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ON STABILITY CONDITIONS
OF VECTOR l∞-EXTREME COMBINATORIAL PROBLEM

WITH PARETO PRINCIPLE OF OPTIMALITY∗

VLADIMIR A. EMELICHEV† and ANDREY M. LEONOVICH†

Abstract. We consider the multicriteria problem of combinatorial optimization
with partial criteria of the kind MINMAX MODUL. The parameters of criteria
are subject to “small” independent perturbations. The class of problems for
which new Pareto optima do not appear, but some trajectories may lose opti-
mality under those perturbations, is distinguished.
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1. INTRODUCTION

Various aspects of stability of scalar and vector problems of discrete opti-
mization have been considered in many publications (see, for example, [1] and
reviews [2]–[5]). In this article, we continue our investigations (see [6], [7])
of stability of vector (multicriteria) problems of discrete optimization with
non-linear partial criteria. Necessary and sufficient conditions of stability of
the vector combinatorial problem with partial criteria of the kind MINMAX
MODUL are obtained for such type of stability that can be understood as a
discrete analogue of upper semicontinuity (by Hausdorf) of the many-valued
mapping that puts in correspondence the Pareto set with collection of param-
eters of the problem. Similar results were recently obtained in [8], [9] for the
case of lower semicontinuity.

2. BASIC DEFINITIONS AND LEMMA

Let E = {e1, e2, . . . , em}, m ≥ 2, T ⊆ 2E\{∅}, |T | > 1, Ai be the i-th row
of matrix A = [aij ]n×m ∈ Rnm, n ≥ 1, Nn = {1, 2, . . . , n}, N(t) = {j ∈ Nm :
ej ∈ t}, t ∈ T. Vector criterion

f(t, A) =
(
f1(t, A1), f2(t, A2), . . . , fn(t, An)

)
→ min

t∈T
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is defined on the set of trajectories T. The partial criteria are of the kind
MINMAX MODUL:

fi(t, Ai) = max
j∈N(t)

|aij | → min
t∈T

, i ∈ Nn.

Thereby the value of i-th partial criterion on trajectory t is Chebyshev norm
l∞ of the vector with length |t|, formed by the elements of row Ai corresponding
to trajectory t. Therefore it is natural to call the problem of finding the Pareto
set (the set of efficient trajectories) [10]

Pn(A) =
{
t ∈ T : Pn(t, A) = ∅

}
,

where Pn(t, A) =
{
t′ ∈ T : f(t, A) ≥ f(t′, A), f(t, A) 6= f(t′, A)

}
, the vector

l∞-extreme trajectorial problem. As E and T are fixed, we denote the problem
by Zn(A).

It is clear that P 1(A) (where A is an m dimensional vector) is set of all
optimal solutions of the scalar trajectorial problem Z1(A). The most of well-
known problems on graph, boolean programming problems and many problems
of the scheduling theory [2], [3] are instances of this scalar problem.

As usual [5]–[9], we will perturb the parameters of vector criterion f(t, A)
by the addition of matrix A ∈ Rnm with matrices from the set

B(ε) =
{
B ∈ Rnm : ‖B‖ < ε

}
,

where ε > 0 is the limiting level of perturbations, ‖ · ‖ is norm l∞ in space
Rnm, i.e.,

‖B‖ = max
{
|bij | : (i, j) ∈ Nn ×Nm

}
, B = [bij ]n×m.

Problem Zn(A+ B), obtained from the initial problem Zn(A) by addition
of matrices A and B ∈ B(ε), is called perturbed, the matrix B is called per-
turbing.

Corresponding to [1], [5]–[7] and from the above said, the stability prop-
erty of problem Zn(A) is when new efficient trajectories do not appear under
“small” independent perturbations of the elements of matrix A. Therefore
problem Zn(A) is stable if and only if

∃ε > 0 s.t. Pn(A) ⊇ Pn(A+B), ∀B ∈ B(ε).
Evidently, problem Zn(A) is stable when equality Pn(A) = T holds. There-

fore we consider only those problems Zn(A) for which P̄n(A) := T\Pn(A) is
not empty. Such a problem is called nontrivial.

It is evident that the nontrivial problem is stable if and only if
(1) ∀t ∈ P̄n(A) ∃ε > 0 s.t. t ∈ P̄n(A+B), ∀B ∈ B(ε).

Let us assign
g(t, t′, A) = f(t, A)− f(t′, A), gi(t, t′, Ai) = fi(t, Ai)− fi(t′, Ai),

fi(∅, Ai) = −∞, 0(n) = (0, 0, . . . , 0) ∈ Rn.



3 On stability conditions of vector l∞-extreme combinatorial problem 33

Lemma 1. For any trajectories t, t′ ∈ T, t 6= t′ and arbitrary index i ∈ Nn,
the implication

gi(t, t′\t, Ai) > 0 ⇒ ∃ε > 0 s.t. gi(t, t′, Ai +Bi) ≥ 0, ∀B ∈ B(ε),
is true.

