FUNCTIONS WITH BOUNDED E - d-VARIATION ON UNDIRECTED TREE NETWORKS

DANIELA MARIAN*

Abstract

In this paper we define and study functions with bounded E - d-variation on undirected tree networks. For these functions with bounded E - d-variation we establish a Jordan type theorem. We adopt the definition of network as metric space introduced by P. M. Dearing and R. L. Francis (1974).

MSC 2000. 65P40.
Keywords. Networks, bounded E - d-variation.

1. INTRODUCTION

In [9] are introduced a class of sets and a class of functions called E-convex sets and E-convex functions. This kind of generalized convexity is based on the effect of an operator E on the sets and domain the definition of the functions. In [1] are defined and studied E-monotone functions and functions of bounded E-variation.

In the following lines we will define and study E - d-monotone functions and functions with bounded E - d-variation on undirected tree networks.

We recall first the definitions of undirected networks as metric space introduced in [2] and also used in many other papers (see, e.g., 3], [5], 4], etc.).

We consider an undirected, connected graph $G=(W, A)$, without loops or multiple edges. To each vertex $w_{i} \in W=\left\{w_{1}, \ldots, w_{m}\right\}$ we associate a point v_{i} from an euclidean space X. This yields a finite subset $V=\left\{v_{1}, \ldots, v_{m}\right\}$ of X, called the vertex set of the network. We also associate to each edge $\left(w_{i}, w_{j}\right) \in A$ a rectifiable arc $\left[v_{i}, v_{j}\right] \subset X$ called edge of the network. We assume that any two edges have no interior common points. Consider that [v_{i}, v_{j}] has the positive length $l_{i j}$ and denote by U the set of all edges. We define the network $N=(V, U)$ by

$$
N=\left\{x \in X \mid \exists\left(w_{i}, w_{j}\right) \in A \text { such that } x \in\left[v_{i}, v_{j}\right]\right\} .
$$

It is obvious that N is a geometric image of G, which follows naturally from an embedding of G in X. Suppose that for each $\left[v_{i}, v_{j}\right] \in U$ there exist a continuous one-to-one mapping $\theta_{i j}:\left[v_{i}, v_{j}\right] \rightarrow[0,1]$ with

$$
\begin{aligned}
& \theta_{i j}\left(v_{i}\right)=0, \\
& \theta_{i j}\left(v_{j}\right)=1,
\end{aligned}
$$

[^0]and
$$
\theta_{i j}\left(\left[v_{i}, v_{j}\right]\right)=[0,1] .
$$

We denote by $T_{i j}$ the inverse function of $\theta_{i j}$.
Any connected and closed subset of an edge bounded by two points x and y of $\left[v_{i}, v_{j}\right]$ is called a closed subedge and is denoted by $[x, y]$. If one or both of x, y are missing we say than the subedge is open in x, or in y or is open and we denote this by $(x, y],[x, y)$ or (x, y), respectively. Using $\theta_{i j}$, it is possible to compute the length of $[x, y]$ as

$$
l([x, y])=\left|\theta_{i j}(x)-\theta_{i j}(y)\right| \cdot l_{i j} .
$$

Particularly we have

$$
\begin{aligned}
l\left(\left[v_{i}, v_{j}\right]\right) & =l_{i j}, \\
l\left(\left[v_{i}, x\right]\right) & =\theta_{i j}(x) l_{i j}
\end{aligned}
$$

and

$$
l\left(\left[x, v_{j}\right]\right)=\left(1-\theta_{i j}(x)\right) \cdot l_{i j} .
$$

A path $L(x, y)$ linking two points x and y in N is a sequence of edges and at most two subedges at extremities, starting at x and ending at y. If $x=y$ then the path is called cycle. The length of a path (cycle) is the sum of the lengths of all its component edges and subedges and will be denoted by $l(L(x, y))$. If a path (cycle) contains only distinct vertices then we call it elementary.

A network is connected if for any points $x, y \in N$ there exists a path $L(x, y) \subset N$.

A connected network without cycles is called tree. In a tree network N there is an unique path between two points $x, y \in N$.

Let $L^{*}(x, y)$ be a shortest path between the points $x, y \in N$. This path is also called geodesic.

