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THE COMBINED SHEPARD–ABEL–GONCHAROV
UNIVARIATE OPERATOR∗

TEODORA CĂTINAŞ†

Abstract. We extend the Shepard operator by combining it with the Abel-
Goncharov univariate operator in order to increase the degree of exactness and
to use some specific functionals. We study this combined operator and give
some of its properties. We introduce the corresponding interpolation formula
and study its remainder term.
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1. INTRODUCTION

1.1. The Shepard univariate operator. Recall first some results regarding
the multivariate Shepard operator for the univariate case. Let f be a real
valued function defined on X ⊂ R and xi ∈ X, i = 0, . . . , N, be some distinct
points. The univariate Shepard operator is defined by

(1) (Sf) (x) =
N∑
i=0

Ai (x) f (xi) ,

where

(2) Ai (x) =

N∏
j=0, j 6=i

|x− xj |µ

N∑
k=0

N∏
j=0, j 6=k

|x− xj |µ
,

with µ ∈ R+ (see, e.g., [12]). The basis functions Ai may be written in
barycentric form

Ai (x) = |x− xi|−µ
n∑
k=0
|x− xk|−µ

.

It is easy to check that
Ai (xv) = δiv, i, v = 0, . . . , N,
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and

(3)
N∑
i=0

Ai (x) = 1.

The main properties of the operator S are:
• The interpolation property

(Sf) (xi) = f (xi) , i = 0, . . . , N ;

• The degree of exactness is gex (S) = 0.
The goal when extending the operator S by combining with other operators

is to increase the degree of exactness and to use other sets of functionals. Let
Λ := {λi | i = 0, . . . , N} be a set of functionals and let P be the corresponding
interpolation operator. We consider that Λi ⊂ Λ are the subsets associated
to the functionals λi, i = 0, . . . , N . We have

⋃N
i=0 Λi = Λ and Λi

⋂
Λj 6= ∅,

excepting the case Λi = {λi} , i = 0, . . . , N, when Λi
⋂

Λj = ∅, for i 6= j. We
associate the interpolation operator Pi to each subset Λi, i = 0, . . . , N .

The operator SP defined by

(4) (SP f) (x) =
N∑
i=0

Ai (x) (Pif) (x)

is the combined operator of S and P (see, e.g., [12]).

Remark 1. As noted in [12], if Pi, i = 0, . . . , N, are linear operators, then
SP is a linear operator. �

Remark 2. [12]. Let Pi, i = 0, . . . , N, be some arbitrary linear operators.
If gex (Pi) = ri, i = 0, . . . , N, then

gex (SP ) = rm := min {r0, . . . , rN} . �

Assume that Λ is a set of Birkhoff type functional, i.e.,

ΛB =
{
λkj | λkjf = f (j) (xk) , j ∈ Ik, k = 1, . . . , N

}
,

where Ik ⊆ {0, 1, . . . , rk} , for rk ∈ N. Denote rM = max {r1, . . . , rN} .

Remark 3. [12]. If µ > rM then λkj (SP f) = λkj (f) , j ∈ Ik, k = 0, . . . , N,
where P is the interpolation operator corresponding to the set ΛB.

In the proof of this result the following relations are used:

A
(v)
i (xk) = 0, v ∈ Ik, k = 0, . . . , N, k 6= i,

A
(v)
i (xi) = 0, v ∈ Ii, v ≥ 1,(5)

A
(j)
i (xi) = 1. �
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1.2. The Abel–Goncharov univariate operator. Let n ∈ N, a, b ∈ R,
a < b, and f : [a, b] → R be a function having the first n derivatives f (i),
i = 1, 2, . . . , n. Given the nodes xi ∈ [a, b], 0 ≤ i ≤ n, and the values f (i)(xi),
0 ≤ i ≤ n, we consider the Abel–Goncharov interpolation problem of finding
a polynomial Pnf of degree n such that (see, e.g., [8] and [10])

(6) (Pnf)(i)(xi) = f (i)(xi), 0 ≤ i ≤ n.
The determinant of this linear system

(7) D =

∣∣∣∣∣∣∣∣∣∣∣∣

1 x0 x2
0 . . . xn0

0 1! 2x1 . . . nxn−1
1

0 0 2! . . . n(n− 1)xn−2
2

...
...