Proof. If t′\t 6= ∅, then by the continuity of functions gi(t, t′\t, Ai) on set
Rm, taking into account gi(t, t′\t, Ai) > 0, we obtain

∃ε > 0 s.t. gi
(
t, t′\t, Ai +Bi

)
> 0, ∀B ∈ B(ε).

The following two cases are possible.
Case 1: fi(t′, Ai +Bi) = fi(t′\t, Ai +Bi). Then we obtain

gi(t, t′, Ai +Bi) > 0.
Case 2: fi(t′, Ai +Bi) = fi(t′ ∩ t, Ai +Bi), t′ ∩ t 6= ∅. The relations

gi(t, t′, Ai +Bi) = fi(t, Ai +Bi)− fi(t′ ∩ t, Ai +Bi) ≥ 0
are evident in this case.

If t′\t = ∅, then t\t′ 6= ∅, since t′ 6= t. Therefore inequality
gi(t, t′, Ai +Bi) = max

{
fi(t\t′, Ai +Bi), fi(t′, Ai +Bi)

}
− fi(t′, Ai +Bi) ≥ 0

holds for any matrix B ∈ Rnm. �

3. THEOREM

Theorem 2. Nontrivial problem Zn(A), n ≥ 1, is stable if and only if the
formula
(2) ∀t ∈ P̄n(A) ∃t′ ∈ Pn(A) s.t. gi(t, t′\t, Ai) > 0, ∀i ∈ Nn,

is true.

Proof. Sufficiency. Let t ∈ P̄n(A) and there exists a trajectory t′ ∈ Pn(A)
such that the inequality gi(i, t′\t, Ai) > 0 holds for any index i ∈ Nn. Then,
by Lemma 1, we obtain

∀i ∈ Nn, ∃εi > 0 s.t. gi(t, t′, Ai +Bi) ≥ 0, ∀B ∈ B(εi).
Therefore the formula
(3) ∀i ∈ Nn, gi(t, t′, Ai +Bi) ≥ 0, ∀B ∈ B(ε),
is true, where ε = min{εi : i ∈ Nn}.

Furthermore, on account of t ∈ P̄n(A) and t′ ∈ Pn(A), there exists an index
k ∈ Nn such that gk(t, t′, Ak) > 0. Therefore, by the continuity of functions
gk(t, t′, Ak) on Rm, we obtain
(4) ∃ϕ > 0 s.t. gk(t, t′, Ak +Bk) > 0, ∀B ∈ B(ϕ).

Combining (3) with (4) we conclude that
g(t, t′, A+B) ≥ 0(n) and g(t, t′, A+B) 6= 0(n), ∀B ∈ B(ψ),
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where ψ = min{ε, ϕ}.
Hence, for any perturbing matrix B ∈ B(ψ) we have t′ ∈ π(t, A + B), i.e.,

t ∈ P̄n(A+B). Finally, on account of (1) we derive
Pn(A+B) ⊆ Pn(A), ∀B ∈ B(ψ),

i.e., problem Zn(A) is stable.
Necessity. Suppose the opposite. Let the problem Zn(A) be stable and

(5) ∃t0 ∈ P̄n(A) ∀t ∈ Pn(A) ∃k ∈ Nn s.t. gk(t0, t\t0, Ak) ≤ 0.
Then t\t0 6= ∅ for any trajectory t ∈ Pn(A). Otherwise (on account of
fk(t\t0, Ak) = −∞) the inequality gk(t0, t\t0, Ak) ≤ 0 is false.

For any index i ∈ Nn we put
Ti =

{
t ∈ Pn(A) : gi(t0, t\t0, Ai) ≤ 0

}
.

Then we introduce the definition I = {i ∈ Nn : Ti 6= ∅}. It is evident that
I 6= ∅ and, by virtue of (5), the equality

(6)
⋃
i∈I

Ti = Pn(A)

is true.
Let 0 < β < ε. Consider perturbing matrix B∗ = [b∗ij ]n×m with the elements

defined by

bij =


β, if i ∈ I, j ∈ N(E\t0), aij ≥ 0;
−β, if i ∈ I, j ∈ N(E\t0), aij < 0;
0, otherwise (i, j) ∈ Nn ×Nm.

Since I 6= ∅ and N(E\t0) 6= ∅, it is clear, that B∗ ∈ B(ε) and ‖B∗‖ = β.
On account of (5), for a fixed trajectory t ∈ Pn(A) there exists an index

k ∈ Nn such that
(7) gk(t0, t\t0, Ak) ≤ 0.
Note, that k ∈ I by virtue of (6).

Let us show that the inequality
(8) gk(t, t0, Ak +B∗k) ≥ β
is valid. On account of the structure of matrix B∗, since k ∈ I, we obtain
gk(t, t0, Ak +B∗k) = fk(t, Ak +B∗k)− fk(t0, Ak +B∗k)

= max{fk(t\t0, Ak +B∗k), fk(t ∩ t0, Ak +B∗k)} − fk(t0, Ak)(9)
= max{fk(t\t0, Ak) + β, fk(t ∩ t0, Ak)} − fk(t0, Ak).