Definition 1. [2]. For any $x, y \in N$, the distance from x to $y, d(x, y)$, in the network N is the length of a shortest path from x to y :

$$
d(x, y)=l\left(L^{*}(x, y)\right) .
$$

It is obvious that (N, d) is a metric space.
For $x, y \in N$, we denote

$$
\begin{equation*}
\langle x, y\rangle=\{z \in N \mid d(x, z)+d(z, y)=d(x, y)\}, \tag{1}
\end{equation*}
$$

and $\langle x, y\rangle$ is called the metric segment between x and y.
Definition 2. [2]. A set $D \subset N$ is called d-convex if

$$
\langle x, y\rangle \subset D, \quad \text { for all } x, y \in D .
$$

We consider now a map $E: N \rightarrow N$.
Definition 3. [7]. A set $M \subset N$ is said to be E-d-convex if

$$
\langle E(x), E(y)\rangle \subset M, \quad \text { for each } x, y \in M .
$$

Theorem 4. [7]. If a set $M \subset N$ is E-d-convex then $E(M) \subseteq M$.
Theorem 5. [7]. If $E(M)$ is d-convex and $E(M) \subseteq M$ then M is E-d-convex.

2. E - d-MONOTONE FUNCTIONS ON UNDIRECTED TREE NETWORKS

We consider an undirected tree network $N=(V, U)$, a map $E: N \rightarrow N$ and two points $x, y \in N$.

We denote

$$
\langle x, y\rangle_{E}=\{z \in N \mid d(E(x), E(y))=d(E(x), E(z))+d(E(z), E(y))\}
$$

Obviously $E\left(\langle x, y\rangle_{E}\right) \subseteq\langle E(x), E(y)\rangle$. Generally, the converse inequality is not true.

Now, let us define the following order relation on $\langle x, y\rangle_{E}$. For $z_{1}, z_{2} \in\langle x, y\rangle_{E}$ with

$$
d\left(E(x), E\left(z_{1}\right)\right)=\alpha_{1} d(E(x), E(y))
$$

and

$$
d\left(E(x), E\left(z_{2}\right)\right)=\alpha_{2} d(E(x), E(y))
$$

$0 \leq \alpha_{1} \leq 1,0 \leq \alpha_{2} \leq 1$, we say that $z_{1} \leq_{E} z_{2}$ if $\alpha_{1} \leq \alpha_{2}$. If two points $z_{1}, z_{2} \in\langle x, y\rangle_{E}$ satisfy the equality $E\left(z_{1}\right)=E\left(z_{2}\right)$ then we shall write $z_{1}=E z_{2}$.

Obviously $x \leq_{E} y$ and every $z \in\langle x, y\rangle_{E}$ satisfies $x \leq_{E} z \leq_{E} y$.
We consider now the function $f: N \rightarrow \mathbb{R}$ and the points $x, y \in N$.
Definition 6. (1) The function $f: N \rightarrow \mathbb{R}$ is said to be E-d-increasing between x and y if for every $z_{1}, z_{2} \in\langle x, y\rangle_{E}$ such that $z_{1} \leq_{E} z_{2}$ we have

$$
f\left(E\left(z_{1}\right)\right) \leq f\left(E\left(z_{2}\right)\right)
$$

(2) The function $f: N \rightarrow \mathbb{R}$ is said to be E-d-decreasing between x and y if for every $z_{1}, z_{2} \in\langle x, y\rangle_{E}$ such that $z_{1} \leq_{E} z_{2}$ we have

$$
f\left(E\left(z_{1}\right)\right) \geq f\left(E\left(z_{2}\right)\right)
$$

(3) The function $f: N \rightarrow \mathbb{R}$ is said to be E-d-constant between x and y if

$$
f(E(x))=f(E(z)), \quad \text { for every } z \in\langle x, y\rangle_{E}
$$

A function that is either E - d-increasing or E - d-decreasing between x and y is said to be E - d-monotone between x and y. If all the inequalities in Definition 6 are strict then f is called strictly E-d-increasing, strictly E - d-decreasing or strictly E - d-monotone.

Remarks. 1. If a function $f: N \rightarrow \mathbb{R}$ is both E - d-increasing and E - d-decreasing between x and y then it is E - d-constant between x and y.
2. If a function $f: N \rightarrow \mathbb{R}$ is E - d-increasing between x and y then it is E - d-decreasing between y and x.

In the following we give an example of E - d-monotone function.

