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1. INTRODUCTION

At the beginning of the 80’s it had become clear that for characterizing those
functions f ∈ C[0, 1] for which the quantities ‖f − Bnf‖∞ vanish at a given
speed, moduli of smoothness should be used which are based on differences
∆2
u in which the step u is allowed to depend upon the position of x in the

interval [0, 1]. Here Bn denotes the Bernstein operator given by

Bn(f, x) =
n∑
k=1

f
(
k
n

) (
n
k

)
xk(1− x)n−k, n ∈ N,

and a corresponding statement is also true for similar operators.
At the forefront of the development were authors such as Z. Ditzian, K.

Ivanov, V. Totik and Xin-long Zhou and several others not mentioned here.
Many references to their work can be found in two bibliographies in which
the work on Bernstein-type operators up to the middle of the 80’s (see [17],
[18]) was compiled. What is missing in the latter, though, is an entry with the
important master thesis of Xin-long Zhou [37] finished already in 1981, which
is, however, only available in handwritten Chinese.

The continuing work of the authors mentioned explicitely in the above even-
tually culminated in, among other articles, a book by Ditzian and Totik [9],
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joint work of Ditzian and Zhou (see, e.g., [10]), an important article by Ditzian
and Ivanov [8], a paper by Totik [36], and a significant contribution of Knoop
and Zhou [23], [24]. A somewhat partial, but nonetheless streamlined, account
of what had been achieved up to 1993, say, is given in the book of DeVore and
Lorentz [5].

Knoop and Zhou proved the following strong result: There are constants c1

and c2 such that for n ∈ N one has

(1.1) c1 · ωϕ2
(
f ; 1√

n

)
≤ ‖Bnf − f‖∞ ≤ c2 · ωϕ2

(
f ; 1√

n

)
.

The left inequality is usually called a “strong converse inequality”, while the
right one can be denoted as a “Jackson inequality (in terms of ωϕ2 )”.

To our knowledge, the Jackson-type inequality was first explicitly presented
in a paper by Xin-long Zhou [38], an article submitted in 1982 (see also
Ditzian [6], [7]). This historical fact might justify calling the modulus in
question the Ditzian-Totik-Zhou modulus, but we will refrain to do so. In the
same year (1982) a paper by Ivanov [19] was published in which an analogous
direct theorem for approximation by Bernstein operators was given, but in
terms of τ -moduli. This was done independently of Xin-long Zhou, and only
9 years later it was again Ivanov who established the equivalence between the
two types of moduli in his treatise [21]. An email exchange with Professor
Berens of October 1996 revealed that for him it would be worthwhile to look
for the best value of the constant c2. The present note intends to present,
among other things, a first modest step into this direction.

Before proceeding further, the following need to be mentioned for complete-
ness.

The above quantity ωϕ2 (f ; ·) is defined by

ωϕ2 (f ; t) = sup
0≤h≤t

‖∆2
hϕf‖∞, ϕ(x) =

√
x(1− x),

where

∆2
hϕf(x) :=


f
(
x− hϕ(x)

)
− 2f(x) + f

(
x+ hϕ(x)

)
,

if [x− hϕ(x), x+ hϕ(x)] ⊆ [0, 1];

0, otherwise.

The upper estimate in (1.1) was proved using the K-functional Kϕ
2 given, for

f ∈ C[0, 1] and t ≥ 0, by

Kϕ
2 (f, t2) := inf

g

{
‖f − g‖∞ + t2 · ‖ϕ2 · g′′‖∞

}
,

where the infimum is taken over all g such that g′ ∈ ACloc[0, 1] (i.e., g′ is
absolutely continuous in [a, b] for every a, b satisfying 0 < a < b < 1) and
‖ϕ2g′′‖∞ <∞.
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Throughout this note we shall use this definition of Kϕ
2 (f, t2) introduced by

Ditzian and Totik (see (2.11) in [9]). Let Wϕ
2,∞ be the corresponding weighted

Sobolev space with weight function ϕ2 consisting of all such functions g.

