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BASES FOR SHAPE PRESERVING CURVES

FRANCESCA PITOLLI∗

Abstract. The shape preserving properties of a curve in R2 depend on the
properties of the function basis we use in its representation. Both sign consistent
and totally positive bases have shape preserving properties useful in Computer
Aided Geometric Design. Some of the most useful properties are lightened and
some examples of shape preserving bases are given.
MSC 2000. 68U07, 65D17.
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1. INTRODUCTION

In Computer Aided Geometric Design (CAGD) it is useful to be able to
predict or control the shape of a curve by studying or specifying the shape of the
control polygonal arc formed by certain points which define the curve, typically
the coefficients when the curve is expressed in terms of a particular basis. This
is possible when we choose as a basis a system of functions Φ = (ϕ0, . . . , ϕn)
with suitable shape preserving properties. This means that the geometrical
properties of the curve in R2

(1.1) γ(x) =
n∑
i=0

Piϕi(x), x ∈ I ⊂ R,

constructed on the control points Pi ∈ R2, i = 0, . . . , n, are implied by the
geometrical properties of the control polygon P0 . . . Pn. The shape preserving
properties of each representation (1.1) depend on the characteristic of the
system (ϕ0, . . . , ϕn).

For instance, a simple property which is demanded for curve control is the
convex hull property, that is, the points of the curve always lie inside the
convex hull of the control polygon. It is well known that γ has the convex hull
property if and only if all functions ϕi are nonnegative and add up to one,
that is

(1.2)
n∑
i=0

ϕi(x) = 1, x ∈ I.

This kind of systems are usually called normalized (or blending) systems.
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Most normalized systems used in CAGD for curve generation are totally
positive (TP) systems, that is the collocation matrix

(1.3) M

(
ϕ0, . . . , ϕn
x0, . . . , xm

)
:= (ϕi(xj))n m

i=0 j=0

for any sequence x0 < . . . < xm, xi ∈ I, i = 0, . . . ,m, is totally positive, i.e.
all its minors are non-negative. The properties of totally positive matrices
and systems are extensively studied in [18], while several applications of total
positivity can be found in [12].

A system of totally positive functions (ϕ0, . . . , ϕn) that add to one, is called
normalized totally positive (NTP) system. Thus, the collocation matrix (1.3)
is TP and stochastic (each row has sum 1).

The importance of TP bases follows from their good shape preserving prop-
erties which, in turn, are consequence of the variation diminishing (VD) prop-
erty of the corresponding totally positive collocation matrix (1.3) (see, for
instance, [13]). In fact, if T is a TP matrix and v is any vector for which Tv
is defined, the variation diminishing property states that

(1.4) S−(Tv) ≤ S−(v),

where S−(v) denotes the number of strict sign changes in v [18, Ch. 5, §1].
The VD property is stronger than many other shape properties, such as

monotonicity or convexity preservation.
For instance, a relevant property of collocation matrices which is weaker

than total positivity is sign consistency. A matrix is said to be sign-consistent
of order k (SCk) if all minors of order k have the same nonstrict sign (which
may depend on k). A system of functions whose collocation matrices are sign-
consistent is a Descartes system, thus, in particular, every TP system is a
Descartes system. The importance of sign-consistent system in CAGD is in
that they are the unique systems which satisfy the VD property [7, Prop. 2.6].
In Chapter 5 of [18] the sign consistency property is analysed in connection
with the VD property.

Another usual requirement for curve control in CAGD is the end-point in-
terpolation condition, that is the first control point always coincides with the
start-point of the curve generated by the function system and the last control
point always coincides with the end-point of the curve.

In [19] it was shown that a normalized Descartes system enjoys the end-
point interpolation condition if and only if it is a TP system.

From the results above it follows that if a system of functions, starting
from any given set of control points, generates curves of type (1.1) satisfying
the convex hull, the variation diminishing and the end-point interpolation
properties simultaneously, then it is a NTP system.

The aim of the present article is to collect some recent results on shape
preserving bases commonly used in CAGD. Some examples of these bases are
reported in Section 2. Section 3 deals with shape preserving properties implied
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by sign consistency, while Section 4 is devoted to properties implied by the
VD property of NTP systems. In order to deduce further shape preserving
properties, in Section 5 the corner cutting algorithm is lightened. Finally, in
Section 6 the optimality properties of some special bases are considered.