Example 1. We consider a tree network $N=(V, U)$ with $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $U=\left\{\left[v_{1}, v_{2}\right],\left[v_{1}, v_{3}\right]\right\}$ such that $l\left(\left[v_{1}, v_{2}\right]\right)=1$ and $l\left(\left[v_{1}, v_{3}\right]\right) \geq 1$. For every edge $\left[v_{i}, v_{j}\right] \in U$ we consider the corresponding function $\theta_{i j}:\left[v_{i}, v_{j}\right] \rightarrow$ $[0,1]$. For every $z \in\left[v_{i}, v_{j}\right]$ we denote by z^{\prime} the point of the edge $\left[v_{1}, v_{2}\right]$ such that $d\left(v_{1}, z^{\prime}\right)=\theta_{i j}(z)$ and let $l_{z}=\theta_{i j}(z)$. We define now $E: N \rightarrow N$,

$$
E(z)=z^{\prime}, \quad \forall z \in N
$$

For the points $x=v_{1}$ and $y=v_{2}$ we have

$$
\langle x, y\rangle_{E}=N \quad \text { and } \quad E\left(\langle x, y\rangle_{E}\right)=\left[v_{1}, v_{2}\right] .
$$

The function $f: N \rightarrow \mathbb{R}$,

$$
f(z)=l_{z}, \quad \forall z \in N
$$

is E - d-increasing between x and y. Indeed, if $z_{1}, z_{2} \in\langle x, y\rangle_{E}$ and $z_{1} \leq_{E} z_{2}$ then $l_{z_{1}} \leq l_{z_{2}}$ and consequently $f\left(z_{1}\right) \leq f\left(z_{2}\right)$.

3. FUNCTIONS WITH BOUNDED E - d-VARIATION ON UNDIRECTED TREE NETWORKS

We consider an undirected tree network $N=(V, U)$, a map $E: N \rightarrow N$, an E-d-convex set $M \subset N$ and the function $f: M \rightarrow \mathbb{R}$. We also consider the points $x, y \in M$.

For a division (σ) of the set $\langle x, y\rangle_{E} \cap M$ by the points

$$
\begin{equation*}
x=_{E} z_{0}<_{E} z_{1}<_{E} z_{2}<_{E} \ldots<_{E} z_{q}=_{E} y \tag{2}
\end{equation*}
$$

we define the number

$$
\bigvee(E ; f, \sigma)=\sum_{i=1}^{q}\left|f\left(E\left(z_{i}\right)\right)-f\left(E\left(z_{i-1}\right)\right)\right|
$$

called the E - d-variation of the function f on the division (σ).
We denote by D the set of all divisions (σ) of the set $\langle x, y\rangle_{E} \cap M$.
Definition 7. The number

$$
\bigvee_{x}^{y}(E ; f)=\sup \{\bigvee(E ; f, \sigma) \mid \sigma \in D\}
$$

is called the total E-d-variation of the function f on $\langle x, y\rangle_{E} \cap M$.
Definition 8. The function $f: M \rightarrow \mathbb{R}$ is said to be with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$ if

$$
\bigvee_{x}^{y}(E ; f)<\infty
$$

THEOREM 9. If the function $f: M \rightarrow \mathbb{R}$ is E-d-monotone between x and y then it is with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$.

Proof. If the function $f: M \rightarrow \mathbb{R}$ is E - d-increasing between x and y then for every division (2)

$$
\begin{aligned}
\bigvee(E ; f, \sigma) & =\sum_{i=1}^{q}\left|f\left(E\left(z_{i}\right)\right)-f\left(E\left(z_{i-1}\right)\right)\right| \\
& =\sum_{i=1}^{q}\left[f\left(E\left(z_{i}\right)\right)-f\left(E\left(z_{i-1}\right)\right)\right] \\
& =f(E(y))-f(E(x)),
\end{aligned}
$$

and therefore

$$
\bigvee_{x}^{y}(E ; f)=f(E(y))-f(E(x))<\infty
$$

If the function is $E-d$-decreasing between x and y then the proof is analogously.

Corollary 10. If the function $f: M \rightarrow \mathbb{R}$ is E-d-constant between x and y then it is with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$ and the total $E-d-v a-$ riation of f on $\langle x, y\rangle_{E} \cap M$ is zero.

We denote by E_{1} the restriction of the map $E: N \rightarrow \mathbb{R}$ to the E - d-convex set M. Since the set M is E - d-convex, $E(M) \subseteq M$.

Theorem 11. If the function $f: M \rightarrow \mathbb{R}$ is with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$ then the function $f \circ E_{1}: M \rightarrow \mathbb{R}$ is bounded on $\langle x, y\rangle_{E} \cap M$.

