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FUNCTIONS WITH BOUNDED FE-d-VARIATION
ON UNDIRECTED TREE NETWORKS

DANIELA MARIAN®

Abstract. In this paper we define and study functions with bounded E-d-vari-
ation on undirected tree networks. For these functions with bounded F-d-varia-
tion we establish a Jordan type theorem. We adopt the definition of network as
metric space introduced by P. M. Dearing and R. L. Francis (1974).
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1. INTRODUCTION

In [9] are introduced a class of sets and a class of functions called E-convex
sets and E-convex functions. This kind of generalized convexity is based on the
effect of an operator E on the sets and domain the definition of the functions.
In [I] are defined and studied E-monotone functions and functions of bounded
E-variation.

In the following lines we will define and study E-d-monotone functions and
functions with bounded E-d-variation on undirected tree networks.

We recall first the definitions of undirected networks as metric space intro-
duced in [2] and also used in many other papers (see, e.g., [3], [5], [4], etc.).

We consider an undirected, connected graph G = (W, A), without loops or
multiple edges. To each vertex w; € W = {wy,...,w,} we associate a point
v; from an euclidean space X. This yields a finite subset V' = {v1,..., v}
of X, called the vertex set of the network. We also associate to each edge
(wi, wj) € A a rectifiable arc [v;,v;] C X called edge of the network. We
assume that any two edges have no interior common points. Consider that
[vi,v;] has the positive length [;; and denote by U the set of all edges. We
define the network N = (V,U) by

N ={z € X | 3(w;,w;) € A such that z € [v;,v;] }.

It is obvious that N is a geometric image of G, which follows naturally from
an embedding of G in X. Suppose that for each [v;,v;] € U there exist a
continuous one-to-one mapping 6;; : [v;,v;] — [0, 1] with

6i; (vi) =0,
0ij (vj) = 1,
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and
05 ([vi, v5]) = [0,1].

We denote by T;; the inverse function of 6;;.

Any connected and closed subset of an edge bounded by two points x and
y of [v;,v;] is called a closed subedge and is denoted by [z,y]. If one or both
of x, y are missing we say than the subedge is open in z, or in y or is open and
we denote this by (x,y], [,y) or (z,y), respectively. Using 6;;, it is possible
to compute the length of [z, y] as

([z,y]) = [0 (x) = 0ij () | - Lis-
Particularly we have
[([vi, v5]) = i,
H[vi, z]) = 04 () L
and
([z,vi]) = (1= 045 (2)) - L.

A path L(z,y) linking two points z and y in N is a sequence of edges and at
most two subedges at extremities, starting at x and ending at y. If z = y then
the path is called cycle. The length of a path (cycle) is the sum of the lengths
of all its component edges and subedges and will be denoted by (L (z,y) ). If
a path (cycle) contains only distinct vertices then we call it elementary.

A network is connected if for any points z,y € N there exists a path
L(xz,y) C N.

A connected network without cycles is called tree. In a tree network N
there is an unique path between two points x,y € N.

Let L* (x,y) be a shortest path between the points z,y € N. This path is
also called geodesic.

DEFINITION 1. [2]. For any z,y € N, the distance from x toy, d(z,y), in
the network N is the length of a shortest path from x to y:

d(z,y) =1(L" (2,9)).

It is obvious that (N, d) is a metric space.
For x,y € N, we denote

(1) (z,y) ={z € N|d(z,2) +d(z,y) = d(z,y) },
and (x,y) is called the metric segment between x and y.
DEFINITION 2. [2]. A set D C N is called d-convex if
(x,y) C D, forallz,y € D.
We consider now a map £ : N — N.
DEFINITION 3. [7]. A set M C N is said to be E-d-convex if
(E(x),E(y)) C M, for each x,y € M.
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THEOREM 4. [7]. If a set M C N is E-d-convex then E(M) C M.

THEOREM 5. [7]. If E(M) is d-convex and E(M) C M then M is
E-d-convex.

2. F-d-MONOTONE FUNCTIONS ON UNDIRECTED TREE NETWORKS

We consider an undirected tree network N = (V,U), amap £ : N — N
and two points z,y € N.
We denote

(z,9)p = {2 € N | d(E(x), E(y)) = d(B(x), E()) + d(E(2), E(y)) }.

