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THE APPROXIMATION OF THE SOLUTIONS OF EQUATIONS
USING APPROXIMANT SEQUENCES

ADRIAN DIACONU∗

Abstract. We intend to characterize the convergence of a certain sequence that
belongs to a subset of a Banach space towards the solution of an equation ob-
tained by the annulment of a nonlinear mapping that is defined on this subset and
that takes values in another linear normed space. This mapping has a Fréchet
derivative of a certain order which verifies the Lipschitz condition. We can es-
tablish some conditions that are enough both for the existence of the equation’s
solution and for a speed of convergence of a certain order for the approximant
sequence.
MSC 2000. 65J15.
Keywords. Convergence of the approximant Sequences for operatorial equa-
tions in Banach spaces.

1. INTRODUCTION

One of the most often used methods for the approximation of the solution
of an equation is that of constructing a sequence that is convergent to that
solution.

Let us consider X and Y two normed linear spaces, their norms ‖·‖X and
respectively ‖·‖Y , a set D ⊆ X, a function f : D → Y, θY the null element of
the space Y and, using these elements, the equation:

(1) f (x) = θY .

To clarify these notions, we consider:

Definition 1. In addition to the data above, let us also consider p ∈ N, not
null and (xn)n∈N ⊆ D. We say that the sequence is an approximant sequence
of the order p of a solution of the equation (1), if there exist α, β ≥ 0 so that
for any n ∈ N we have:

(2)
‖f(xn+1)‖Y ≤ α ‖f (xn)‖pY ,

‖xn+1 − xn‖X ≤ β ‖f (xn)‖Y .

As we showed in [3] and [4], if (xn)n∈N is an approximant sequence of the
order p, p ≥ 2, X is a Banach space, f : D → Y is continuous, and the
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constants α and β from Definition 1 are chosen so that:

(3)
ρ0 = α

1
p−1 ‖f(x0)‖Y ,

S(x0, δ) =
{
x ∈ X : ‖x− x0‖X ≤ δ

}
⊆ D

with:

δ = βα
1

p−1

1− ρp−1
0

,

then the approximant sequence is convergent towards the element x̄ which,
together with all the terms of the sequence (xn)n∈N is placed in the ball S(x0, δ)
and x̄ is a solution of the equation (1). For any n ∈ N we have the following
inequalities:

(4)
‖xn−1 − xn‖X ≤ βα

1
p−1 ρp

n

0 ,

‖x̄− xn‖ ≤
βα

1
p−1 ρp

n

0

1− ρp
n (p−1)

0

These inequalities justify the fact of calling it an approximant sequence of
the order p.

In order to verify the inequalities (4) as well as the affirmations preceding
them we have to make the inequalities (2) true. But this often proves to be
difficult, and this is the reason for which we will try to replace them with
more practical conditions. Nevertheless we will consider that the function
f : D → Y admits Fréchet derivatives up to the order p included.

As a series of iterative methods known in practice use the inverse of the
Fréchet derivative of the first order of the mapping f ′ (xn)−1 , an unpractical
condition, as the existence of this mapping implies solving the linear equation
f ′(xn)h = q; h ∈ X, q ∈ Y, we will try to eliminate the conditions about
the inverse of the Fréchet derivative from the hypothesis, but we will try to
demonstrate this existence.

From the results that have inspired this research we will mention primar-
ily the well-known theorem of L. V. Kantorovich for the case when the ap-
proximant sequence (xn)n∈N is generated by the Newton–Kantorovich method
[5], [6]. In this case the existence of the mapping f ′(x)−1 ∈ (Y,X)∗ is sup-
posed only for x = x0, as this is the initial point of the iterative method. In
what the convergence of the same method is concerned, we also mention the
result obtained by Mysovski, I. P. [7], where from a certain point of view the
conditions of the convergence are simpler, but the existence of the mapping
f ′(x)−1 and of a constant M > 0 satisfying the inequality

∥∥f ′(x)−1∥∥ ≤M for
any x an element of a certain ball centered in the initial element x0 is imposed.
Then Păvăloiu, I., in [8] and [9], generalizes these results for the convergence
of a sequence generated by the relation of recurrence:

(5) xn+1 = Q (xn) ,
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where Q : X → X verifies certain conditions and n ∈ N. In the result ob-
tained by Păvăloiu, I., Mysovski’s condition mentioned above does not appear
explicitly, but the use of the result in concrete cases makes it necessary.

