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SOME SUFFICIENT CONDITIONS
FOR THE CONVERGENCE OF THE CASCADE ALGORITHM
AND FOR THE CONTINUITY OF THE SCALING FUNCTION∗
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Abstract. We define a class of matrices which includes, under some natural
assumptions, the matrices m (0), m (1) and T2N−1, which are the key matrices
of the wavelets theory. The matrices of this class have the property that the
eigenvalues of a product matrix are products of their eigenvalues. This property
is used in establishing some sufficient conditions for the convergence of the cas-
cade algorithm and some sufficient conditions for the continuity of the scaling
function. We generalize here the particular results obtained by us in a previous
paper.
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1. INTRODUCTION

The dilation equation plays an important role in wavelets theory. A dilation
equation is a functional equation having the form

(1) φ (t) = 2
N∑
k=0

hkφ (2t− k) , with hk ∈ R, k = 0, . . . , N.

Any nonzero solution φ of such an equation is called a scaling function. The
scaling functions lead to wavelets: if φ is a scaling function, then the associated
“mother wavelet” is defined as

ψ (t) = 2
N∑
k=0

(−1)k hN−kφ (2t− k) .

The dilation equation is linear, so any multiple of a solution is a solution.
It is convenient to normalize so that∫ ∞

−∞
φ (t) dt = 1.

This relation implies
h0 + h1 + . . .+ hN = 1,
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so in this paper we will suppose this condition satisfied. Also (see [3]), if
this condition is satisfied, then the dilation equation (1) has a unique and
compactly supported solution φ (t). This solution may be a distribution.

For the coefficients hk some other conditions are required. In the wavelets
literature these are the so-called Ap conditions.

Definition 1. Let p ∈ N∗. We say that the coefficients hk of the dilation
equation (1) satisfy the Condition Ap if

N∑
k=0

(−1)k kmhk = 0, for m = 0, . . . , p− 1,

with the convention 00 = 1.

A way to solve the dilation equation is the cascade algorithm described by

(2) φi+1 (t) = 2
N∑
k=0

hkφ
i (2t− k) , i = 0, 1, . . . ,

with φ0 (t) usually taken as the box function

φ0 (t) =
{

1, t ∈ [0, 1] ,
0, otherwise.

The scaling function φ is the limit

φ = lim
i→∞

φi.

In Section 2 we study some classes of matrices that will help us in studying
the convergence of the cascade algorithm (Section 3) and then in studying the
continuity of the scaling function (Section 4).

2. A CLASS OF MATRICES

In this section we present the classes CN of matrices of MN (R), N ∈ N∗,
which are closed with respect to the operation of multiplication and have
the property that the eigenvalues of a product matrix are products of their
eigenvalues. These classes include the matrices T2N−1, m(0) and m(1) given in
(15) , (3) and (4), which are the key matrices in studying the dilation equation.

For a given N ∈ N we consider the matrix S = (sij)1≤i,j≤N with

sij =
{ (j−1

i−1
)
, i ≤ j,

0, i > j.

A simple calculation shows that its inverse is S−1 = (uij)1≤i,j≤N with
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uij =
{

(−1)i+j
(j−1
i−1
)
, i ≤ j,

0, i > j.

Then we define the class CN as the set of the matrices M ∈ MN (R) with
the property that the matrix SMS−1 is lower triangular. The set CN has the
following properties:

Lemma 1. Let M1, M2 ∈ CN . Then:
1. M1M2 ∈ CN ;
2. The eigenvalues of the product matrix M1M2 are products of the eigen-

values of M1 and M2.

Proof. It is immediately that the matrices M and SMS−1 have the same
eigenvalues. We denote by λik, k = 1, . . . , N , the eigenvalues of Mi, such that

SMiS
−1 =


λi1 0
× λi2
...

... . . .
× × · · · λiN

 , for i ∈ {1, 2} .

Then,

S (M1M2)S−1 =
(
SM1S

−1
) (
SM2S

−1
)

=


λ1

1λ
2
1 0
× λ1

2λ
2
2

...
... . . .

× × · · · λ1
Nλ

2
N

 ,
whence both conclusions 1 and 2 follow. �

3. THE CONTINUITY OF THE SCALING FUNCTION

As shown in [3, Ch. 7], the study of the continuity of the scaling function
involves the matrices m (0) and m (1) defined by

(m (0))ij = 2h2i−j−1, 1 ≤ i, j ≤ N,(3)
(m (1))ij = 2h2i−j , 1 ≤ i, j ≤ N.(4)

In the following we will prove that m (0) ∈ CN and m (1) ∈ CN . First we
have to establish some preliminary results.

