REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION
Rev. Anal. Numér. Théor. Approx., vol. 31 (2002) no. 2, pp. 179–186 ictp.acad.ro/jnaat

FUNCTIONS WITH BOUNDED *E-d*-VARIATION ON UNDIRECTED TREE NETWORKS

DANIELA MARIAN*

Abstract. In this paper we define and study functions with bounded E-d-variation on undirected tree networks. For these functions with bounded E-d-variation we establish a Jordan type theorem. We adopt the definition of network as metric space introduced by P. M. Dearing and R. L. Francis (1974).

MSC 2000. 65P40.

Keywords. Networks, bounded *E*-*d*-variation.

1. INTRODUCTION

In [9] are introduced a class of sets and a class of functions called E-convex sets and E-convex functions. This kind of generalized convexity is based on the effect of an operator E on the sets and domain the definition of the functions. In [1] are defined and studied E-monotone functions and functions of bounded E-variation.

In the following lines we will define and study E-d-monotone functions and functions with bounded E-d-variation on undirected tree networks.

We recall first the definitions of undirected networks as metric space introduced in [2] and also used in many other papers (see, e.g., [3], [5], [4], etc.).

We consider an undirected, connected graph G = (W, A), without loops or multiple edges. To each vertex $w_i \in W = \{w_1, \ldots, w_m\}$ we associate a point v_i from an euclidean space X. This yields a finite subset $V = \{v_1, \ldots, v_m\}$ of X, called the vertex set of the network. We also associate to each edge $(w_i, w_j) \in A$ a rectifiable arc $[v_i, v_j] \subset X$ called edge of the network. We assume that any two edges have no interior common points. Consider that $[v_i, v_j]$ has the positive length l_{ij} and denote by U the set of all edges. We define the network N = (V, U) by

$$N = \{ x \in X \mid \exists (w_i, w_j) \in A \text{ such that } x \in [v_i, v_j] \}.$$

It is obvious that N is a geometric image of G, which follows naturally from an embedding of G in X. Suppose that for each $[v_i, v_j] \in U$ there exist a continuous one-to-one mapping $\theta_{ij} : [v_i, v_j] \to [0, 1]$ with

$$\theta_{ij}(v_i) = 0,$$

 $\theta_{ij}(v_j) = 1,$

^{*}St. Răşinari 5, ap. 28, Cluj-Napoca, Romania, e-mail: danielamarian@personal.ro.

and

180

$$\theta_{ij}([v_i, v_j]) = [0, 1].$$

We denote by T_{ij} the inverse function of θ_{ij} .

Any connected and closed subset of an edge bounded by two points x and y of $[v_i, v_j]$ is called a closed subedge and is denoted by [x, y]. If one or both of x, y are missing we say than the subedge is open in x, or in y or is open and we denote this by (x, y], [x, y) or (x, y), respectively. Using θ_{ij} , it is possible to compute the length of [x, y] as

$$l([x,y]) = |\theta_{ij}(x) - \theta_{ij}(y)| \cdot l_{ij}.$$

Particularly we have

$$l([v_i, v_j]) = l_{ij},$$

$$l([v_i, x]) = \theta_{ij}(x) l_{ij}$$

and

$$l([x, v_j]) = (1 - \theta_{ij}(x)) \cdot l_{ij}.$$

A path L(x, y) linking two points x and y in N is a sequence of edges and at most two subedges at extremities, starting at x and ending at y. If x = y then the path is called cycle. The length of a path (cycle) is the sum of the lengths of all its component edges and subedges and will be denoted by l(L(x, y)). If a path (cycle) contains only distinct vertices then we call it elementary.

A network is connected if for any points $x, y \in N$ there exists a path $L(x, y) \subset N$.

A connected network without cycles is called tree. In a tree network N there is an unique path between two points $x, y \in N$.

Let $L^*(x, y)$ be a shortest path between the points $x, y \in N$. This path is also called geodesic.