We will proceed in the same way as in our papers [1], [2].

2. MAIN RESULT

Let us now note by (Xp, Y )∗ the set of p-linear and continuous mappings
defined on Xp = X × · · · ×X (the p times Cartesian product), taking values
in Y.

The fact that the mapping f (p) : D → (Xp, Y )∗ verifies the Lipschitz condi-
tion is resumed to the existence of the constant L > 0, so that for any x, y ∈ D
we have:

(6)
∥∥f (p) (x)− f (p) (y)

∥∥ ≤ L ‖x− y‖X ,
so that L will be called Lipschitz constant.

We can easily deduce the following inequality for any x, y ∈ D we have:

(7)
∥∥f(x)− f(y)−

p∑
i=1

1
i!f

(i)(y)(x− y)i
∥∥
Y
≤ L

(p+1)! ‖x− y‖
p+1
X .

Then if we take x0 ∈ D and δ > 0 so that:

S (x0, δ) =
{
x ∈ X : ‖x− x0‖X ≤ δ

}
⊆ D

and we define the numbers L0, . . . , Lp, Lp+1 > 0 through Lp+1 = L and for
any k ∈ {0, 1, . . . , p} we have:

(8) Lk =
∥∥f (k) (x0)

∥∥+ Lk+1δ,

then for any x ∈ S(x0, δ) and k ∈ {0, 1, . . . , p} we have:

(9)
∥∥f (k) (x)

∥∥ ≤ Lk+1δ

and for any x, y ∈ S (x0, δ) and k = 1, 2, . . . , p+ 1 we have:∥∥f (k−1) (x)− f (k−1) (y)
∥∥ ≤ Lk ‖x− y‖X .

Under the conditions mentioned above, the following takes place:

Theorem 2. In addition to the data above we consider p ∈ N, δ > 0,
(xn)n∈N ⊆ D.

Assume that:
i) X is a Banach space and S(x0, δ) ⊆ D, S(x0, δ) representing the ball

with the center x0 and radius δ;
ii) the function f : D → Y admits Fréchet derivatives up to the order

p including it, and for f (p) : D → (Xp, Y )∗, L > 0 such that the
following inequality holds for any x, y ∈ D we have the inequality:∥∥f (p) (x)− f (p) (y)

∥∥ ≤ L ‖x− y‖Y ;
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iii) there exist the numbers a, b ≥ 0 so that for any n ∈ N we have:

(10)
∥∥f(xn) +

p∑
i=1

1
i!f

(i)(xn)(xn+1 − xn)i
∥∥
Y
≤ a ‖f(xn)‖p+1

Y

and

(11)
∥∥f ′ (xn) (xn+1 − xn)

∥∥
Y ≤ b ‖f (xn)‖Y ;

iv) the mapping f ′(x0) ∈ (X,Y )∗ is invertible;
v) using the notation:

(12)
ρ0 =

∥∥f (x0)
∥∥
Y
, B0 =

∥∥f ′ (x0)−1 ∥∥, h0 = bL2B
2
0ρ0,

M = B0e1+2−2p+3
, α = a+ L (bM)p+1

(p+1)!

suppose the following inequalities hold:

(13) h0 ≤ 1
2 , α

1
p ρ0 <

1
4 , δ ≥ bMρ0

1−αρp
0
,

then:
j) xn ∈ S (x0, δ) , f ′ (x0)−1 exists and

∥∥f ′ (x0)−1 ∥∥ ≥M, for any n ∈ N;
jj) equation (1) admits a solution x̄ ∈ S(x0, δ);

jjj) the sequence (xn)n∈N is an approximant sequence of the order p+ 1 of
this solution of the equation (1);

jv) the following estimates hold for any n ∈ N :

(14) max
{
‖f (xn)‖Y ,

1
Mb ‖xn+1 − xn‖X

}
≤ α

(p+1)n−1
p ‖f (x0)‖(p+1)n

Y

and

(15) ‖x̄− xn‖X ≤Mb
α

(p+1)n−1
p ‖f (x0)‖(p+1)n

Y

1− (α ‖f (x0)‖pY )(p+1)n .

