqrt{\frac{\alpha x (1 - x)}{1 + \alpha}} \cdot B\left(\frac{x}{\alpha}, \frac{1 - x}{\alpha}\right).$$

Hence, by (15) and (9) we have

$$\mid K_n^{\alpha}(g,x) - K_n(g,x) \mid \leq \left(n^2 \cdot \frac{\alpha x(1-x)}{1+\alpha} + \sqrt{\frac{\alpha x(1-x)}{1+\alpha}} \right) \omega(K_n'(g), n^{-2})_1.$$

Because $x \in [0, 1/n] \cup [1 - (1/n), 1]$ and $\alpha = \mathcal{O}(n^{-4})$ we obtain

$$|K_{n}^{\alpha}(g,x) - K_{n}(g,x)| \leq \left(n^{2} \cdot \frac{\alpha}{1+\alpha} \cdot \frac{1}{n} + \sqrt{\frac{\alpha}{1+\alpha} \cdot \frac{1}{n}}\right) \omega(K_{n}'(g), n^{-2})_{1}$$

$$\leq C \cdot \omega(K_{n}'(g), n^{-2})_{1}$$

$$\leq \frac{C}{n^{2}} \|K_{n}''(g)\|_{1}$$

$$\leq \frac{C}{n^{2}} \|g''\|_{1}.$$

Hence

(16)
$$||K_n^{\alpha} g - K_n g||_{L^1([0,1] \setminus E(n))} \le \frac{C}{n^2} ||g''||_1.$$

Combining (14), (16) and the estimate $||g'||_1 \leq C \cdot (||\varphi^2 g''||_1 + ||g||_1)$ of [3, (a), p. 135] we obtain

$$||K_n^{\alpha}g - K_ng||_1 \le \frac{C}{n}(||g||_1 + ||\varphi^2g''||_1 + \frac{1}{n}||g''||_1).$$

Then, by Lemma 2

for every $q \in C^2[0,1]$. Hence

$$||K_n^{\alpha} f - K_n f||_1 \le C \cdot (n^{-1} ||f||_1 + \bar{K}_{2,\omega}(f, n^{-1})_1).$$

Using the equivalence of $\bar{K}_{2,\varphi}(f,n^{-1})_1$ and $\omega_{\varphi}^2(f,n^{-1/2})_1$ (see [3, Th. 3.1.1, p. 24]) and [3, Th. 9.3.2, p. 117] we get the assertion of (ii).

Remark 1. We can establish another direct result which derive from the estimation of $||K_n^{\alpha}f - K_nf||_p$ using the same ideas as in the proof of Theorem 1. More exactly the following result holds.

(i) If $\alpha = \alpha(n) = \mathcal{O}(n^{-4-\delta})$, $\delta > 0$ and $f \in L^p[0,1]$, $1 \leq p \leq \infty, \text{ then } \|K_n^{\alpha} f - f\|_p \leq C \text{ } \omega^2(f, n^{-\delta/2})_p + \|K_n f - f\|_p;$ (ii) If $\alpha = \alpha(n) = \mathcal{O}(n^{-8})$ and $f \in L^p[0, 1], 1 \leq p \leq \infty$, then $\|K_n^{\alpha} f - f\|_p \leq C$

- $C \ \omega_{\varphi}^{2}(f, n^{-1})_{p} + \|K_{n}f f\|_{p};$ (iii) If $\alpha = \alpha(n) = \mathcal{O}(n^{-2})$ and $f \in C[0, 1], 1 \leq p \leq \infty$, then $\|K_{n}^{\alpha}f f\|_{p} \leq \infty$
- $C \|K_n f f\|_{\infty};$ (iv) If $\alpha = \alpha(n) = \mathcal{O}(n^{-1})$ and $f \in L^p[0,1], 1 , then <math>\|K_n^{\alpha} f f\|_p \le \infty$
- $C \|K_n f f\|_n$.

In the above theorem C denotes a constant independent of n and f.

3. A CONVERSE RESULT

In this section we establish the following result

THEOREM 4. Let $\alpha = \alpha(n)$ and $C_0 \cdot c(p) \cdot \alpha \cdot n \leq \gamma < 1$ for $n = 1, 2, ..., where <math>C_0$ is the constant from Lemma 5 below and c(p) = p/(p-1). If $f \in L^p[0,1]$ for 1 then

- (i) $(1-\gamma)\|K_nf-f\|_p \le \|K_n^{\alpha}f-f\|_p \le (1+\gamma)\|K_nf-f\|_p$;
- (ii) there exists a constant C > 0 independent of n and f such that

$$C^{-1}\left[\omega_{\varphi}^{2}(f, n^{-\frac{1}{2}})_{p} + \omega(f, n^{-1})_{p}\right] \leq \|K_{n}^{\alpha}f - f\|_{p} \leq C\left[\omega_{\varphi}^{2}(f, n^{-\frac{1}{2}})_{p} + \omega(f, n^{-1})_{p}\right].$$