DEFINITION 1. [2]. For any $x, y \in N$, the distance from x to y, d(x, y), in the network N is the length of a shortest path from x to y:

$$d(x,y) = l(L^*(x,y)).$$

It is obvious that (N, d) is a metric space.

For $x, y \in N$, we denote

(1)
$$\langle x, y \rangle = \left\{ z \in N \mid d\left(x, z\right) + d\left(z, y\right) = d\left(x, y\right) \right\},$$

and $\langle x, y \rangle$ is called the metric segment between x and y.

DEFINITION 2. [2]. A set $D \subset N$ is called d-convex if

$$\langle x, y \rangle \subset D$$
, for all $x, y \in D$.

We consider now a map $E: N \to N$.

DEFINITION 3. [7]. A set $M \subset N$ is said to be E-d-convex if $\langle E(x), E(y) \rangle \subset M$, for each $x, y \in M$. THEOREM 4. [7]. If a set $M \subset N$ is E-d-convex then $E(M) \subseteq M$.

THEOREM 5. [7]. If E(M) is d-convex and $E(M) \subseteq M$ then M is E-d-convex.

2. E-d-monotone functions on undirected tree networks

We consider an undirected tree network N = (V, U), a map $E : N \to N$ and two points $x, y \in N$.

We denote

$$\langle x, y \rangle_E = \Big\{ z \in N \mid d(E(x), E(y)) = d(E(x), E(z)) + d(E(z), E(y)) \Big\}.$$

Obviously $E(\langle x, y \rangle_E) \subseteq \langle E(x), E(y) \rangle$. Generally, the converse inequality is not true.

Now, let us define the following order relation on $\langle x, y \rangle_E$. For $z_1, z_2 \in \langle x, y \rangle_E$ with

$$d(E(x), E(z_1)) = \alpha_1 d(E(x), E(y))$$

and

$$d(E(x), E(z_2)) = \alpha_2 d(E(x), E(y)),$$

 $0 \leq \alpha_1 \leq 1, \ 0 \leq \alpha_2 \leq 1$, we say that $z_1 \leq_E z_2$ if $\alpha_1 \leq \alpha_2$. If two points $z_1, z_2 \in \langle x, y \rangle_E$ satisfy the equality $E(z_1) = E(z_2)$ then we shall write $z_1 =_E z_2$. Obviously $x \leq_E y$ and every $z \in \langle x, y \rangle_E$ satisfies $x \leq_E z \leq_E y$.

We consider now the function $f: N \to \mathbb{R}$ and the points $x, y \in N$.

DEFINITION 6. (1) The function $f: N \to \mathbb{R}$ is said to be *E*-d-increasing between *x* and *y* if for every $z_1, z_2 \in \langle x, y \rangle_E$ such that $z_1 \leq_E z_2$ we have

$$f(E(z_1)) \le f(E(z_2)).$$

(2) The function $f: N \to \mathbb{R}$ is said to be E-d-decreasing between x and y if for every $z_1, z_2 \in \langle x, y \rangle_E$ such that $z_1 \leq_E z_2$ we have

$$f(E(z_1)) \ge f(E(z_2)).$$

(3) The function $f: N \to \mathbb{R}$ is said to be E-d-constant between x and y if

$$f(E(x)) = f(E(z)), \text{ for every } z \in \langle x, y \rangle_E.$$

A function that is either E-d-increasing or E-d-decreasing between x and y is said to be E-d-monotone between x and y. If all the inequalities in Definition 6 are strict then f is called strictly E-d-increasing, strictly E-d-decreasing or strictly E-d-monotone.

REMARKS. 1. If a function $f: N \to \mathbb{R}$ is both *E*-*d*-increasing and *E*-*d*-decreasing between x and y then it is *E*-*d*-constant between x and y.

2. If a function $f : N \to \mathbb{R}$ is *E*-*d*-increasing between *x* and *y* then it is *E*-*d*-decreasing between *y* and *x*.

In the following we give an example of E-d-monotone function.