Proof. From the invertibility of the mapping f ′(x0) ∈ (X,Y )∗ we clearly
deduce that ‖f ′ (x0)‖ , ‖f ′ (x0)−1 ‖ > 0.

Let the sequences (ρn)n∈N, (Bn)n∈N and (hn)n∈N be so that ρ0 = ‖f ′ (x0)‖ ,
B0 = ‖f ′ (x0)−1 ‖, and for any n ∈ N, we have:

hn = bL2B
2
0ρn, ρn+1 = αρp+1

n , Bn+1 = Bn
1− hn

.

We will show that for any n ∈ N the following statements are true:
a) xn ∈ S (x0, δ) ;
b) f ′ (xn)−1 ∈ (Y,X)∗ exists, and ‖f ′ (xn)−1 ‖ ≤ Bn;
c) ‖f (xn)‖Y ≤ ρn = α

− 1
p
(
α

1
p ρ0

)(p+1)n

;
d) hn ≤ min

{
1
2 , β

− 1
p (βh0)(p+1)n }

, where β = 4
(4h0)p ;

e) B0 ≤ Bn ≤M.
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Using the mathematical induction we notice that for n = 0 the statements
a)–e) are evidently true from the hypotheses of the theorem with the notations
we have introduced.

Let us suppose that for any n ≤ k the assertions a)–e) are true, and let us
demonstrate them for n = k + 1.

a) We notice that for any n ∈ N, n ≤ k we have:

‖xn+1 − xn‖X ≤
∥∥f ′(xn)−1f ′(xn)(xn+1 − xn)

∥∥
Y
≤Mbα

− 1
p
(
α

1
p ρ0

)(p+1)n

,

from where:

‖xk+1 − x0‖X ≤Mbα
− 1

p ρ0

k∑
n=0

(
α

1
p ρ0

)(p+1)n−1 ≤ Mbρ0
1− αρp0

≤ δ

which shows that xk+1 ∈ S(x0, δ).
b) Let

HK = f ′ (xk)−1 (f ′ (xk)− f ′ (xk+1)
)
∈ (X,X)∗ ,

its existence and its belonging to (X,X)∗ being guaranteed by the hypothesis
of the induction. It is obvious that:

‖Hk‖ ≤ BkL2 ‖xk+1 − xk‖X ≤ bL2B
2
kρk = hk ≤ 1

2 < 1,

and according to the Banach theorem we deduce that (IX −Hk)−1 ∈ (X,X)∗
and:

‖ (IX −Hk)−1 ‖ ≤ 1
1− ‖Hk‖

≤ 1
1− hk

,

where IX : X → X represents the identical mapping of the space X.
Obviously f ′ (xk+1) = f ′ (xk) (IX −Hk) and because f ′(xk)−1 ∈ (Y,X)∗

exists, the mapping f ′ (xk+1)−1 = (IX −Hk)−1 f ′ (xk)−1exist as well and:

‖f ′ (xk+1)−1 ‖ ≤ ‖ (IX −Hk)−1 ‖ · ‖f ′ (xk)−1 ‖ ≤ Bk
1− hk

= Bk+1.

c) Clearly:

‖f(xk+1)‖Y ≤
∥∥∥f(xk+1)− f(xk)−

p∑
i=1

1
i!f

(i)(xk)(xk+1 − xk)i
∥∥∥
Y

+
∥∥∥f(xk) +

p∑
i=1

1
i!f

(i)(xk)(xk+1 − xk)i
∥∥∥
Y
≤

≤
[
a+ L(Mb)p+1

(p+1)!