...
...

0 0 0 . . . n!

∣∣∣∣∣∣∣∣∣∣∣∣
= 1 · 1! · 2! · . . . · n!,

is always nonzero and the problem (6) has therefore a unique solution. The
Abel–Goncharov interpolation polynomial Pnf can be written in the form

(Pnf)(x) =
n∑
k=0

gk(x)f (k)(xk),

where gk, k = 0, . . . , n are called Goncharov polynomials of degree k [9],
determined by the conditions{

g
(s)
k (xs) = 0, if k 6= s,

g
(k)
k (x) = 1.

According to [8], [9] and [10], we have:
g0(x) = 1,
g1(x) = x− x0,(8)

gk(x) =
∫ x

x0
dt1

∫ t1

x1
dt2 · · ·

∫ tk−1

xk−1
dtk

= 1
k!

[
xk −

k−1∑
j=0

gj(x)
(k
j

)
xk−jj

]
, k = 2, . . . , n.

Remark 4. [10]. When all the nodes coincide, then the problem (6) is a
Taylor interpolation problem and Pnf takes the form

(Pnf)(x) =
n∑
k=0

(x−x0)k

k! f (k)(x0). �

Regarding the degree of exactness, we obtain the following result.

Theorem 1. The Abel–Goncharov operator Pn has the degree of exactness
n, i.e.,

dex(Pn) = n.
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Proof. It is easily seen that for the test functions ei(x) = xi, x ∈ [a, b], we
have

(Pnei)(x) = ei(x), i = 0, . . . , n,
while
(Pnen+1)(x) = g0(x)xn+1

0 +g1(x)(n+1)xn1 +. . .+gn(x)(n+1)·. . .·2xn 6= en+1(x).
�

We obtain the following result regarding the remainder Rnf of the Abel–
Goncharov interpolation formula

f = Pnf +Rnf.

Theorem 2. If f ∈ Hn+1[a, b] then

(Rnf)(x) =
∫ b

a
ϕn(x, s)f (n+1)(s)ds,

with

(9) ϕn(x, s) = (x−s)n
+

n! −
n∑
k=0

gk(x) (xk−s)n−k
+

(n−k)! .

Proof. From Theorem 1 we have that gex(Pn) = n. By Peano’s theorem we
obtain

(Rnf)(x) =
∫ b

a
ϕn(x, s)f (n+1)(s)ds,

with
ϕn(·, s) = Rn

[
(·−s)n

+
n!

]
= (·−s)n

+
n! − Pn

[
(·−s)n

+
n!

]
.

For all x ∈ [a, b] we have

ϕn(x, s) = (x−s)n
+

n! −
n∑
k=0

gk(x)
[

(xk−s)n
+

n!

](k)
,

which, after some immediate manipulations, implies (9). �

2. THE COMBINED SHEPARD–ABEL–GONCHAROV UNIVARIATE OPERATOR

In this section we shall assume that there exists f (i)(xi), i = 0, . . . , N, on
the set of N + 1 pairwise distinct points xi ∈ [a, b], 0 ≤ i ≤ N. Let us consider
the set of linear functionals of Abel–Goncharov type:

ΛAG(f) :=
{
λi(f) : λi(f) = f (i)(xi), i = 0, . . . , N

}
.

We attach to each node xi, i = 0, . . . , N , a set of nodes Xi,n, n ∈ N, n ≤ N,
i = 0, . . . , N, defined by
(10) Xi,n = {xi, xi+1, . . . , xi+n} = {xi+υ : υ = 0, . . . , n}, i = 0, . . . , N,
where xN+k+1 = xk, k = 0, . . . , n.