181

EXAMPLE 1. We consider a tree network N = (V, U) with $V = \{v_1, v_2, v_3\}$ and $U = \{ [v_1, v_2], [v_1, v_3] \}$ such that $l([v_1, v_2]) = 1$ and $l([v_1, v_3]) \ge 1$. For every edge $[v_i, v_j] \in U$ we consider the corresponding function $\theta_{ij} : [v_i, v_j] \rightarrow$ [0, 1]. For every $z \in [v_i, v_j]$ we denote by z' the point of the edge $[v_1, v_2]$ such that $d(v_1, z') = \theta_{ij}(z)$ and let $l_z = \theta_{ij}(z)$. We define now $E : N \rightarrow N$,

$$E(z) = z', \quad \forall z \in N.$$

For the points $x = v_1$ and $y = v_2$ we have

$$\langle x, y \rangle_E = N$$
 and $E(\langle x, y \rangle_E) = [v_1, v_2].$

The function $f: N \to \mathbb{R}$,

$$f(z) = l_z, \quad \forall z \in N$$

is *E*-*d*-increasing between *x* and *y*. Indeed, if $z_1, z_2 \in \langle x, y \rangle_E$ and $z_1 \leq_E z_2$ then $l_{z_1} \leq l_{z_2}$ and consequently $f(z_1) \leq f(z_2)$.

3. FUNCTIONS WITH BOUNDED E-d-variation on undirected tree Networks

We consider an undirected tree network N = (V, U), a map $E : N \to N$, an *E*-*d*-convex set $M \subset N$ and the function $f : M \to \mathbb{R}$. We also consider the points $x, y \in M$.

For a division (σ) of the set $\langle x, y \rangle_E \cap M$ by the points

(2)
$$x =_E z_0 <_E z_1 <_E z_2 <_E \ldots <_E z_q =_E y$$

we define the number

$$\bigvee (E; f, \sigma) = \sum_{i=1}^{q} |f(E(z_i)) - f(E(z_{i-1}))|,$$

called the *E*-*d*-variation of the function f on the division (σ) .

We denote by D the set of all divisions (σ) of the set $\langle x, y \rangle_E \cap M$.

DEFINITION 7. The number

$$\bigvee_{x}^{y} (E; f) = \sup \left\{ \bigvee (E; f, \sigma) \mid \sigma \in D \right\}$$

is called the total E-d-variation of the function f on $\langle x, y \rangle_E \cap M$.

DEFINITION 8. The function $f: M \to \mathbb{R}$ is said to be with bounded E-d-variation on $\langle x, y \rangle_E \cap M$ if

$$\bigvee_{x}^{y}\left(E;f\right)<\infty.$$

THEOREM 9. If the function $f: M \to \mathbb{R}$ is E-d-monotone between x and y then it is with bounded E-d-variation on $\langle x, y \rangle_E \cap M$.

Proof. If the function $f: M \to \mathbb{R}$ is *E*-*d*-increasing between x and y then for every division (2)

$$\bigvee(E; f, \sigma) = \sum_{i=1}^{q} \left| f(E(z_i)) - f(E(z_{i-1})) \right|$$

=
$$\sum_{i=1}^{q} \left[f(E(z_i)) - f(E(z_{i-1})) \right]$$

=
$$f(E(y)) - f(E(x)),$$

and therefore

21

$$\bigvee_{x}^{g} (E; f) = f(E(y)) - f(E(x)) < \infty.$$

If the function is E-d-decreasing between x and y then the proof is analogously. \Box

COROLLARY 10. If the function $f: M \to \mathbb{R}$ is *E*-d-constant between *x* and *y* then it is with bounded *E*-d-variation on $\langle x, y \rangle_E \cap M$ and the total *E*-d-variation of *f* on $\langle x, y \rangle_E \cap M$ is zero.

We denote by E_1 the restriction of the map $E: N \to \mathbb{R}$ to the *E*-*d*-convex set *M*. Since the set *M* is *E*-*d*-convex, $E(M) \subseteq M$.