Lemma 2. Let i ∈ N∗. If the coefficients hk satisfy the condition Ai, then

(5)
N∑

k=i−1

( k
i−1
)

(−1)k hk = 0 and
N∑

k=i−2

(k+1
i−1
)

(−1)k hk = 0.

Proof. Both
( k
i−1
)

and
(k+1
i−1
)

are polynomials in k of degree i − 1. Thus,
relations (5) hold if the condition Ai is satisfied. �
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Lemma 3. Let p ∈ N∗. Then the following relations hold:
p∑

m=0

( 2p
2m
)(k+m−1

2p−1
)

=
(2k−1

2p−1
)
, k = 2p, 2p+ 1, . . .(6)

p∑
m=1

( 2p
2m−1

)(k+m−2
2p−1

)
=

(2k−2
2p−1

)
, k = 2p, 2p+ 1, . . .(7)

p∑
m=0

(2p+1
2m
)(k+m−1

2p
)

=
(2k−1

2p
)
, k = 2p+ 1, 2p+ 2, . . .(8)

p+1∑
m=1

( 2p+1
2m−1

)(k+m−2
2p

)
=

(2k−2
2p
)
, k = 2p+ 1, 2p+ 2, . . .(9)

Proof. To prove (6) we show that the polynomials

P (x) =
p∑

m=0

( 2p
2m
)

(x+m− 1) (x+m− 2) . . . (x+m− (2p− 1))

and

Q (x) = (2x− 1) (2x− 2) . . . (2x− (2p− 1))

(of degree 2p−1) coincide. Then they will coincide at the points x = 2p, 2p+
1, . . . .

In order to prove that P = Q, we see first that the coefficient of x2p−1 in
both P and Q is 22p−1. Then we prove that they have the same roots. It is
immediate that P (j) = Q (j) = 0, for j = 1, 2, . . . , p − 1. So, it remains to
prove that P ((2s− 1) /2) = 0, for s = 1, 2, . . . , p. Denoting

(10) R (x, t) =
p∑

m=0

( 2p
2m
)

(x+m− 1) (x+m− 2) . . . (x+m− t) , for t ∈ N∗,

we may write R (x, 2p− 1) = P (x) .
Thus, we have to prove that R ((2s− 1) /2, 2p− 1) = 0, for s = 1, 2, . . . , p.

For this, we write a recurrence formula as follows. First we easily deduce that

R (x, t) = R (x− 1, t) + tR (x− 1, t− 1) .

Then, by induction on n we immediately obtain

R (x, t) =R (x− n, t) +
(n

1
)
tR (x− n, t− 1) +

(n
2
)
t (t− 1)R (x− n, t− 2) + . . .

(11)

+
(n
i

)
t (t− 1) . . . (t− i+ 1)R (x− n, t− i) + . . .

+
(n
n

)
t (t− 1) . . . (t− n+ 1)R (x− n, t− n) ,

for 1 ≤ n < min (x, t) .
So R (x, t) is combination of R (x− n, t) , R (x− n, t− 1) , . . . , R(x− n, t−

n). Writing the relation (11) for t = 2p − 1, x = (2s− 1) /2, s = 2, 3, . . . , p
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and n = s− 1, we get

R
(

2s−1
2 , 2p− 1

)
=R

(
1
2 , 2p− 1

)
+
(s−1

1
)

(2p− 1)R
(

1
2 , 2p− 2

)
+ . . .(12)

+
(s−1
s−1
)

(2p− 1) . . . (2p− s+ 1)R
(

1
2 , 2p− s

)
,

for s = 2, . . . , p.
In order to have R

(
2s−1

2 , 2p− 1
)

= 0, for s = 1, . . . , p, it is enough to prove
that

R
(

1
2 , p+ t

)
= 0, for t = 0, 1, . . . , p− 1.

Evaluating R
(

1
2 , p
)
, we obtain

R
(

1
2 , p
)

=
p∑

m=0

( 2p
2m
) (1

2 +m− 1
)
. . .
(

1
2 +m− p

)
= 1

2p

p∑
m=0

( 2p
2m
)

(2m− 1) (2m− 3) . . . (2m− 2p+ 1) .