We associate to each set of nodes Xi,n, i = 0, . . . , N, the Abel–Goncharov
interpolation operator, denoted Pni , i = 0, . . . , N, corresponding to the set
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of functionals ΛAG. The operators Pni , i = 0, . . . , N , exist and are unique
because the points of the sets Xi,n, i = 0, . . . , N , are pairwise distinct so the
determinant of the interpolation system of the form (7) is always different
from zero. We have

(11) (Pni f)(k)(xk) = f (k)(xk), i ≤ k ≤ i+ n, 0 ≤ i ≤ N.

Remark 5. The set of linear functional of Abel–Goncharov type, ΛAG,
is included in the set of linear functional of Birkhoff type. We notice that
in case of the Abel–Goncharov interpolation we have the advantage that the
determinant of the interpolation system of the form (7) is always different
from zero, thus the interpolation polynomial always exists and is unique. �

We consider the Abel–Goncharov polynomials of degree n, associated to the
sets of nodes Xi,n, i = 0, . . . , N , and the sets of linear functionals of Abel–
Goncharov type given by

(12) (Pni f)(x) =
i+n∑
j=i

g
〈i〉
j−i(x)f (j−i)(xj), i = 0, . . . , N,

with the Goncharov polynomials given by

g
〈i〉
0 (x) = 1,

g
〈i〉
1 (x) = x− xi,

g
〈i〉
k (x) = 1

k!

[
xk −

k−1∑
j=0

gj(x)
(k
j

)
xk−jj+i

]
, k ≥ 1.

Theorem 3. The Abel–Goncharov operators Pni , i = 0, . . . , N, have the
degree of exactness n, i.e.,

(13) dex(Pni ) = n, i = 0, . . . , N.

The proof is obtained similarly to that of Theorem 1.

Remark 6. If we consider the sets Xi,ni , i = 0, . . . , N , of the form (10)
such that each of them has ni + 1 elements, ni ∈ N, then

dex(Pni ) = ni, i = 0, . . . , N. �

We denote by SAGn the Shepard operator of Abel–Goncharov type, given by

(SAGn f)(x) =
N∑
i=0

Ai(x)(Pni f)(x),

where Ai, i = 0, . . . , N , are given by (2) and Pni , i = 0, . . . , N , are given by
(12). We call SAGn the combined Shepard–Abel–Goncharov operator.
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Particular case. When all the nodes coincide, x0 = . . . = xN , we obtain
the Shepard operator of Taylor type:

(T inf)(x) = (Pni f)(x) =
n∑
j=0

(x−xi)j

j! f (j)(xi), i = 0, . . . , N,

and the combined Shepard–Taylor operator given by

(STnf)(x) =
N∑
i=0

Ai(x)(T inf)(x).

The main properties of the Shepard–Taylor operator STn are:
• For µ > n

(STnf)(j)(xi) = f (j)(xi), j = 0, . . . , n, i = 0, . . . , N ;
• gex(STn) = n. �

Theorem 4. The operator SAGn is linear.

Proof. For arbitrary h1, h2 : [a, b]→ R and α, β ∈ R, one gets

SAGn (αh1 + βh2)(x) =

=
N∑
i=0

Ai(x)
i+n∑
j=i

g
〈i〉
j−i(x)(αh1 + βh2)(j−i)(xj)

= α
N∑
i=0

Ai(x)
i+n∑
j=i

g
〈i〉
j−i(x)h(j−i)

1 (xj) + β
N∑
i=0

Ai(x)
i+n∑
j=i

g
〈i〉
j−i(x)h2

(j−i)(xj)

= αSAGn (h1)(x) + βSAGn (h2)(x),

which shows the linearity of SAGn . �

Theorem 5. If µ > N, the operator SAGn has the interpolation property:

(14) (SAGn f)(k)(xk) = f (k)(xk), 0 ≤ k ≤ N.