]
‖f (xk)‖p+1

Y

≤αρp+1
k

=ρk+1,

as α
1
p ρk+1 =

(
α

1
p ρk

)p+1
, so ρk+1 = α

− 1
p
(
α

1
p ρ0

)(p+1)k+1
.
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d) We have the equalities:

hk+1 = L2bB
2
k+1ρk+1 = L2bαρ

p+1
k

(
Bk

1−hk

)2
= αρpk

hk

(1−hk)2 .

Since hk ≤ 1
2 and ρk < ρ0, we have hk+1 ≤ 2αρp0, so hk+1 ≤ 1

2 .
Also:

hk+1 = αhk

(1− hk)2 ·
hpk(

bL2B2
k

)p = α

(L2b)p
· 1
B2p
k

· (hk)p+1

(1− hk)2 .

From Bk ≥ B0 and 1
(1−hk)2 ≤ 4 we deduce that:

hk+1 ≤
4αhp+1

k

(bL2)pB2p
0
<

4hp+1
k

4pρp0
(
bL2B2

0
)p = βhp+1

k

and then, it the same way as in the proof of c) we deduce that hk+1 =
β
− 1

p
(
β

1
ph0

)(p+1)k+1
.

e) Because of the relation:

Bk+1 = Bk
1− hk

and from the condition hk ∈]0, 1
2 ] which implies 1

1−hk
≥ 1, Bk+1 ≥ Bk from

where Bk+1 ≥ B0.

As β
1
ph0 = 41/p

4 ≤ 1 we deduce that:

max
n∈N

{
β
− 1

p
(
β

1
ph0

)(p+1)n}
= β

− 1
p
(
β

1
ph0

)
= h0

and the same initial relation implies:

Bk+1 = B0
(1− h0) (1− h1) . . . (1− hk)

≤B0
[
1 + 1

k+1

k∑
i=0

hi
1−hi

]k+1

≤B0
[
1 + 1

(k+1)(1−h0)

k∑
i=0

hi
]k+1

.

For any k ∈ N we have:

hk+1 = αhkρ
p
k

(1− hk)2 ≤ 2
(
α

1
p ρ0

)p(p+1)k
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and:
k∑
i=0

hi =h0 + 2
k∑
i=1

(
α

1
p ρ0

)p(p+1)i−1

<h0 + 2αρp0
k∑
i=1

(αρp0)i−1

<h0 + 2αρp
0

1−αρp2
0

<1
2 + 22p2−2p+1

22p2−1

=1
2 + 2−2p+2.

So, from h0 <
1
2 , we have:

Bk+1 ≤ B0
(
1 + 1+2−2p+3

k+1
)k+1 ≤ B0 exp

(
1 + 2−2p+3

)
= M.

From the above we deduce that the statements a)–e) are true for n = k+ 1.
According to the principle of mathematical induction these statements are
true for any n ∈ N.

Now we will deduce that the sequence (xn)n∈N is a Cauchy sequence, be-
cause:

‖xn+m − xn‖X <Mbα
− 1

p
(
α

1
p ρ0

)(p+1)n
m∑
i=1

(αρp0)(p+1)i−1

<
Mb

(
α

1
p ρ0

)(p+1)n

α
1
p
[
1− (αρ0)(p+1)n ] .