THEOREM 11. If the function $f: M \to \mathbb{R}$ is with bounded *E*-d-variation on $\langle x, y \rangle_E \cap M$ then the function $f \circ E_1 : M \to \mathbb{R}$ is bounded on $\langle x, y \rangle_E \cap M$.

Proof. For the particular division $\sigma = (x <_E z <_E y)$ of $\langle x, y \rangle_E \cap M$ we have

$$\bigvee (E; f, \sigma) = \left| f(E(z)) - f(E(x)) \right| + \left| f(E(y)) - f(E(z)) \right| \le \bigvee_{x}^{y} (E; f)$$

and

$$\left|f(E(z))\right| \le \left|f(E(z)) - f(E(x))\right| + \left|f(E(x))\right| \le \bigvee_{x}^{y} (E; f) + \left|f(E(x))\right|.$$

Consequently the function $f \circ E_1 : M \to \mathbb{R}$ is bounded on $\langle x, y \rangle_E \cap M$.

The following two theorems are immediately implied.

THEOREM 12. If the functions $f: M \to \mathbb{R}$ and $g: M \to \mathbb{R}$ are with bounded E-d-variation on $\langle x, y \rangle_E \cap M$ then the functions f + g, f - g, and fg are with bounded E-d-variation on $\langle x, y \rangle_E \cap M$.

THEOREM 13. If the functions $f: M \to \mathbb{R}$ and $g: M \to \mathbb{R}$ are with bounded *E*-d-variation on $\langle x, y \rangle_E \cap M$ and there is a number $\eta > 0$ such that

$$g(E(z)) \ge \eta$$
, for every $z \in \langle x, y \rangle_E \cap M$

then the function f/g is with bounded E-d-variation on $\langle x, y \rangle_E \cap M$.

DEFINITION 14. The function $f: M \to \mathbb{R}$ satisfies the *E*-Lipschitz condition on $\langle x, y \rangle_E \cap M$ if there is a number k > 0 such that for any pair of points $z_1, z_2 \in \langle x, y \rangle_E \cap M$ it is satisfied the relation:

(3)
$$|f(E(z_1)) - f(E(z_2))| \le kd(E(z_1), E(z_2)).$$

THEOREM 15. If the function $f: M \to \mathbb{R}$ satisfies the *E*-Lipschitz condition on $\langle x, y \rangle_E \cap M$ then it is with bounded *E*-d-variation on $\langle x, y \rangle_E \cap M$.

Proof. Indeed, if the function $f: M \to \mathbb{R}$ satisfies the *E*-Lipschitz condition on $\langle x, y \rangle_E \cap M$ then there is a number k > 0 such that for any pair of points $z_1, z_2 \in \langle x, y \rangle_E \cap M$ is satisfied the relation (3). Consequently we have:

$$\bigvee (E; f, \sigma) = \sum_{i=1}^{q} |f(E(z_i)) - f(E(z_{i-1}))|$$

$$\leq \sum_{i=1}^{q} kd(E(z_i), E(z_{i-1}))$$

$$\leq kd(E(x), E(y))$$

$$< \infty$$

and hence $\bigvee_{x}^{y}(E; f) < \infty$ and f is with bounded *E*-*d*-variation on $\langle x, y \rangle_{E} \cap M$.

We consider now a point

$$z \in (\langle x, y \rangle_E \cap M) \setminus \{t \in M \mid t =_E x \text{ or } t =_E y\}.$$

THEOREM 16. If the function $f : M \to \mathbb{R}$ is with bounded E-d-variation on $\langle x, y \rangle_E \cap M$ then it is with bounded E-d-variation on $\langle x, z \rangle_E \cap M$ and on $\langle z, y \rangle_E \cap M$ and

(4)
$$\bigvee_{x}^{y}(E;f) = \bigvee_{x}^{z}(E;f) + \bigvee_{z}^{y}(E;f).$$

THEOREM 17. If the function $f : M \to \mathbb{R}$ is with bounded *E*-d-variation on $\langle x, z \rangle_E \cap M$ and on $\langle z, y \rangle_E \cap M$ then it is with bounded *E*-d-variation on $\langle x, y \rangle_E \cap M$.