Proof. For the particular division $\sigma=\left(x<_{E} z<_{E} y\right)$ of $\langle x, y\rangle_{E} \cap M$ we have

$$
\bigvee(E ; f, \sigma)=|f(E(z))-f(E(x))|+|f(E(y))-f(E(z))| \leq \bigvee_{x}^{y}(E ; f)
$$

and

$$
|f(E(z))| \leq|f(E(z))-f(E(x))|+|f(E(x))| \leq \bigvee_{x}^{y}(E ; f)+|f(E(x))|
$$

Consequently the function $f \circ E_{1}: M \rightarrow \mathbb{R}$ is bounded on $\langle x, y\rangle_{E} \cap M$.
The following two theorems are immediately implied.
Theorem 12. If the functions $f: M \rightarrow \mathbb{R}$ and $g: M \rightarrow \mathbb{R}$ are with bounded $E-d$-variation on $\langle x, y\rangle_{E} \cap M$ then the functions $f+g, f-g$, and $f g$ are with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$.

Theorem 13. If the functions $f: M \rightarrow \mathbb{R}$ and $g: M \rightarrow \mathbb{R}$ are with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$ and there is a number $\eta>0$ such that

$$
g(E(z)) \geq \eta, \quad \text { for every } z \in\langle x, y\rangle_{E} \cap M,
$$

then the function f / g is with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$.

Definition 14. The function $f: M \rightarrow \mathbb{R}$ satisfies the E-Lipschitz condition on $\langle x, y\rangle_{E} \cap M$ if there is a number $k>0$ such that for any pair of points $z_{1}, z_{2} \in\langle x, y\rangle_{E} \cap M$ it is satisfied the relation:

$$
\begin{equation*}
\left|f\left(E\left(z_{1}\right)\right)-f\left(E\left(z_{2}\right)\right)\right| \leq k d\left(E\left(z_{1}\right), E\left(z_{2}\right)\right) . \tag{3}
\end{equation*}
$$

Theorem 15. If the function $f: M \rightarrow \mathbb{R}$ satisfies the E-Lipschitz condition on $\langle x, y\rangle_{E} \cap M$ then it is with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$.

Proof. Indeed, if the function $f: M \rightarrow \mathbb{R}$ satisfies the E-Lipschitz condition on $\langle x, y\rangle_{E} \cap M$ then there is a number $k>0$ such that for any pair of points $z_{1}, z_{2} \in\langle x, y\rangle_{E} \cap M$ is satisfied the relation (3). Consequently we have:

$$
\begin{aligned}
\bigvee(E ; f, \sigma) & =\sum_{i=1}^{q}\left|f\left(E\left(z_{i}\right)\right)-f\left(E\left(z_{i-1}\right)\right)\right| \\
& \leq \sum_{i=1}^{q} k d\left(E\left(z_{i}\right), E\left(z_{i-1}\right)\right) \\
& \leq k d(E(x), E(y)) \\
& <\infty
\end{aligned}
$$

and hence $\bigvee_{x}^{y}(E ; f)<\infty$ and f is with bounded E - d-variation on $\langle x, y\rangle_{E} \cap M$.

We consider now a point

$$
z \in\left(\langle x, y\rangle_{E} \cap M\right) \backslash\left\{t \in M \mid t==_{E} x \text { or } t==_{E} y\right\} .
$$

Theorem 16. If the function $f: M \rightarrow \mathbb{R}$ is with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$ then it is with bounded E-d-variation on $\langle x, z\rangle_{E} \cap M$ and on $\langle z, y\rangle_{E} \cap M$ and

$$
\begin{equation*}
\bigvee_{x}^{y}(E ; f)=\bigvee_{x}^{z}(E ; f)+\bigvee_{z}^{y}(E ; f) . \tag{4}
\end{equation*}
$$

Theorem 17. If the function $f: M \rightarrow \mathbb{R}$ is with bounded E-d-variation on $\langle x, z\rangle_{E} \cap M$ and on $\langle z, y\rangle_{E} \cap M$ then it is with bounded E-d-variation on $\langle x, y\rangle_{E} \cap M$.