Proof of Theorem 4. Again we need a lemma:

LEMMA 5. For $f \in L^p[0,1]$, $1 and <math>K_n f$ defined by (3), there exists C_0 independent of n and f such that

(18)
$$\frac{1}{n} \|\varphi^2 K_n''(f)\|_p \le C_0 \|K_n f - f\|_p.$$

Proof of Lemma 5. Indeed, in view of [5, Thms 1.1 and 1.2, p. 104] we have $||K_nf - f||_p \sim K(f, n^{-1/2})_p$, $1 \le p \le \infty$ and $K(f, n^{-1/2})_p \sim \omega_{\varphi}^2(f, n^{-1/2})_p + \omega(f, n^{-1})_p$, 1 . Then there exists an absolute constant <math>C > 0 such that for all $f \in L^p[0, 1]$, 1 we have

(19)
$$K(f, n^{-\frac{1}{2}})_p \ge C^{-1} \left[\omega_{\mathcal{O}}^2(f, n^{-\frac{1}{2}})_p + \omega(f, n^{-1})_p\right]$$

and

(20)
$$K(f, n^{-\frac{1}{2}})_p \leq C \|K_n f - f\|_p,$$

where $K(f, n^{-1/2})_p$ is defined by (6). Using [3, (9.3.5) and (9.3.7), p. 118] we obtain for $g \in C^2[0, 1]$, by (4):

$$\frac{1}{n} \|\varphi^{2} K_{n}''(f)\|_{p} \leq \frac{1}{n} (\|\varphi^{2} K_{n}''(f-g)\|_{p} + \|\varphi^{2} K_{n}''(g)\|_{p})
\leq \frac{C}{n} (n \|f-g\|_{p} + \|\varphi^{2} g''\|_{p}) =
= C \cdot (\|f-g\|_{p} + \frac{1}{n} \|\varphi^{2} g''\|_{p}).$$

Hence, by [3, Th. 2.1.1, p. 11], (19) and (20) we get

$$\frac{1}{n} \| \varphi^{2} K_{n}''(f) \|_{p} \leq C \cdot \omega_{\varphi}^{2}(f, n^{-1/2})_{p}
\leq C \cdot (\omega_{\varphi}^{2}(f, n^{-1/2})_{p} + \omega(f, n^{-1})_{p})
\leq C \cdot K(f, n^{-1/2})_{p}
\leq C \cdot \|K_{n}f - f\|_{p}.$$

Thus there exists C_0 such that (18) is satisfied.

Now the proof of the theorem is immediately. By (11) and Lemma 5 we get

$$||K_{n}f - f||_{p} \leq ||K_{n}^{\alpha}f - K_{n}f||_{p} + ||K_{n}^{\alpha}f - f||_{p}$$

$$\leq c(p) \cdot \frac{\alpha}{1+\alpha} \cdot ||\varphi^{2}K_{n}''(f)||_{p} + ||K_{n}^{\alpha}f - f||_{p}$$

$$\leq C_{0} \cdot \frac{\alpha}{1+\alpha} \cdot c(p) \cdot n ||K_{n}f - f||_{p} + ||K_{n}^{\alpha}f - f||_{p}$$

$$\leq \gamma ||K_{n}f - f||_{p} + ||K_{n}^{\alpha}f - f||_{p}.$$

Then

$$(21) (1-\gamma) \|K_n f - f\|_p \le \|K_n^{\alpha} f - f\|_p.$$

Analogously:

$$(22) $||K_n^{\alpha} f - f||_p \le (1 + \gamma) ||K_n f - f||_p.$$$

So (21) and (22) imply the conclusion of (i).

For (ii) it is sufficient to observe that (i), (19) and (20) imply the assertion. Thus the theorem is proved. \Box

Remark 2. Lemma 5 does not hold for p = 1.

REFERENCES

- [1] Della Vecchia, B., On the approximation of functions by means of the operators of D. D. Stancu, Studia Univ. Babeş-Bolyai, Math., 37, pp. 3–36, 1992.
- [2] Della Vecchia, B. and Mache, D. H., On approximation properties of Stancu-Kantorovich operators, Rev. Anal. Numér. Theor. Approx., 27, pp. 71–80, 1998.
- [3] DITZIAN, Z. and TOTIK, V., Moduli of Smoothness, Springer-Verlag, Berlin Heidelberg New York London, 1987.
- [4] DEVORE, R. A. and LORENTZ, G. G., Constructive Approximation, Springer-Verlag, Berlin Heidelberg New York, 1993.
- [5] Gonska, H. H. and Zhou, X. L., The strong converse inequality for Bernstein-Kantorovich operators. Concrete analysis, Comput. Math. Appl., 30, no. 3–6, pp. 103–128, 1995.
- [6] RAZI, Q., Approximation of a function by Kantorovich type operators, Mat. Vesnic., 41, pp. 183–192, 1989.
- [7] STANCU, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 8, pp. 1173–1194, 1968.

Received by the editors: January 16, 2001.