Consider now the polynomial

H (x) =
p∑

m=0

( 2p
2m
)

(2m− 1) (2m− 3) . . . (2m− 2p+ 1)xm.

A simple induction on m shows that( 2p
2m
)
(2m−1)...(2m−2p+1)
(−1)p(2p−1)!! = (−1)m

( p
m

)
, for m = 0, 1, . . . , p.

Thus, the polynomial H gets the expression

H (x) = (−1)p (2p− 1)!!
p∑

m=0
(−1)m

( p
m

)
xm = (−1)p(2p− 1)!! (1− x)p ,

whence H (1) = H ′ (1) = . . . = H(p−1) (1) = 0.
In conclusion we have 0 = H (1) = 2pR

(
1
2 , p
)
, and further, for t = 1, . . . , p− 1,

H(t) (1) =

=
p∑

m=t

( 2p
2m
)

(2m− 1) (2m− 3) . . . (2m− 2p+ 1)m (m− 1) . . . (m− t+ 1)

=
p∑

m=0

( 2p
2m
)

(2m− 1) (2m− 3) . . . (2m− 2p+ 1)m (m− 1) . . . (m− t+ 1)

= 0.
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Now, evaluating R
(

1
2 , p+ t

)
, from (10) follows that

R (1/2, p+ t) = 1
2p+t

p∑
m=0

( 2p
2m
)

(2m− 1) (2m− 3) . . . (2m− 2p+ 1) ·

·
[
(2m− 2p− 1) . . . (2m− 2p− 2t+ 1)

]
= 1

2p+t

p∑
m=0

( 2p
2m
)

(2m− 1) (2m− 3) . . . (2m− 2p+ 1)
[
a0 +

+a1m+ a2m (m− 1) + . . . atm (m− 1) . . . (m− t+ 1)
]

= 1
2p+t

(
a0H (1) + a1H

′ (1) + . . .+ atH
(t) (1)

)
= 0,

for t = 1, . . . , p− 1. Using now (12) , we obtain

R
(

2s−1
2 , 2p− 1

)
= 0, for s = 1, . . . , p.

In conclusion the polynomials P and Q coincide, fact which proves the
relation (6). Analogously we can prove the relations (7), (8) and (9). �

Now we prove the following theorem.

Theorem 1. If the coefficients hk satisfy the condition AN−1, then m (0) ∈
CN and m (1) ∈ CN .

Proof. We have to show that Sm (0)S−1 = (αij)1≤i,j≤N and Sm (1)S−1 =
(βij)1≤i,j≤N are lower triangular. A simple calculation shows that

αij = 2
j∑
l=1

(−1)l+j
(j−1
l−1
)∑
k=i

(k−1
i−1
)
h2k−l−1, 1 ≤ i, j ≤ N,(13)

βij = 2
j∑
l=1

(−1)l+j
(j−1
l−1
)∑
k=i

(k−1
i−1
)
h2k−l, 1 ≤ i, j ≤ N.(14)

In order to have lower triangular matrices we have to prove that αij = βij =
0, for i = 1, . . . , N − 1, j = i+ 1, . . . , N, equalities which reduce to

j∑
l=1

(−1)l
(j−1
l−1
)∑
k=i

(k−1
i−1
)
h2k−l−1 = 0, i = 1, . . . , N − 1, j = i+ 1, . . . , N,

j∑
l=1

(−1)l
(j−1
l−1
)∑
k=i

(k−1
i−1
)
h2k−l = 0, i = 1, . . . , N − 1, j = i+ 1, . . . , N.

First we prove these relations for fixed i, 1 ≤ i < N and j = i + 1 (Step 1).
Then we use the induction to prove them for arbitrary j, j ≤ N (Step 2).

Step 1. Let 1 ≤ i < N. We prove that αi,i+1 = βi,i+1 = 0, which means
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i+1∑
l=1

(−1)l
( i
l−1
)∑
k=i

(k−1
i−1
)
h2k−l−1 = 0,

i+1∑
l=1

(−1)l
( i
l−1
)∑
k=i

(k−1
i−1
)
h2k−l = 0.

