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COMPATIBILITY OF SOME SYSTEMS OF INEQUALITIES
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Abstract. In this paper, necessary and sufficient conditions for the compati-
bility of some systems of quasi-convex, or convex inequalities are established.
Finally a new proof for a theorem of Shioji and Takahashi (1988) is given.
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1. INTRODUCTION

Ky Fan studied in [4] the existence of solutions for some systems of convex
inequalities involving lower semicontinuous functions defined on a compact
convex set in a topological vector space (all the topological vector spaces con-
sidered in this paper are real and Hausdorff). Particularly, he proved the
following theorem.

Theorem A. Let C be a nonempty compact convex subset of a topological
vector space and let F be a family of real-valued lower semicontinuous convex
functions defined on C. Then the following assertions are equivalent:

(i) The system of convex inequalities
(1) f(x) ≤ 0, f ∈ F ,

is compatible on C, i.e., there exists x ∈ C satisfying (1).
(ii) For any n nonnegative numbers αi with

∑n
i=1 αi = 1 and for any

f1, f2, . . . , fn ∈ F , there exists x ∈ C such that
n∑
i=1

αifi(x) ≤ 0.

For closed results and extensions of Fan’s theorem see [5], [7], [8], [10] and
[11]. In Section 2 we study the compatibility of some systems of inequalities (1)
in the case when all functions f ∈ F are quasi-convex (Theorems 3 and 5),
respectively convex (Theorems 2 and 6).

Shioji and Takahashi in [10, Th. 1] have established a Fan type theorem
in the case when some function of two variables associated to the system of
inequalities (1) is convex-like in one of the variables. This theorem receives a
new proof in Section 3.
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For any positive integer n we denote by Sn the set

Sn =
{
α = (α1, α2, . . . , αn) ∈ Rn, α1 ≥ 0, α2 ≥ 0, . . . , αn ≥ 0,

n∑
i=1

αi = 1
}

The standard abbreviations convA, clA, cardA are used to define the convex
hull, closure and cardinality of a set A, respectively.

2. SYSTEMS OF QUASI-CONVEX INEQUALITIES

We recall that a real-valued function f defined on a convex set C is said
to be quasi-convex if for every real number α, the set {x ∈ C : f(x) ≤ α} is
convex.

In proving Theorem 2 we shall need the following lemma which is an anal-
ogous result of a classical Fan’s section theorem.

Lemma 1. [6, Th. 2.2]. Let C be a nonempty compact convex subset of
a locally convex topological vector space X and K a nonempty closed convex
subset of a topological vector space Y . Let A be a subset of C ×K having the
following properties:

(a) A is closed;
(b) for any y ∈ K, {x ∈ C : (x, y) ∈ A} is nonempty and convex;
(c) for any x ∈ C, {y ∈ K : (x, y) /∈ A} is convex (possibly empty).

Then there exists x0 ∈ C such that {x0} ×K ⊂ A.

Theorem 2. Let C be a nonempty compact convex subset of a locally convex
topological vector space X and let F be a family of continuous quasi-convex
functions f : C → R, satisfying the condition

(2) any convex combination of functions in F is quasi-convex.

Then the following assertions are equivalent:
(i) The system of inequalities (1) is compatible on C.

(ii) For each integer n, 1 ≤ n ≤ cardF , for each (α1, α2, . . . , αn) ∈ Sn and
any f1, f2, . . . , fn ∈ F there exists x ∈ C such that

∑n
i=1 αifi(x) ≤ 0.

Proof. It is clear that (i) implies (ii). In order to prove the reverse im-
plication we shall apply Lemma 1 taking in the posture of Y , the vector
space of all continuous functions f : C → R, endowed with the uniform norm
‖f‖ = max{|f(x)| : x ∈ C}. Also we take K = cl(convF) (the closure being
taken with respect to the uniform topology), A = {(x, f) ∈ C×K : f(x) ≤ 0}
and we show that conditions (a), (b), (c) in Lemma 1 are satisfied.

(a) Let ((xi, fi))i∈I be a net in A converging to (x, f). It follows that
fi(x) ≤ 0 for each i ∈ I and xi

X→ x, fi
Y→ f . Let us take an arbitrary ε > 0.

By the continuity of the function f , there is i1 ∈ I such that ‖f − fi‖ < ε
2 , for

all i ∈ I, i > i1, and by fi
Y→ f there is i2 ∈ I such that ‖f − fi‖ < ε

2 , for all
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i ∈ I, i > i2. Then for every i ∈ I satisfying i > i1, i > i2 we have

f(x) = (f(x)− f(xi)) + (f(xi)− fi(xi)) + fi(xi)
≤ f(x)− f(xi) + ‖f − fi‖
< ε

2 + ε
2 = ε.

(b) Let f ∈ K = cl(convF) and (fn)n∈N a sequence in convF uniformly
converging to f (such a sequence there exists since Y is a normed space).
By (ii) it follows that for each n ∈ N there exists xn ∈ C such that fn(xn) ≤ 0.
Since C is compact the sequence (xn)n∈N has a subsequence (xnk

)k∈N con-
verging to an x ∈ C. Therefore ((xnk

, fnk
))k∈N is a sequence in A conver-

gent to (x, f) and A being closed, it follows that f(x) ≤ 0. Hence the set
{x ∈ C : (x, f) ∈ A} is nonempty.