Proof. Taking into account that µ > N, we have

(SAGn f)(k)(xk) =
N∑
i=0

k∑
ν=0

(k
ν

)
A

(ν)
i (xk)(Pni f)(k−ν)(xk).

By (5) and (11) we obtain (14). �

Theorem 6. SAGn f = f, for all f ∈ Pn, where Pn is the set of polynomials
of degree at most n.

Proof. From Theorem 2 we have
gex(SAGn ) = min

{
gex(Pni ) | i = 0, . . . , N

}
,

and, taking into account (13), we obtain gex(SAGn ) = n. �
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Remark 7. If the conditions of Remark 6 are verified, i.e., gex(Pni ) = ni,
i = 0, . . . , N, then by Theorem 2 we have

gex(SAGn ) = min
i∈{0,...,N}

ni. �

The Shepard–Abel–Goncharov interpolation formula is

f = SAGn f +RAGn f,

where RAGn f denotes the remainder.
When all the nodes coincide we have the Shepard–Taylor interpolation for-

mula and the following result is known.

Theorem 7. [4]. If f ∈ Hn+1[a, b] and x0 = x1 = . . . = xN , then

(RAGn f)(x) =
∫ b

a
ϕn(x, s)f (n+1)(s)ds,

where

ϕn(x, s) = 1
n!

{
(x− s)n+ −

N∑
i=0
Ai(x)

[
(xi − s)0

+(x− xi) + (xi − x)+
]n}

.

Theorem 8. If f ∈ Hn+1[a, b] then

(RAGn f)(x) =
∫ b

a
ϕn(x, s)f (n+1)(s)ds,

with

(15) ϕn(x, s) = (x−s)n
+

n! −
N∑
i=0
Ai(x)

i+n∑
j=i
g
〈i〉
j−i(x) (xj−s)n−j+i

+
(n−j+i)! .

Proof. Theorem 6 implies gex(SAGn ) = n. Applying the Peano’s theorem,
we obtain

(RAGn f)(x) =
∫ b

a
ϕn(x, s)f (n+1)(s)ds,

with

ϕn(·, s) = RAGn

[
(·−s)n

+
n!

]
= (·−s)n

+
n! −

N∑
i=0
Ai(·)Pni

[
(·−s)n

+
n!

]
.

For all x ∈ [a, b] we have

ϕn(x, s) = (x−s)n
+

n! −
N∑
i=0
Ai(x)

i+n∑
j=i
g
〈i〉
j−i(x)

[
(xj−s)n

+
n!

](j−i)
,

and finally (15). �
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Particular case. We consider n = 1. We have the corresponding She-
pard–Abel–Goncharov operator given by

(SAG1 f)(x) =
N∑
i=0
Ai(x)(P 1

i f)

=
N∑
i=0
Ai(x)

[
g
〈i〉
0 (x)f(xi) + g

〈i〉
1 (x)f ′(xi+1)

]
.

The interpolation formula is
f = SAG1 f +RAG1 f,

where RAG1 f is the remainder, which according with Theorem 8 has the fol-
lowing form:

(RAG1 f)(x) =
∫ b

a
ϕ1(x, s)f ′′(s)ds,

with

ϕ1(x, s) = (x− s)+ −
N∑
i=0
Ai(x)

[
g
〈i〉
0 (x)(xi − s)+ + g

〈i〉
1 (x)(xi+1 − s)0

+

]
. �

Example 1. Consider f : [0, 4]→ R, f(x) = 3 sin πx
4 , and the nodes xi = i,

i = 0, . . . , 4. Figure 1 shows the Shepard approximation corresponding to these
data, while Figure 2 shows the Shepard–Abel–Goncharov approximation. The
figures were drawn using Matlab. �
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Fig. 1. Shepard interpolation.
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[5] Coman, Gh. and Ţâmbulea, L., A Shepard-Taylor approximation formula, Studia
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