Consider two cases:
Case 1. Even i: i = 2p. In this case

− αi,i+1
2 =

=
2p+1∑
l=1

(−1)l
( 2p
l−1
) ∑
k=2p

( k−1
2p−1

)
h2k−l−1

=
2p+1∑

l=1, l odd
+

2p+1∑
l=1, l even

=
p∑

m=1

( 2p
2m−1

) ∑
k=2p

( k−1
2p−1

)
h2k−2m−1 −

p∑
m=0

( 2p
2m
) ∑
k=2p

( k−1
2p−1

)
h2k−2m−2

=
p∑

m=1

( 2p
2m−1

) ∑
k′=2p−m

(k′+m−1
2p−1

)
h2k′−1 −

p∑
m=0

( 2p
2m
) ∑
k′=2p−m

(k′+m−1
2p−1

)
h2k′−2.

With the convention
(2p
q

)
= 0 whenever q > 2p, we can replace

∑
k′=2p−m with∑

k′=p . Then, using formulas (6) and (7) we further obtain

αi,i+1
2 =

∑
k=p

( p∑
m=0

( 2p
2m
)(k+m−1

2p−1
))
h2k−2 −

∑
k=p

( p∑
m=1

( 2p
2m−1

)(k+m−1
2p−1

))
h2k−1

=
∑
k=p

(2k−1
2p−1

)
h2k−2 −

∑
k=p

( 2k
2p−1

)
h2k−1

=
N∑

k=i−2
(−1)k

(k+1
i−1
)
hk

= 0.
Analogously we can prove that

βi,i+1 = −2
N∑

k=i−1
(−1)k

( k
i−1
)
hk = 0.

Case 2. Odd i: i = 2p + 1. In this case, the same arguments can be used
in order to prove that αi,i+1 = βi,i+1 = 0. Also, at this step we prove that
β1,j = 0 for j > 2. Indeed, evaluating β1,j we obtain

1
2β1,j =

j∑
l=1

(−1)l+j
(j−1
l−1
)∑
k=1

h2k−l = 1
2 (−1)j

j∑
l=1

(−1)l
(j−1
l−1
)

= 0.
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Step 2. We use the induction method, so let us suppose that{
αij = 0, for 1 ≤ i < N − 1, i < j < N,
βij = βi−1,j = 0, for 2 ≤ i < N − 1, i < j < N

and prove that αi,j+1 = 0 and βi,j+1 = 0. A simple calculation show that
βi,j+1 = βij + αij = 0 and αi,j+1 = βij + βi−1,j = 0. Thus, the induction
method allows us to state that αij = βij = 0 for 1 ≤ i < N , i < j < N. This
means that the matrices Sm (0)S−1 and Sm (1)S−1 are lower triangular. Let
us mention that the condition Ai is enough to have zeros on the row i, above
the diagonal. �

Now, let us turn back to the continuity.
The columns of m (0) and m (1) add to 1 if we suppose the condition A1

satisfied. If e = [1 . . . 1] , then e m (0) = e and e m (1) = e. The dilation
equation in the vector form, on the interval [0, 1), is:

Φ (t) = m (0) Φ (2t) + m (1) Φ (2t− 1) , where
Φ (t) = [φ (t) φ (t+ 1) . . . φ (t+N − 1)]t. The first digit t1 in t = 0.t1t2t3 . . .
(written in the base 2) decides whether the recursion use m (0) or m (1):

Φ (t) = m (t1) Φ (0.t2t3 . . .) .
Further,

Φ (t) = m (t1) m (t2) Φ (0.t3t4 . . .) .
A nearby point T begins with the same digits. At some step, the digits differ.
If T = 0.t1t2T3T4 . . . , then

Φ (t)−Φ (T ) = m (t1) m (t2)
[
Φ (0.t3t4 . . .)−Φ (0.T3T4 . . .)

]
.

To prove the continuity on [0, 1) means to show that Φ (t) is close to Φ (T )
when t and T share more digits t1, t2, . . . , tk. Also, this should happen outside
the interval [0, 1) (for more details, see [3]). Actually one works with the ma-
trices mN−1 (0) and mN−1 (1) of order N − 1. These matrices are restrictions
of the linear operators m (0) resp. m (1) to the vector spaces perpendicular
to the vector e = [1 . . . 1] . They may be determined in the following way:

Let us define
U =

[
IN−1 0N−1
−eN−1 1

]
.