According to (2), all the functions in convF are quasi-convex. It is easily
checked that the quasi-convexity is conserved by the pointwise convergence,
hence by the uniform convergence too.

(c) For every x ∈ C, the set {f ∈ K; f(x) > 0} is obviously convex.
So all the conditions of Lemma 1 are satisfied. Therefore there exists x0 ∈ C

such that {x0} × cl(convF) ⊂ A. Particularly, for every f ∈ F we have
(x0, f) ∈ A, that is, f(x0) ≤ 0. �

In [10, Th. 2], Shioji and Takahashi extend Fan’s theorem to families of
lower semicontinuous convex functions with values in (−∞,∞]. More exactly
they have established

Theorem 3. Let C be a nonempty compact convex subset of a topological
vector space X and let F be a family of lower semicontinuous convex func-
tions f : C → (−∞,∞]. Then the assertions (i) and (ii) in Theorem 2 are
equivalent.

It should be mentioned that in the case when the topological vector space
X is locally convex, Theorem 3 can be derived from Theorem 2. Indeed let
C be a nonempty compact convex subset of a locally convex space and let F
be a family of lower semicontinuous convex functions f : C → (−∞,∞]. It is
clear that (i) implies (ii). In order to prove the reverse implication, for each
f ∈ F let Af be the set of all continuous affine functions g : C → R satisfying
g(x) ≤ f(x), for all x ∈ C, and denote by G = ∪{Af : f ∈ F}.

It is known (see [2, p. 99] or [9, p. 30]) that for a semicontinuous convex
function f : C → (−∞,∞] the following equality holds

(3) f(x) = sup
{
g(x) : g ∈ Af

}
.

We show that the system
g(x) ≤ 0, g ∈ G,

is compatible on C. Obviously, the family G satisfies condition (2) in Theo-
rem 2. Let n be a positive integer, (α1, α2, . . . , αn) ∈ Sn and g1, g2, . . . , gn ∈ G.
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If g1, g2, . . . , gk ∈ Af1 , gk+1, gk+2, . . . , gl ∈ Af2 , . . . , gr+1, gr+2, . . . , gn ∈ Afm ,
then for every x ∈ C we have

α1g1(x) + α2g2(x) + · · ·+ αngn(x) ≤
≤ (α1 + α2 + · · ·+ αk)f1(x) + (αk+1 + αk+2 + · · ·+ αl)f2(x) + . . .

+ (αr+1 + αr+2 + · · ·+ αn)fm(x).
The sum in the right-hand side of the above inequality is a convex combi-

nation of the functions f1, f2, . . . , fm hence, according to (ii), it is ≤ 0 for at
least one x ∈ C. This shows that G satisfies (ii). Theorem 2 applied to the
family of functions G puts into evidence an x0 ∈ C such that g(x0) ≤ 0 for
each g ∈ G. By (3) it follows immediately that f(x0) ≤ 0, for each f ∈ F .

Remark 1. Observe that if the family of functions F is finite, having
cardF = n, the condition (ii) in each of Theorems A, 2, 3 can be replaced by

(ii′) For each (α1, α2, . . . , αn) ∈ Sn and any f1, f2, . . . , fn ∈ F there exists
x ∈ C such that

∑n
i=1 αifi(x) ≤ 0. �

In Theorem 5 we shall give a set of sufficient conditions for the compatibility
of systems of convex inequalities. The proof will be based on Theorem 3 and
on the following intersectional result for convex sets (see [1] or [3]).

Lemma 4. Let C be a compact convex subset of a topological vector space,
A a family of closed convex subsets of C, and k, l two positive integers with
k ≤ l + 1 ≤ cardA. Suppose that

(i) ∪A′ = C, for any subfamily A′ of A with cardA′ = k;
(ii) ∩A′ 6= ∅, for any subfamily A′ of A with cardA′ = l.

Then ∩A 6= ∅.

Theorem 5. Let C be a nonempty compact convex subset of a topological
vector space, F be a family of lower semicontinuous convex functions f : C →
(−∞,∞], and k, l two positive integers with k ≤ l+ 1 ≤ cardF . Suppose that

(a) for each k functions, pairwise distinct, f1, f2, . . . , fk ∈ F and any x ∈
C there exists (α1, α2, . . . , αk) ∈ Sk such that

k∑
j=1

αjfj(x) ≤ 0;

(b) for each l functions f1, f2, . . . , fl ∈ F and any (α1, α2, . . . , αl) ∈ Sl
there exists x ∈ C such that

f(x) ≤ 0, for all f ∈ F .