Further, by virtue of (7), we have
fk(t\t0, Ak) ≥ fk(t0, Ak) ≥ fk(t ∩ t0, Ak).

Thereby we derive
max

{
fk(t\t0, Ak) + β, fk(t ∩ t0, Ak)

}
= fk(t\t0, Ak) + β ≥ fk(t0, Ak) + β.
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Therefore, according to (9), we obtain that the inequality (8) is true.
Resuming the above, we conclude that the formula

(10) ∀t ∈ Pn(A) ∃k ∈ Nn s.t. gk(t, t0, Ai +B∗k) > 0
is valid.

If t0 ∈ Pn(A+B∗), then on account of t0 ∈ P̄n(A) the formula
(11) ∀ε > 0 ∃B∗ ∈ B(ε) s.t. Pn(A+B∗) 6⊆ Pn(A)
is evident. It follows that problem Zn(A) is not stable. We have obtained a
contradiction.

Let t0 ∈ P̄n(A + B∗). Since |Pn(A + B∗)| < ∞, the set Pn(A + B∗) is
externally stable (see [11, p. 34]). Terefore there exists trajectory t∗ such that

t∗ ∈ Pn(A+B∗), g(t∗, t0, A+B∗) ≤ 0(n), g(t∗, t0, A+B∗) 6= 0(n).

Thereby there is no index i ∈ Nn such that gi(t∗, t0, Ai + B∗i ) > 0. Then
t∗ ∈ P̄n(A) by virtue of (10). Hence, we see that formula (11) is valid. It
implies the contradiction to the statement that problem Zn(A) is stable. �

4. COROLLARIES

Let us introduce the traditional Slater set, i.e. the set of weakly efficient
trajectories [10]

Sn(A) =
{
t ∈ T : Sn(t, A) = ∅

}
,

where Sn(t, A) =
{
t′ ∈ T : gi(t, t′, Ai) > 0, ∀i ∈ Nn

}
. Evidently, the formula

Pn(A) ⊆ Sn(A) is valid for any matrix A ∈ Rnm.

Corollary 3. A nontrivial problem Zn(A), n ≥ 1, is stable if and only if
one of the following two alternatives holds:
(12) Pn(A) = Sn(A),

(13) ∀t ∈ Sn(A)\Pn(A), ∃t′ ∈ Pn(A) s.t. gi(t, t′\t, Ai) > 0, ∀i ∈ Nn.

Proof. Let us show at first that the formula
(14) ∀t0 ∈ S̄n(A), ∃t′ ∈ Pn(A) s.t. gi(t0, t′\t0, Ai) > 0, ∀i ∈ Nn,

where S̄n(A) = T\Sn(A), is true for any problem Zn(A).
Really, since t0 ∈ S̄n(A), taking into account the definition of set Sn(A),

we obtain
(15) ∃t′ ∈ T s.t. gi(t0, t′, Ai) > 0,∀i ∈ Nn.

If t′ ∈ Pn(A) then, by virtue of (15),
fi(t0, Ai) > fi(t′, Ai) ≥ fi(t′\t0, Ai), ∀i ∈ Nn.

We see that formula (14) is valid.
If t′ ∈ P̄n(A), then, by virtue of external stability property [10] of set Pn(A),

∃t′′ ∈ Pn(A) s.t. g(t′, t′′, A) ≥ 0(n) and g(t′, t′′, A) 6= 0(n).
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Therefore, on account of (15), we derive

fi(t0, Ai) > fi(t′, Ai) ≥ fi(t′′, Ai) ≥ fi(t′′\t0, Ai), ∀i ∈ Nn.

This implies formula (14) again.
Further, let us show the sufficiency of either of the conditions (12) and (13)

for stability of the problem.
If equality (12) is valid, then P̄n(A) = S̄n(A). Thereby, taking into account

(14), we obtain formula (2). Consequently, problem Zn(A) is stable by virtue
of the Theorem 2.

If formula (13) holds, then, on account of (14) and (Sn(A)\Pn(A))∪S̄n(A) =
P̄n(A), we obtain (2). Hence the problem Zn(A) is stable by the Theorem 2.

It is easy to prove the necessity of one of the conditions (12) and (13) by
supposing the opposite and taking into account that formula (2) holds by
virtue of the Theorem 2. �

The Corollary 3 implies the following statement.

Corollary 4. Nontrivial scalar problem Z1(A) is stable for any vector
A ∈ Rm.

By virtue of the equivalence of any two norms in the finite dimensional linear
space (see, for example, [11]), the results of this article are valid not only for
Chebyshev norm l∞, but also for any other norm in the space of perturbing
parameters Rnm.

The following example shows that both conditions (12) and (13) can be
violated (the problem is not stable).

Example. Let n = m = 2,

A =
[ −1 1

0 −1

]
, T = {t1, t2}, t1 = {e1}, t2 = {e2}.

Then
f(t1, A) = (1, 0), f(t2, A) = (1, 1),

P 2(A) = {t1} 6= S2(A) = T, g1(t2, t1\t2, A1) = 0. �

It is easy to see, that the examples like the above can be constructed for
any number of criteria n > 2.
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