2. SOME BASES USED IN CAGD APPLICATIONS

When defining a curve or surface from a given finite dimensional space of
functions, it is important which basis we use. As a simple example, consider
the space of polynomials of degree n on [a, b]. In the representation

(2.1) p(x) =
n∑
i=0

cix
i, a ≤ x ≤ b,

the coefficients ci do not give information on the shape of the curve p. However,
if we write

(2.2) p(x) =
n∑
i=0

di
(n
i

)(
x−a
b−a

)i( b−x
b−a

)n−i
, a ≤ x ≤ b,

then the coefficients di give a great deal of information about the shape of the
curve p. To give just an example, we note that if the sequence (d0, . . . , dn) is
increasing, then p is increasing.

The representation (2.2) introduces a basis commonly used in CAGD ap-
plications, we mean the Bernstein basis li, i = 0, . . . , n, for the space Pn of
polynomials of degree n on [a, b]:

(2.3) li(x) =
(n
i

)(
x−a
b−a

)i( b−x
b−a

)n−i
, a ≤ x ≤ b, i = 0, . . . , n;

using this basis, the polynomial p(x) becomes:

(2.4) p(x) =
n∑
i=0

Bili(x), 0 ≤ x ≤ 1.

This representation is called the Bézier representation, after P. Bézier, who
used it in the design of cars (although it was actually used earlier by P. de
Casteljou for a rival car manufacturer). The control points Bi ∈ R2, i =
0, . . . , n, and the control polygon B0 . . . Bn are referred to as Bézier points
and Bézier polygon respectively.

From the Descartes’ rules of sign for polynomials it follows that the number
of times that a straight line crosses the curve p in (2.2) is no more than
the number of times it crosses the polygonal arc P0 . . . Pn [13]. Some simple
consequences of this property are that the Bézier representation preserves
monotonicity and convexity, that is the shape of the curve γ closely mimics
the shape of the Bézier polygon.

However, for CAGD, polynomials are often too inflexible, and it is better to
use other functions, for instance spline functions. A simple TP basis for the
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space of polynomial splines is given by the truncated power [18]

(2.5) gi(x) = (x− xi)n+, x ∈ R, i = 0, . . . ,m,

for any x0 ≤ . . . ≤ xm, n ≥ 0. More convenient from a computational point of
view, since they have compact support, are B-splines (see, for instance, [20])
which is constructed as follows.

Take m ≥ 0, n ≥ 2 and a sequence x0 ≤ x1 ≤ . . . ≤ xm+n+1 with xi <
xi+n+1, i = 0, . . . ,m. Then for i = 0, . . . ,m, let Nn

i be the B-spline of degree
n with knots at xi, . . . , xi+n+1; i.e., a function (unique up a positive multiple)
which has support [xi, xi+n+1], is a polynomial of degree n on any interval
[xj , xj+1), and at xj has continuous derivatives up to order n− |{l : xl = xj}|.
(By |S| we mean the number of elements in S.) Then (Nn

0 , . . . , N
n
m) is a TP

systems [18]. Henceforward we assume that m ≥ n and x0 = . . . = xn = a
< b = xm+1 = . . . = xm+n+1. Then the B-splines (Nn

0 , . . . , N
n
m) form a NTP

basis on [a, b]. When m = n and x0 = . . . = xn = 0 and 1 = xn+1 = . . . =
x2n+1, the B-spline basis (Nn

0 , . . . , N
n
n ) reduces, after suitable normalization,

to the Bernstein basis (2.3).
Other TP bases can be obtained by keeping algebraic polynomials on the

intervals [xj , xj+1), but changing the continuity conditions on the knots xj . A
general condition at a knot ξ can be expressed as

(2.6) f (i)(ξ+) =
r∑
j=0

Cijf
(j)(ξ−), i = 0, . . . , r.

If the connection matrix C = (Cij) r,r
i,j=0,0 at each knot is TP and non-singular,

then one can construct a basis of functions (sometimes called β-splines) with
the same supports as the usual B-splines and this basis is TP [9]. Such bases
may be useful for CAGD when the condition (2.6) at each knot is chosen so that
a curve defined parametrically from this basis has geometric continuity of order
higher than the continuity of the separate components. For instance, cubic
β-splines, first introduced in [1] and [10], give a curve with continuous unit
tangent vector and curvature vector, even though the separate components
need not have continuous first and second order derivatives. Other examples
of β-splines can be found in [15].