Proof. Denote by A the family of all sets Ai = {x ∈ C : fi(x) ≤ 0}, where
fi ∈ F . Since the functions fi ∈ F are lower semicontinuous and convex, the
corresponding sets Ai are closed in C and convex. The proof of Theorem 5
will be achieved whenever we verify the conditions (i) and (ii) in Lemma 4 for
the family A.
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If A does not satisfy the condition (i) then there exists k functions, pair-
wise distinct, f1, f2, . . . , fk in F and x in C such that fj(x) > 0, for all
j ∈ {1, 2, . . . , k}. But in this case for any (α1, α2, . . . , αk) ∈ Sk we have∑k
j=1 αjfj(x) > 0, which contradicts condition (a).
Now given a subfamily {A1, A2, . . . , Al} of l members of A, i.e., Aj = {x ∈

C : fj(x) ≤ 0}, fj ∈ F , then condition (b) together with Theorem 3, via
Remark 1, yield an x ∈ C such that fj(x) ≤ 0, for all j ∈ {1, 2, . . . , k}, that
is, A1 ∩A2 ∩ · · · ∩Al 6= ∅. �

The following result can be proved by applying the same argument as in
the previous proof, using Theorem 2 instead of Theorem 3.

Theorem 6. Let C be a nonempty compact convex subset of a locally convex
topological vector space, F a family of continuous quasi-convex functions f :
C → R satisfying condition (2) in Theorem 2, and k, l two positive integers
with k ≤ l + 1 ≤ cardF . If conditions (a) and (b) in Theorem 5 hold, then
there exists x ∈ C such that

f(x) ≤ 0, for all f ∈ F .

3. THE SHIOJI-TAKAHASHI THEOREM

In [10, Th. 1] Shioji and Takahashi have extended Fan’s theorem to functions
more general than the convex ones. The goal of this section is to give a new
proof of this result, using a minimax theorem.

Before going to this result, we first recollect the following definitions
(see [2, p. 161]).

Let A,B be arbitrary sets. A function F : A×B → (−∞,∞] is said to be:
(i) concave-like in its first variable, if for any x1, x2 ∈ A and 0 < α < 1,

there exists x0 ∈ A such that
αF (x1, y) + (1− α)F (x2, y) ≤ F (x0, y), for all y ∈ B;

(ii) convex-like in its second variable, if for any y1, y2 ∈ B and 0 < α < 1,
there exists y0 ∈ B such that

F (x, y0) ≤ αF (x, y1) + (1− α)F (x, y2), for all x ∈ A;
(iii) concave-convex-like, if it is concave-like in its first variable and convex-

like in its second variable.

Remark 2. It is clear from condition (i) that the following property results
(i′) for every x1, x2, . . . , xn ∈ A and (α1, α2, . . . , αn) ∈ Sn, there exists

x0 ∈ A such that
n∑
i=1

αiF (xi, y) ≤ F (x0, y), for all y ∈ B.

A similar statement for condition (ii) holds. �
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Lemma 7. Let A and B be compact topological spaces and let F : A×B → R
be an upper-lower semicontinuous concave-convex-like function. Then

max
x∈A

min
y∈B

F (x, y) = min
y∈B

max
x∈A

F (x, y).

The above lemma has been formulated in [2, Th. 3.5], in the case when A
and B are compact convex sets, each in a topological vector space, but the
proof given there holds too in the conditions imposed by us.

The following theorem was obtained by Shioji and Takahashi in [10, Th. 1].
We present another proof relied on Lemma 7.

Theorem 8. Let C be a nonempty compact space (not necessarily Haus-
dorff). Let F be a family of lower semicontinuous functions f : C → R such
that the function F : F×C → R defined by F (f, x) = f(x), for each f ∈ F and
x ∈ C, is convex-like in its second variable. Then the assertions (i) and (ii)
in Theorem 2 are equivalent.

Proof. We have only to prove the implication (ii) ⇒ (i). The set C be-
ing compact and the functions f ∈ F being lower semicontinuous, it follows
immediately that an infinite system (1) is compatible if and only if every fi-
nite subsystem is compatible. So, we may assume that the family F is finite,
namely F = {f1, f2, . . . , fn}. Define the function L : Sn × C → R by

L(α, x) =
n∑
i=1

αifi(x), for each (α1, α2, . . . , αn) ∈ Sn and x ∈ C.

Clearly L is linear, hence continuous in its first variable. On the other side,
from hypothesis it follows that L is lower semicontinuous convex-like in its
second variable.

Our assumption (ii) can be written as a minimax inequality, namely

(4) max
α∈Sn

min
x∈C

L(α, x) ≤ 0.

The existence of an x ∈ C satisfying all n inequalities fi(x) ≤ 0, 1 ≤ i ≤ n,
is equivalent to the truth of the relation

min
x∈C

max
1≤i≤n

fi(x) ≤ 0

or, which is the same,

min
x∈C

max
α∈Sn

n∑
i=1

αifi(x) = min
x∈C

max
α∈Sn

L(α, x) ≤ 0.

This relation can be obtained by Lemma 7 and relation (4) as follows

min
x∈C

max
α∈Sn

L(α, x) = max
α∈Sn

min
x∈C

L(α, x) ≤ 0. �
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