In the following lines we will establish a Jordan type theorem.

THEOREM 18. The function $f : \langle x, y \rangle_E \cap M \to \mathbb{R}$ is with bounded E-d-variation on $\langle x, y \rangle_E \cap M$ if and only if there exist two E-d-increasing functions between x and y, $g : \langle x, y \rangle_E \cap M \to \mathbb{R}$ and $h : \langle x, y \rangle_E \cap M \to \mathbb{R}$ such that f = g - h.

Proof. The sufficiency of the condition follows from Theorem 9 and Theorem 12.

For the necessity, let us define the function

$$g: \langle x, y \rangle_E \cap M \to \mathbb{R}, \quad g(z) = \begin{cases} \bigvee_x^z (E; f), & \text{if } x <_E z \leq_E y \\ 0, & \text{if } x =_E z. \end{cases}$$

From Theorem 16 follows that the function g is E-d-increasing between x and y.

We define now the function

$$h: \langle x,y\rangle_E \cap M \to \mathbb{R}, \quad h(z) = g(z) - f(z).$$

This function is *E*-*d*-increasing between x and y. Indeed, if we consider the points $z', z'' \in \langle x, y \rangle_E \cap M$, such that $z' <_E z''$, we have

$$h(z'') = g(z'') - f(z'') = g(z') + \bigvee_{z'}^{z''} (E; f) - f(z''),$$

$$h(z'') - h(z') = \bigvee_{z'}^{z''} (E; f) - [f(z'') - f(z')].$$

But

$$f(z'') - f(z') \le \bigvee_{z'}^{z''} (E; f).$$

Consequently $h(z'') - h(z') \ge 0$, that is, h is *E*-*d*-increasing between x and y. Hence f = g - h, where the functions g and h are *E*-*d*-increasing between x and y.

REMARK 1. The representation of a function with bounded *E*-*d*-variation as a difference of two *E*-*d*-increasing functions is not unique. Indeed, if f = g - hand the functions g and h are *E*-*d*-increasing between x and y then we also have

$$f = g + c - (h + c),$$

c being constant on $\langle x, y \rangle_E \cap M$. The functions g+c and h+c are E-d-increasing between x and y too.

REMARK 2. In [6] we already defined and studied another class of functions with bounded variation on undirected networks. \Box

REFERENCES

- CRISTESCU, G., Functions of bounded E-variation, Séminaire de la Théorie de la Meilleure Approximation, Convexité et Optimisation, Cluj-Napoca, October 26–29, pp. 73–85, 2000.
- [2] DEARING, P. M. and FRANCIS, R. L., A minimax location problem on a network, Transportation Science, 8, pp. 333–343, 1974.
- [3] DEARING, P. M., FRANCIS, R. L. and LOWE, T. J., Convex location problems on tree networks, Oper. Res. 24, pp. 628–634, 1976.

.86					Daniela Marian					8		
[4]	IACOB,	М.	Е.,	Convexity,	approximation	and	optimization	on	networks,	PhD	thesis,	

- Babeş-Bolyai University, Cluj-Napoca, 1997. [5] LABEÉ, M., Essay in network location theory, Cahiers de Centre d'Etudes et Recherche Oper., 27, 1–2, pp. 7–130, 1985.
- [6] MARIAN, D., Generalized convex functions and mathematical analysis on networks, Research on Theory of Allure, Approximation, Convexity and Optimization, Cluj-Napoca, pp. 183–206, 1999.
- [7] MARIAN, D., An axiomatic approach to the theory of E-convex functions, Proceedings of the "Tiberiu Popoviciu" Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May 22-26, pp. 97-106, 2001.
- [8] POPOVICIU, E., Mean Value Theorems in Mathematical Analysis and their Connection to the Interpolation Theory, Ed. Dacia, Cluj-Napoca, Romania, 1972 (in Romanian).
- [9] YOUNESS, E. A., E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102, no. 2, pp. 439–450, 1999.

Received by the editors: January 16, 2001.