Obviously E((z,y)p) C (E(z),E(y)). Generally, the converse inequality is
not true.
Now, let us define the following order relation on (x, y) 5. For 21,22 € (z,y) g
with
d(E(x), E(21)) = and(E(x), E(y))
and
d(E(2), E(22)) = a2d(E(x), E(y)),
0<a; <1,0 < ay <1, we say that 21 <g z9 if a1 < ag. If two points
21, 22 € (x,y)  satisfy the equality F(z1) = E(z2) then we shall write 21 =g 2».
Obviously  <g y and every z € (x,y) satisfies x <p z <p y.
We consider now the function f: N — R and the points z,y € N.
DEFINITION 6. (1) The function f : N — R is said to be E-d-increasing
between x and y if for every z1, z2 € (z, y>E such that z1 <g z9 we have

f(E(21)) < f(E(22)).
(2) The function f: N — R is said to be E-d-decreasing between x and y
if for every z1,z2 € (x,y)p such that z; <g 2o we have
f(E(21)) = f(E(22)).
(3) The function f: N — R is said to be E-d-constant between x and y if

[(E(x) = f(E(2)), for every z € (x,y)f -

A function that is either E-d-increasing or E-d-decreasing between z and y
is said to be E-d-monotone between x and y. If all the inequalities in Defini-
tion [6]are strict then f is called strictly E-d-increasing, strictly E-d-decreasing
or strictly E-d-monotone.

REMARKS. 1. Ifa function f : N — R is both E-d-increasing and F-d-decre-
asing between x and y then it is F-d-constant between x and y.

2. If a function f : N — R is E-d-increasing between x and y then it is
FE-d-decreasing between y and x. O

In the following we give an example of E-d-monotone function.
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ExXAMPLE 1. We consider a tree network N = (V,U) with V = {vq, v, v3}
and U = { [v1,va], [v1,v3] } such that I([v1,v2]) = 1 and I([v1,v3]) > 1. For
every edge [v;,v;] € U we consider the corresponding function 6;; : [v;, v;] —
[0,1]. For every z € [v;,vj] we denote by 2’ the point of the edge [v1, v2] such
that d(vi,2") = 0;;(z) and let I, = 6;;(z). We define now E: N — N,

E(z)=2, VzeN.
For the points x = v1 and y = vy we have

<‘Tay>E‘:N and E(<xay>E): [U17U2]-
The function f: N — R,
f(z)=1,, VzeN

is E-d-increasing between x and y. Indeed, if 21,20 € (z,y), and 21 <p 29
then [, <., and consequently f(z1) < f(z2). O

3. FUNCTIONS WITH BOUNDED F£-d-VARIATION ON UNDIRECTED TREE
NETWORKS

We consider an undirected tree network N = (V,U), amap E: N — N,
an F-d-convex set M C N and the function f: M — R. We also consider the
points xz,y € M.

For a division (o) of the set (x,y); N M by the points

(2) r=p20<pz1<pz2<g...<g 23 =EY

we define the number
q

V(B f.0) =Y _|F(E(=)) = f(E(zi-1))],

i=1
called the E-d-variation of the function f on the division (o).
We denote by D the set of all divisions () of the set (z,y), N M.

DEFINITION 7. The number

\27(E; f) =sup {\/(E;f,a) o€ D}

xT

is called the total E-d-variation of the function f on (x,y)z N M.

DEFINITION 8. The function f: M — R is said to be with bounded E-d-va-
riation on (x,y) p N M if
y

\/(E,f) < 00.

T

THEOREM 9. If the function f: M — R is E-d-monotone between x and y
then it is with bounded E-d-variation on (z,y), N M.
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Proof. 1f the function f : M — R is E-d-increasing between = and y then
for every division (|2))

q

V(B f.0) = D|F(BG) - f(E(m)|

i=1

I
M=

[F(B(z) = F(E(21))]
= [f(E(y) - f(E(x)),

<.
I

and therefore
y

V(B f) = F(E(y)) - f(E(z)) < cc.

€T
If the function is F-d-decreasing between x and y then the proof is analogously.
O

COROLLARY 10. If the function f: M — R is E-d-constant between x and
y then it is with bounded E-d-variation on (x,y)y N M and the total E-d-va-
riation of f on (x,y)y N M is zero.