If m (0) (resp. m (1)) is the block matrix

B =
[

aN−1 bN−1
cN−1 d

]
,

then, multiplying U−1BU by blocks, we get[
IN−1 0N−1
eN−1 1

] [
aN−1 bN−1
cN−1 d

] [
IN−1 0N−1
−eN−1 1

]
=
[
BN−1 bN−1
0N−1 1

]
,

with BN−1 = aN−1 − bN−1eN−1. The matrix BN−1 will be the above men-
tioned restriction mN−1 (0) of m (0) (resp. mN−1 (1) of m (1)). It is easy to see
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that the eigenvalues of mN−1 (t1) , t1 ∈ {0, 1}, are the same as the eigenvalues
of m (t1) , after removing the eigenvalue λ = 1.

The following proposition show the relation between the eigenvalues of
the products m (t1) m (t2) , ti ∈ {0, 1}, and the eigenvalues of the products
mN−1 (t1) mN−1 (t2) .

Proposition 1. The eigenvalues of the product m (t1) m (t2) , ti ∈ {0, 1}
are λ = 1 and the eigenvalues of the product mN−1 (t1) mN−1 (t2) .

Proof. The matrices U−1m (ti)U and m (ti) have the same eigenvalues.
Denoting

m (ti) =
[

aiN−1 biN−1
ciN−1 di

]
,

we have
m (ti) = U

[
mN−1 (ti) biN−1

0N−1 1

]
U−1,

with mN−1 (ti) = aiN−1 − biN−1eN−1. Then,

m (t1) m (t2) = U

[
mN−1 (t1) b1

N−1
0N−1 1

] [
mN−1 (t2) b2

N−1
0N−1 1

]
U−1

= U

[
mN−1 (t1) mN−1 (t2) mN−1 (t1) b2

N−1 + b1
N−1

0N−1 1

]
U−1,

whence the conclusion. �

The relation between the eigenvalues of the matrices mN−1 (0) and mN−1 (1)
and the continuity of the scaling function is stated in the following theorem
(see [1, p. 1042]).

Theorem 2 (Daubechies and Lagarias, 1991). Assume that the coefficients
hk, k = 0, . . . , N, satisfy

N∑
k=0

(−1)k hk = 0.

If ρ (mN−1 (0) ,mN−1 (1)) < 1, then there exists a continuous nontrivial solu-
tion of the dilation equation (1).

Here ρ (A1, A2) denotes the “generalized spectral radius” of the matrices A1
and A2,

ρ (A1, A2) = lim sup
n→∞

[
max

dj=1 or 2
ρ (Ad1 . . . Adn)1/n

]
,

with ρ (A) = max
{
|µ| : µ eigenvalue of A

}
the spectral radius of A.

Combining the result of this theorem with the result stated in the previous
proposition, we can prove the following theorem.

Theorem 3. Consider the dilation equations (1) and condition AN−1 sat-
isfied. If h0 ∈

(
−1

2 + 1
2N−1 ,

1
2

)
, then the scaling function φ is continuous.
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Proof. Since the matrices m (0) and m (1) belong to the class CN , we can
precise the eigenvalues of an arbitrary product m (t1) m (t2) . . .m (tn), for ti ∈
{0, 1}, if the eigenvalues of the matrices m (0) and m (1) are known. If we
impose the condition that all the eigenvalues of these two matrices have the
modulus less than 1, then ρ (mN−1 (0) ,mN−1 (1)) < 1 (using Proposition 1),
whence the continuity of the scaling function. The eigenvalues of m (0) are
1, 1

2 ,
1
22 , . . . ,

1
2N−2 , 2h0 and the eigenvalues of m (1) are 1, 1

2 ,
1
22 , . . . ,

1
2N−2 , 2hN

(see [3]). Thus, we have to impose the conditions |2h0| < 1 and |2hN | <
1. Condition AN−1 implies h0 + hN = 1

2N−1 , so finally we must have h0 ∈(
−1

2 + 1
2N−1 ,

1
2

)
. �

4. THE CONVERGENCE OF THE CASCADE ALGORITHM

In this section we give some conditions on the coefficients hk for the con-
vergence of the cascade algorithm, namely for the convergence in L2 of the
sequence

{
φi
}
i defined in (2) to a L2-function φ.

In the study of the L2-convergence the following matrix is involved:
(15) T = (↓ 2) 2HHt,

where H is the Toepliz matrix with hk on the k-th diagonal: Hij = hi−j .
As shown in [3], the cascade algorithm for φ (t) becomes the power method

a(i+1) = Ta(i) for the equation Ta = a (with a(i), a(i+1), a vectors, the com-
ponents of a(i) being a(i) (k) =

∫∞
−∞ φ

(i) (t)φ(i) (t+ k) dt). In [3] the following
theorem is proved (Theorem 7.7, p. 239).