The last inequality and the condition α
1
p ρ0 <

1
4 < 1, determine the fact

that (xn)n∈N is a fundamental sequence in the Banach space X, so (xn)n∈N is
convergent. If we note x̄ = limn→∞ xn ∈ X and if we make so that m→∞ in
the previous inequality we deduce the inequality (15), from where for n = 0
we can deduce:

‖x̄− x0‖X ≤
bMρ0

1− αρp0
≤ δ,

so x̄ ∈ S(x0, δ).
From:

‖f (xn)‖Y ≤ α
− 1

p
(
α

1
p ρ0

)(p+1)n

and the condition α
1
p ρ0 < 1 we deduce that limn→∞ ‖f(xn)‖Y = 0, from where

f(x̄) = θY , so x̄ is a solution of the equation (1).
The inequalities:

‖xn+1 − xn‖X ≤Mb ‖f (xn)‖Y ,

‖f (xn+1)‖Y ≤ α ‖f (xn)‖p+1
Y ,
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show that the sequence (xn)n∈N is an approximant sequence of the order p for
the solution x̄. In this way the theorem is proved. �

3. SPECIAL CASE

Now we will see how Theorem 2 is applied in the case of particular process
of approximation.

Let us first suppose that the function f : D → Y admits for any x ∈ D a
Fréchet derivative of the first order, an L > 0 exists so that:∥∥f ′ (x)− f ′ (y)

∥∥ ≤ L ‖x− y‖X
for any x, y ∈ D, and the sequence (xn)n∈N ⊆ D verifies for any n ∈ N the
equality:

(16) f ′ (xn) (xn+1 − xn) + f (xn) = θY .

Obviously, if for any n ∈ N, f ′ (xn)−1 exists, the relation (16) is equivalent
to:

(17) xn+1 = xn − f ′ (xn)−1 f (xn) ,

form under which the Newton–Kantorovich method is well known. But the
form (16) will be one of the conclusions of the statement that will be estab-
lished.

It is clear that the inequalities (10) and (11) of the hypothesis iii) of Theo-
rem 2 are verified for a = 0 and b = 1.

In this case p = 1, L2 = L, h0 = 2LB2
0ρ0, α = LM2

2 , M = ‖f ′ (x0)−1 ‖e3,

and thus the inequality of hypothesis v) of Theorem 2 becomes ρ0 <
1
4 .

As αρ0 = LM2h0
4LB2

0
= e9h0

4 , we need the condition h0 <
1
e9 or B2

0ρ0 <
1

2e9L ,

condition that evidently also implies h0 ≤ 1
2 .

In what the radius of the ball on which the properties take place is con-
cerned, it verifies the inequality δ ≥ Mρ0

1−αρ0
.

As αρ0 <
1
4 we deduce that 1

1−αρ0
< 1

4 and so if δ ≥ 3Mρ0
4 the requirement

is fulfilled. Also, M = ‖f ′(x0)−1‖e3.
In this way we have the following:

Corollary 3. We consider the same elements as in Theorem 1. If the
hypotheses i), ii) and iv) of this theorem are verified for p = 1, in addition the
sequence verifies, for any n ∈ N, the equalities:

f ′ (xn) (xn+1 − xn) + f (xn) = θY ,

and the initial point x0 ∈ D verifies the inequality:

‖f ′ (x0)−1 ‖2 ‖f (x0)‖Y <
1

2e9L
,

then:
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j) xn ∈ S(x0, δ), the mapping f ′ (xn)−1 ∈ (Y,X)∗ exists and:
xn+1 = xn − f ′ (xn)−1 f (xn) , ‖f ′ (xn)−1 ‖ ≤ ‖f ′ (x0)−1 ‖e3,

for any n ∈ N;
jj) equation (1) admits a solution x̄ ∈ S(x0, δ);

jjj) the sequence (xn)n∈N is an approximant sequence of the second order
of the solution x̄ of this equation;

jv) the following evaluations take place:

max
{
‖f (xn)‖Y ,

1
M ‖xn+1 − xn‖X

}
≤
(
LM2

2
)2n−1 ‖f (xn)‖2

n

Y ,

‖x̄− xn‖X ≤
Mρ0

(
ρ0

LM2

2
)2n

1−
(
ρ0

LM2

2
)2n ,

where M = ‖f ′ (x0)−1 ‖e3 and L > 0 represent the Lipschitz constant
of the mapping f ′ : D → (X,Y )∗ .

Another case in which Theorem 2 is applied is the case of the Chebyshev
method, that is to be studied in a forthcoming paper.
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