Finally, we mention the nonuniform rational B-spline (NURBS) curve.
For any given set of positive weights (w0, . . . , wn) and a control polygon

P0 . . . Pn, the NURBS curve is defined by [11]
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(2.7) ζ(x) =
m∑
j=0

wjPjN
n
j (x)

/ m∑
j=0

wjN
n
j (x).

The functions

(2.8) ri(x) := wiN
n
i (x)

m∑
j=0

wjNn
j (x)

, i = 1, . . . ,m

consitute a basis of the vectorial space containing all the curves of type (2.7).
We shall see in Section 4 that TP bases enjoy many useful shape preserving

properties.

3. MONOTONICITY AND CONVEXITY PRESERVING PROPERTIES

In this section we shall analyze the shape preserving properties that follow
from the weaker assumption that (ϕ0, . . . , ϕn) is a sign-consistent system (cf.
[2]).

Let us denote by SCk+ the subclass of SCk matrices with all minors of
order k being nonnegative. A system of functions is SCk+ if all its collocation
matrices are SCk+.

All the shape preserving properties in the following are consequence of the
fact that a SCk+ system preserves the orientation of the control polygon.

Definition 1. We say that a polygon P0 . . . Pn, Pi ∈ R2, is positively ori-
ented if the matrix of control points

(3.1) M

(
P0, . . . , Pn

0, . . . , n

)
= (P0 . . . Pn)

is SC2
+. A curve γ in R2 is positively oriented if all collocation matrices of γ

are SC2
+.

In Theorem 3 of [2] it was shown that a system is SCs+ if and only if the
curve γ is positively oriented when the control polygon P0 . . . Pn is positively
oriented.

Definition 2. A curve γ : [a, b] → R2 is turning counterclockwise around
a point p if γ(t) − p is positive oriented, and a polygon P0, . . . , Pn is turning
counterclockwise around a point v if P0 − v, . . . , Pn − v is positive oriented.

A system is said to be monotonicity preserving if
∑
i ciϕi is an increasing

function, for any c0 ≤ . . . ≤ cn, and it is said to preserve the sense of rotation
if it transforms polygons turning counterclockwise around a point into curves
turning counterclockwise around the same point. A normalized system is mo-
notonicity preserving and preserves the sense of rotation if and only if it is
SC2

+ [2, Props. 6 and 8].
Monotonicity preserving normalized systems have the following geometrical

interpretation. If the projection of the control polygon onto a given line is
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increasing, then the projection of the curve γ on the same line is increasing.
Observe that the preservation of the sense of rotation implies the preservation
of the monotonicity.

Probably, the most useful shape preserving property is the convexity preser-
vation. In [13] a convex planar curve (or polygon) is described as a curve (or
polygon) such that any line of the plane crosses the curve at most twice.
In that paper, it was shown that if the system (ϕ0, . . . , ϕn) enjoys the VD
property then the curves generated by convex polygons have to be convex.
Following [2], here we want to consider a stronger kind of convexity.

Definition 3. Let h : R2 → R3 be given by h(c) = (1, c). A curve γ :
[a, b] → R2 not contained in a line is globally convex if h(γ) is positively
oriented. A polygon P0 . . . Pn is globally convex if h(P0) . . . h(Pn) is a positively
oriented polygon.

A system is said to be global convexity preserving if it transforms glob-
ally convex polygons into globally convex curves. If a normalized system of
linearly independent functions is SC3

+, then it is global convexity preserving
[2, Prop. 10].

It is interesting to observe that if the projection of a curve on a line is strictly
increasing, local convexity and global convexity are equivalent [2, Prop. 11].

Local convexity is not preserved by the most common curves, unless some
limitations on the number of turns of the polygon are imposed [14].

The most common examples of curves used in CAGD (see Sect. 2) are
generated by normalized systems which are totally positive and, in particular,
SCk+ for all k ≤ n. Therefore, all these systems are monotonicity and global
convexity preserving.

4. GENERALIZED VARIATION DIMINISHING PROPERTY

In [3] a generalization of the variation diminishing property (1.4) was given
as follows.

For an n× r matrix A = (aij)n−1 r−1
i=0 j=0 , we let S−r (A) denote the number of

strict sign changes in the sequence of consecutive r × r minors of A. To be
precise, if we write Ak = (aij)k+r−1 r−1

i=k j=0 , k = 0, . . . , n− r, then

(4.1) S−r (A) = S−
(
|A0|, . . . , |An−r|

)
.

If r = 0, then A = vT , for a vector v ∈ Rn and S−1 (A) = S−(v).