We denote by E; the restriction of the map £ : N — R to the E-d-convex
set M. Since the set M is E-d-convex, E(M) C M.

THEOREM 11. If the function f: M — R is with bounded E-d-variation on
(x,y)p N M then the function f o Ey: M — R is bounded on (x,y), N M.

Proof. For the particular division 0 = (z <p z <g y) of (z,y)y N M we
have

\V(E; f,0) = |F(E(2) = F(E@)|+ | F(BW) - F(B(:)] < V(B f)
and
7(EE)| < [#(5C) - 1B@)| +|7B@)] <V (5 D + |1E@)]

Consequently the function fo E; : M — R is bounded on (x,y), N M. U
The following two theorems are immediately implied.

THEOREM 12. If the functions f: M — R and g : M — R are with bounded
E-d-variation on (x,y)y N M then the functions f +g, f—g, and fg are with
bounded E-d-variation on (x,y), N M.

THEOREM 13. If the functions f: M — R and g : M — R are with bounded
E-d-variation on (x,y)p N M and there is a number n > 0 such that

g(E(z)) >, for every z € (x,y)y N M,
then the function f/g is with bounded E-d-variation on (x,y)y N M.
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DEFINITION 14. The function f : M — R satisfies the E-Lipschitz condition
on (x,y)p N M if there is a number k > 0 such that for any pair of points
21,22 € (x,y) yp N M it is satisfied the relation:

(3) [f(E(21)) = f(E(22))] < kd(E(21), E(22))-
THEOREM 15. If the function f : M — R satisfies the E-Lipschitz condition
n (x,y)p N M then it is with bounded E-d-variation on (x,y), N M.

Proof. Indeed, if the function f : M — R satisfies the E-Lipschitz condition
n (z,y)r N M then there is a number k > 0 such that for any pair of points
21,22 € (x,y) yp N M is satisfied the relation . Consequently we have:

V(E; f,0) = Y If(E(z)) = f(E(zi-1))|
=1

< Y kd(E(z), E(zi-1))
=1

< kd(E(z), E(y))

< o0

y
and hence \/ (E; f) < oo and f is with bounded E-d-variation on (z,y), N M.
’ 0

We consider now a point
ze€ ((my)pNMN\{teM|t=gzort=pgy}.

THEOREM 16. If the function f : M — R is with bounded E-d-variation
n (z,y)p N M then it is with bounded E-d-variation on (x,z), N M and on
(z,y)p N M and

y z y
(4) V(& =V (EFf+V(E;f).
THEOREM 17. If the function f : M — R is with bounded E-d-variation
on (z,2)p N M and on (z,y)y N M then it is with bounded E-d-variation on
{z,9)p N M.

In the following lines we will establish a Jordan type theorem.

THEOREM 18. The function f : (x,y); N M — R is with bounded E-d-vari-
ation on (x,y)p N M if and only if there exist two E-d-increasing functions
between x and y, g : (x,y)p "M — R and h : (x,y), " M — R such that
f=g—h.

Proof. The sufficiency of the condition follows from Theorem [9] and Theo-
rem
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For the necessity, let us define the function

z

V(E; f), ifr<pz<py
g:(x,y)p "M —=>R, g(z)= x

0, ifx=p z.

From Theorem (16| follows that the function g is E-d-increasing between x
and y.
We define now the function

hiley)pn M =R, h(z) = g(z) — f(2).

This function is E-d-increasing between z and y. Indeed, if we consider the
points 2/, 2" € (x,y)p N M, such that 2’ <g 2", we have

h(z") = g(2") = f(Z") = 9(z") + \[ (B f) = f(z"),

Z”

h(2") = (') = (B f) - [f(z") = f(z)].

z/

But .
fFE) =) <V (B )

Consequently h(z"”) — h(z') > 0, that is, h is E-d-increasing between x and y.
Hence f = g — h, where the functions g and h are E-d-increasing between z
and y. ]

REMARK 1. The representation of a function with bounded FE-d-variation as
a difference of two F-d-increasing functions is not unique. Indeed, if f = g—~h
and the functions g and h are F-d-increasing between x and y then we also
have

f=g+c—(h+0),
¢ being constant on (x,y) ;N M . The functions g+c and h+c are E-d-increas-
ing between x and y too. O

REMARK 2. In [6] we already defined and studied another class of functions
with bounded variation on undirected networks. O
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