In the following lines we will establish a Jordan type theorem.
Theorem 18. The function $f:\langle x, y\rangle_{E} \cap M \rightarrow \mathbb{R}$ is with bounded E - d-variation on $\langle x, y\rangle_{E} \cap M$ if and only if there exist two E-d-increasing functions between x and $y, g:\langle x, y\rangle_{E} \cap M \rightarrow \mathbb{R}$ and $h:\langle x, y\rangle_{E} \cap M \rightarrow \mathbb{R}$ such that $f=g-h$.

Proof. The sufficiency of the condition follows from Theorem 9 and Theorem 12

For the necessity, let us define the function

$$
g:\langle x, y\rangle_{E} \cap M \rightarrow \mathbb{R}, \quad g(z)= \begin{cases}\bigvee_{x}^{z}(E ; f), & \text { if } x<_{E} z \leq_{E} y \\ 0, & \text { if } x=_{E} z\end{cases}
$$

From Theorem 16 follows that the function g is E - d-increasing between x and y.

We define now the function

$$
h:\langle x, y\rangle_{E} \cap M \rightarrow \mathbb{R}, \quad h(z)=g(z)-f(z)
$$

This function is E-d-increasing between x and y. Indeed, if we consider the points $z^{\prime}, z^{\prime \prime} \in\langle x, y\rangle_{E} \cap M$, such that $z^{\prime}<_{E} z^{\prime \prime}$, we have

$$
\begin{aligned}
h\left(z^{\prime \prime}\right) & =g\left(z^{\prime \prime}\right)-f\left(z^{\prime \prime}\right)=g\left(z^{\prime}\right)+\bigvee_{z^{\prime}}^{z^{\prime \prime}}(E ; f)-f\left(z^{\prime \prime}\right) \\
h\left(z^{\prime \prime}\right)-h\left(z^{\prime}\right) & =\bigvee_{z^{\prime}}^{z^{\prime \prime}}(E ; f)-\left[f\left(z^{\prime \prime}\right)-f\left(z^{\prime}\right)\right] .
\end{aligned}
$$

But

$$
f\left(z^{\prime \prime}\right)-f\left(z^{\prime}\right) \leq \bigvee_{z^{\prime}}^{z^{\prime \prime}}(E ; f)
$$

Consequently $h\left(z^{\prime \prime}\right)-h\left(z^{\prime}\right) \geq 0$, that is, h is E - d-increasing between x and y. Hence $f=g-h$, where the functions g and h are E - d-increasing between x and y.

REMARK 1. The representation of a function with bounded E - d-variation as a difference of two E - d-increasing functions is not unique. Indeed, if $f=g-h$ and the functions g and h are E - d-increasing between x and y then we also have

$$
f=g+c-(h+c)
$$

c being constant on $\langle x, y\rangle_{E} \cap M$. The functions $g+c$ and $h+c$ are E-d-increasing between x and y too.

REMARK 2. In [6] we already defined and studied another class of functions with bounded variation on undirected networks.

REFERENCES

[1] Cristescu, G., Functions of bounded E-variation, Séminaire de la Théorie de la Meilleure Approximation, Convexité et Optimisation, Cluj-Napoca, October 26-29, pp. 73-85, 2000.
[2] Dearing, P. M. and Francis, R. L., A minimax location problem on a network, Transportation Science, 8, pp. 333-343, 1974.
[3] Dearing, P. M., Francis, R. L. and Lowe, T. J., Convex location problems on tree networks, Oper. Res. 24, pp. 628-634, 1976.
[4] Iacob, M. E., Convexity, approximation and optimization on networks, PhD thesis, Babeş-Bolyai University, Cluj-Napoca, 1997.
[5] Labeé, M., Essay in network location theory, Cahiers de Centre d'Etudes et Recherche Oper., 27, 1-2, pp. 7-130, 1985.
[6] Marian, D., Generalized convex functions and mathematical analysis on networks, Research on Theory of Allure, Approximation, Convexity and Optimization, Cluj-Napoca, pp. 183-206, 1999.
[7] Marian, D., An axiomatic approach to the theory of E-convex functions, Proceedings of the "Tiberiu Popoviciu" Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May 22-26, pp. 97-106, 2001.
[8] Popoviciu, E., Mean Value Theorems in Mathematical Analysis and their Connection to the Interpolation Theory, Ed. Dacia, Cluj-Napoca, Romania, 1972 (in Romanian).
[9] Youness, E. A., E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102, no. 2, pp. 439-450, 1999.

Received by the editors: January 16, 2001.

[^0]: *St. Răşinari 5, ap. 28, Cluj-Napoca, Romania, e-mail: danielamarian@personal.ro.