Theorem 4. The infinite matrix T = (↓ 2) 2HHt and its submatrix T2N−1
always has λ = 1 as eigenvalue. The power iteration a(i+1) = T2N−1a

(i)

converges to the eigenvector T2N−1a = a if and only if T2N−1 satisfies
Condition E: The matrix T2N−1 has all the eigenvalues satisfying |λ| < 1,
except for a simple eigenvalue at λ = 1.

So, Condition E is the key to iteration of filters and thus to wavelets. If it is
satisfied, then the cascade algorithm converges to a Riesz basis {φ (t− k)}k∈Z .

Using this theorem we can establish the following result.

Theorem 5. Consider the dilation equation (1) satisfying the condition
AN−1. The cascade algorithm converges in L2 if and only if

h0 ∈
(

1
2N

(
1−

√
22N−2 − 1

)
, 1

2N

(
1 +

√
22N−2 − 1

))
.

Proof. We will show that T2N−1 ∈ C2N−1, then we determine its eigenvalues
and use Theorem 4.

The entries of the matrix T2N−1 are (T2N−1)ij = 2t2i−j , where ti are the
coefficients of the polynomial G (z) = zNH (z)H

(
z−1) =

∑2N
k=0 tkz

k, where
H (z) =

∑N
k=0 hkz

k. Condition AN−1 implies that
H (z) = (z + 1)N−1 (hNz + h0) ,
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since it is equivalent to

H (−1) = H ′ (−1) = . . . = H(N−2) (−1) = 0.

Then, G (z) = (z + 1)2N−2 (h0z + hN ) (hNz + h0) . It is immediately that

G (−1) = G′ (−1) = . . . = G(2N−3) (−1) = 0,

relations which are equivalent to

2N∑
k=0

(−1)k tk =
2N∑
k=1

(−1)k ktk = . . . =
2N∑
k=1

(−1)k k2N−3tk = 0.

Thus, the coefficients tk satisfy the condition A2N−2. On the other hand we
have

2N∑
k=0

tk = G (1) = H (1)2 =
(

N∑
k=0

hk

)2

= 1.

The matrix T2N−1 will belong to the class C2N−1, due to the same arguments
that were used in Theorem 3.3 to prove that m (1) ∈ CN . So, the eigenvalues
of the matrix T2N−1will be λi = 2−i+1, i = 1, . . . , 2N − 2 and λ2N−1 =(
ST2N−1S

−1)
2N−1,2N−1 . As in (14) , we find that

(
ST2N−1S

−1
)
ij

= 2
j∑
l=1

(−1)l+j
(j−1
l−1
) 2N−1∑
k=i

(k−1
i−1
)
t2k−l,

whence, for i = j = 2N − 1, we obtain
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λ2N−1 = 2
2N−1∑
l=1

(−1)l+1 (2N−2
l−1

) 2N−1∑
k=2N−1

( k−1
2N−2

)
t2k−l

= 2
2N−1∑
l=2N−2

(−1)l+1 (2N−2
l−1

)
t2(2N−1)−l

= 2
(
−
(2N−2
2N−3

)
t2N +

(2N−2
2N−2

)
t2N−1

)
= −2t0 (2N − 2) + 2t1.

Evaluating t0 and t1 we obtain
t0 = h0hN ,

t1 = h0hN−1 + h1hN

= h0 (h0 + hN (N − 1)) + (h0 (n− 1) + hN )hN
= h2

0 + 2h0hN (N − 1) + h2
N .

So,
λ2N−1

2 = −h0hN (2N − 2) + h2
0 + 2h0hN (N − 1) + h2

N

= h2
0 + h2

N

= h2
0 +

(
2−N+1 − h0

)2
.

Condition E reduces to λ2N−1 < 1, which is equivalent to

h0 ∈
(

1
2N

(
1−

√
22N−2 − 1

)
, 1

2N

(
1 +

√
22N−2 − 1

))
. �

REFERENCES

[1] Daubechies, I. and Lagarias, J., Two-scale Difference Equations II. Local Regu-
larity, Infinite Products of Matrices and Fractals, SIAM J. Math. Anal., 23, no. 4,
pp. 1031–1079, 1992.
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