Definition 4. We say a TP matrix T = (Tij)m r
i=0 j=0 is p-restricted if any

consecutive rows of rank p vanish outside some p consecutive columns.

Definition 5. We say an n×r matrix A is regular of order p, where r+1 ≤
p ≤ n, if for any i, 0 ≤ i ≤ n− p, there is an r × (r − 1) matrix Ri such that
all minors of order r− 1 from rows i+ 1, . . . , i+ p of ARi are strictly positive.
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Theorem 6 (CGP). [3, Th. 3.7]. Let T be an m×n totally positive matrix
of rank n which is p-restricted. Let A be an n × r matrix which is regular of
order p with
(4.2) m ≥ n ≥ p ≥ r ≥ 2.
Then
(4.3) S−r (TA) ≤ S−r (A).

By Definition 5 it follows that if p = r there are no conditions on A. As
p increases, the conditions on A becomes more restrictive but, because of
Definition 4, the conditions on T relax until they become vacuous when p = n.

Examples of p-restricted matrices are the B-splines collocation matrix

(4.4) T =
[
Nn
j (xi)

]k m

i=0 j=0,

which is (n+ 2)-restricted [3, Prop. 4.1], and the uniform banded subdivision
matrix
(4.5) T = (ai−2j) ∞

i,j=−∞, ai = 0 for i < 0 and i > n+ 1, a0an+1 6= 0,

which is totally positive and (n+ 1)-restricted if the polynomial
∑n+1
i=0 aiz

i is
a Hurwitz polynomial, i.e. all its zeros have strictly negative real part.

In the following we shall show some applications of (4.3) on the shape pre-
serving properties of a curve [3], [15].

Example 1. Take r = 2 in (4.3) and

(4.6) A =
[

1 · · · 1
a0 · · · an

]T
.

In this case A is regular of order n + 1 and so the condition (4.2) that T be
(n+ 1)-restricted is vacuous.

Since each minor ∣∣∣∣ 1 ai
1 ai+1

∣∣∣∣ = ai+1 − ai,

then S−2 (A) denotes the number of local extrema in the sequence (a0, . . . , an),
i.e. the number of local maximum and local minimum which occurs if

ai−1 < ai = ai+1 = . . . = ai+l > ai+l+1

or if
ai−1 > ai = ai+1 = . . . = ai+l > ai+l+1,

respectively.
If T is stochastic, then we can write

(4.7) TA =
[

1 · · · 1
(Ta)0 · · · (Ta)n

]T
, a := (a0, . . . , an)T,

and so (4.3) tells us that the number of local extrema in the sequence Ta is
bounded by that in the sequence (a0, . . . , an). In particular, if (ϕ0, . . . , ϕn) is
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a NTP basis, then the number of local extrema of the function
∑n
i=0 aiϕi is

bounded by the number of local extrema in the sequence (a0, . . . , an). More-
over, if the function f is the continuous limit curve of a subdivision procedure,
then the number of local extrema of f is bounded by the number of local
extrema in the initial sequence. �

Example 2. Take r = 3 in (4.3) and

(4.8) A =
[

1 · · · 1
P0 · · · Pn

]T
,

where Pi = (xi, yi), i = 0, . . . , n. In this case A is regular of order p if any p
consecutive points Pi+1, . . . , Pi+p are strictly increasing in some direction or
rotate in strictly the same direction about some point through an angle less
than π.

Now, suppose that T , as in Theorem CGP, is stochastic and take r = 2 in
(4.3) and

(4.9) TA =
[

1 · · · 1
Q0 · · · Qm

]T
,

for points Q0, . . . , Qm in R2. Then (4.3) tell us that the number of inflec-
tions in the polygonal arc Q0, . . . , Qm (i.e. the number of times the the curves
changes from turning in a clockwise direction to turning in an anti-clockwise
direction, or vice-versa), is bounded by the number of inflections in the polyg-
onal arc P0, . . . , Pn. This shows, in particular, that for a normalized totally
positive basis (ϕ0, . . . , ϕn), the number of inflections in the curve

∑n
i=0 Piϕi is

bounded by the number of inflections in the polygonal arc P0, . . . , Pn, under
the above conditions on the points P0, . . . , Pn in R2. Similarly we can gain a
bound on the number of inflections in a curve derived as a limit of a suitable
subdivision scheme. For the special case of a totally positive basis of B-splines,
this example was studied in [14]. �

In conclusion, we can say that if (ϕ0, . . . , ϕn) is NTP, then in many ways
the shape of the curve γ(x) mimics the shape of the control polygon P0 . . . Pn.

5. CORNER CUTTING ALGORITHM

In the functional space generated by a given NTP basis (ϕ0, . . . , ϕn) one
can consider a new NTP basis (b0, . . . , bn); then, the curve γ in (1.1) can be
express in term of both bases:

(5.1) γ(x) =
n∑
i=0

Piϕi(x) =
n∑
i=0

Qibi(x), x ∈ I,

where Q0 . . . Qn is the control polygon with respect to the new basis. If K is
the TP matrix relating the two bases, that is
(5.2) (ϕ0, . . . , ϕn) = (b0, . . . , bn)K,
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then K is also the matrix that relates the control polygons of γ:

(5.3) (Q0, . . . , Qn)T = K(P0, . . . , Pn)T.

When K is TP and stochastic the relation between both control polygons
corresponds to a corner cutting algorithm [16], that is a rule for successively
cutting corners of the polygon P0 . . . Pn.

An elementary corner cutting is a transformation which maps any polygon
P0 . . . Pn into another polygon Q0 . . . Qn defined in one of the following ways.

(5.4)
{
Qj = Pj , j 6= i,
Qi = (1− λ)Pi + λPi+1,

for some i ∈ {0, . . . , n− 1},

or

(5.5)
{
Qj = Pj , j 6= i,
Qi = (1− λ)Pi + λPi−1,

for some i ∈ {1, . . . , n},

where 0 < λ < 1.
A corner cutting algorithm is any composition of elementary corner cuttings.

Observe that the ratio µ/(1 − µ) at which each side of the polygonal arc is
divided at each step is independent of the polygonal arc.

A corner cutting algorithm allows one to deduce further shape preserving
properties of the curve γ. For instance, the best known example of corner
cutting algorithm is given by the de Casteljau algorithm [8], obtained when
the NTP basis is the Bernstein basis (2.3). In this case the following properties
of P0 . . . Pn and Q0 . . . Qn can be obtained [4]:

(i) if P0 . . . Pn is convex, then so are Q0 . . . Qn and the curve γ, and
Q0 . . . Qn lies between P0 . . . Pn and γ;

(ii) length γ ≤ length Q0 . . . Qn ≤ length P0 . . . Pn;
(iii) if P0 . . . Pn turns through an angle ≤ π, then I(γ) ≤ I(Q0 . . . Qn) ≤

I(P0 . . . Pn), where I(β) denotes the number of inflection of a curve β,
as defined in Ex. 2 of Sect. 4;

(iv) Let θ(β) denotes the angular variation of a continuous curve β(x),
a ≤ x ≤ b, that is the sup θ(β(x0) . . . β(xm)), where the supremum
is taken over all a ≤ x0 < . . . < xm ≤ 1 for all m. There results
θ(γ) ≤ θ(Q0 . . . Qn) ≤ θ(P0 . . . Pn).

From the properties above it follows that the control polygon Q0 . . . Qn
with respect to the Bernstein basis is more similar to the curve γ than the
control polygon P0 . . . Pn with respect to any other reasonable basis, that is
the Bernstein basis has optimal shape preserving properties.

It is natural to wonder if there exist other functional spaces endowed with
optimal bases, that is bases satisfying properties (i)–(iv). The search and the
construction of optimal bases is the subject of the following section.
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6. B-BASES AND OPTIMALITY PROPERTIES

Given a TP basis (b0, . . . , bn) of a functional space and a non singular TP
(n+ 1)× (n+ 1) matrix K, the system

(6.1) (ϕ0, . . . , ϕn) = (b0, . . . , bn)K

is also a TP basis of the same space. Thus, we may construct a family of TP
bases from a given one, but not necessarily all TP bases. If we obtain by this
process all the TP bases we say that (b0, . . . , bn) is a B-basis. A B-basis also
allows one to obtain all sign-consistent bases if we choose in (6.1) a nonsingular
sign-consistent matrix K [7, Th. 2.3].

A useful test to check if a TP basis is a B-basis is given by the following
proposition.

Proposition T. [5, Th. 3.12]. Let (b0, . . . , bn) be a TP basis of a space <.
Then (b0, . . . , bn) is a B-basis if and only if the following conditions hold:

(6.2) inf
{
bi(x)
bj(x) | x ∈ I, bj(x) 6= 0

}
= 0,

for all i 6= j.

If the check fails, we can always transform any given TP basis (ϕ0, . . . , ϕn)
of a functional space into a B-basis (b0, . . . , bn) [5, Th. 3.6]. Moreover, if the
TP basis (ϕ0, . . . , ϕn) is normalizable, that is

∑n
i=0 ϕi(x) > 0 for all x ∈ I,

then the basis

(6.3) wi := ϕi
n∑
i=0

ϕi

, i = 0, . . . , n,

is a NTP basis of the space W generated by (w0, . . . , wn) and there exists a
unique NTP B-basis from which we can recover all NTP bases in W , choosing
in (6.1) a TP and stochastic matrix [5, Th. 4.2].

Starting from any NTP basis Φ = (ϕ0, . . . , ϕn), the normalized B-basis
B = (b0, . . . , bn) can be constructed iteratively by means of the following
algorithm [5, Th. 3.6].

Let ϕ0
i = ϕi, i = 0, . . . , n. Then, for j = 0, . . . , n− 1 define iteratively

(6.4) ϕj+1
i :=

 ϕji − inf
(

ϕj
i

ϕj
i−1

)
ϕji−1, i = n, n− 1, . . . , j + 1,

ϕji , i = j, j − 1, . . . , 0.

Now, let ψ0
i = ϕn−1

i , i = 0, . . . , n, and for j = 0, . . . , n− 1 define

(6.5) ψj+1
i :=

 ψji − inf
(

ψj
i

ψj
i+1

)
ψji+1, i = 0, 1, . . . , n− j − 1,

ψji , i = n− j, . . . , n.
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Then Ψ = (ψn−1
0 , . . . , ψn−1

n ) is a B-basis. The unique NTP B-basis B can be
obtained normalizing Ψ as follows:

(6.6) B = (d0b0, . . . , dnbn),

where d0, . . . , dn are positive coefficients such that

(6.7) 1 = d0b0 + . . .+ dnbn.

Normalized B-bases enjoy all shape preserving properties we have reported
in Sect. 1, that is the convex hull, the VD and the end-point interpolation
properties [6, p. 139]. Moreover, they preserve monotonicity and convexity
and enjoy the generalized VD property of Sect. 4.

In addition to the previous ones, B-bases enjoy further shape preserving
properties. First of all, NTP B-bases are least variation diminishing bases.
In fact, observe that if Φ = (ϕ0, . . . , ϕn) and Z = (ζ0, . . . , ζn) are two bases
satisfying the variation diminishing property and such that Φ = ZK with K
sign-consistent, then Z is less variation diminishing than Φ. Thus a B-basis is
less variation diminishing with respect to all sign-consistent bases of the same
space. Moreover, if there exists a system of functions satisfying a Descartes’
rule of sign, then there exists a B-basis which satisfies an optimal Descartes’
rule in that the number of zeros of any function f in the space in the interval
I is less than or equal to the strict changes of sign in the sequence of the
coefficients with respect to the B-basis and this is in turn less than or equal
to the number of strict changes of sign in the sequence of the coefficients with
respect to any other basis satisfying the Descartes’ rule [7]. Therefore a basis
is a normalized B-basis if and only if it satisfies the least variation diminishing,
the endpoint interpolation and the convex hull properties simultaneously.

The unique normalized B-basis of a given space satisfy also the optimal
shape preserving properties (i)–(iv) of Sect. 5. Thus a B-basis is an optimal
basis [5, Prop. 3.11].

Finally, B-bases are optimal among all NTP bases in the sense that the
curve or surface generated by a given set of control points enjoys many nice
properties [6, Sect. 5]. In particular, we quote the maximality of the convex
cone of nonnegative functions generated by this basis, the good conditioning
of the basis, the little support of the basic functions.

Some examples of functional bases which are B-bases are: the Bernstein
basis in the space of polynomials of degree less than or equal to n on a compact
interval [4]; the monomial basis (1, t, . . . , tn) of polynomials of degree less than
or equal to n on the interval [0,∞]; the B-spline basis in the corresponding
space of polynomial splines [5, Sect. 4]; the β-spline basis in the space of
polynomial generalized splines with geometric continuity conditions at the
knots [5, Sect. 4]; the basis (2.8) used for generating NURBS curves [5, Sect.
4]; the B-bases constructed starting from totally positive scaling functions [17].
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Observe that only B-spline bases, β-spline bases, rational B-spline bases,
and the B-bases constructed in [17] are normalized and, as a consequence,
optimal bases.
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