Remark 1.1. There are various different definitions of Kϕ
2 (f, t2) figuring in

the literature. We mention the following ones:

Kϕ
2 (f, t2) = inf

{
‖f − g‖∞ + t2 · ‖ϕ2g′′‖∞ : g′ ∈ AC[0, 1]

}
Kϕ

2 (f, t2) = inf
{
‖f − g‖∞ + t2 · ‖ϕ2g′′‖∞ : g ∈W2,∞[0, 1]

}
Kϕ

2 (f, t2) = inf
{
‖f − g‖∞ + t2 · ‖ϕ2g′′‖∞ : g ∈ C2[0, 1]

}
It appears to be of interest to investigate the differences between these func-
tionals, and also the ones between these and what we are using here, namely

Kϕ
2 (f, t2) = inf

{
‖f − g‖∞ + t2 · ‖ϕ2g′′‖∞ : g′ ∈ ACloc[0, 1]

}
. �

No concise description of the relationships is known to us.
In order to arrive at an inequality in terms of ωϕ2 , the equivalence

c3ω
ϕ
2 (f, t) ≤ Kϕ

2 (f, t2) ≤ c4ω
ϕ
2 (f, t), 0 ≤ t ≤ t0,

was used (see [9, Theorem 2.1.1], [5, formula (7.5)]). Since the number t0 will
be relevant to us, we will specify it later.

As far as we know, the problem to find the best (or at least some) constants
c3, c4 for which the above equivalence holds, remains still open. The same
statement can be made about the constants c1 and c2 in (1.1). The latter state
of the art in regard to ωϕ2 is in sharp contrast/backlog to what is known/has
been claimed with respect to two related estimates:

(1) In 1998 Păltănea announced on two occasions that the uniform Brud-
ny̌ı-type estimate for the classical Bernstein operators (see [2]) reads

‖Bnf − f‖∞ ≤ 1 · ω2

(
f ; 1√

n

)
, f ∈ C[0, 1], n ∈ N,

where the constant 1 is best possible (see [29] and [15] for details).
(2) The pointwise Cao-type inequality for Bernstein operators (see [4]),

namely∣∣Bn(f ;x)− f(x)
∣∣ ≤ c5 · ω2

(
f ;

√
x(1−x)
n

)
, f ∈ C[0, 1], n ∈ N, x ∈ [0, 1],

can be made more precise by proving that the best possible value of
c5 is ≤ 1.5. This is one consequence of a general result of Păltănea [28,
Theorem 2.1] which we cite as

Theorem A. If L : C[0, 1] → B[0, 1], the space of bounded functions, is
a positive linear operator reproducing linear functions, then for f ∈ C[0, 1],
x ∈ [0, 1] and each 0 < h ≤ 1

2 , the following holds:∣∣L(f ;x)− f(x)
∣∣ ≤ [1 + 1

2 · h
−2 · L

(
(e1 − x)2;x

)]
· ω2(f ;h).
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Here e1(t) = t, t ∈ [0, 1], and ω2(f ; ·) denotes the (classical) second order
modulus of f .

It is the aim of the present note to derive an analogy of Păltănea’s result
(see also [16]) for estimates in terms of ωϕ2 , to give a more precise upper
bound for approximation by Bernstein operators and to apply the new general
inequality to further positive linear operators reproducing linear functions. As
a byproduct we will also obtain a more precise form of the equivalence between
Kϕ

2 and ωϕ2 .

Remark 1.2. During the preparation of this paper the authors strived to
obtain more information on the historical roots of ωϕ2 (f ; ·) and Kϕ

2 (f ; ·). This
is not an easy task since, on average, mathematicians hardly care about the
history and the global aspect of their subject. For the time being we decided
to just add references [11] and [31] to the ones give in the book of Ditzian and
Totik. Both were taken from Ivanov’s paper [20]. �

2. AN AUXILIARY RESULT AND SOME REMARKS ON ωϕ2

The following inequality will be indispensable for our later considerations.

Lemma 2.1 (Burkill [3, Lemma 5.2]). For a compact interval [α, β] and
f ∈ C[α, β], let ` denote the linear function interpolating f at α and β. Then

|f(x)− `(x)| ≤ ω2

(
f ; β−α2

)
, for all x ∈ [α, β].

It is clear from the definition of the classical ω2 that ω2(f ;h) = ω2(f ; β−α2 )

for h ≥ β−α
2 . The situation is similar for ωϕ2 (we focus on [α, β] = [0, 1] again).

So, as before, ϕ(x) =
√
x(1− x).

Let H ≥ 0. Then differences of the form

f
(
x−Hϕ(x)

)
− 2f(x) + f

(
x+Hϕ(x)

)
, x ∈ [0, 1],

contribute to an actual value of ωϕ2 (f, ·) only if

0 ≤ x−H · ϕ(x) and x+H · ϕ(x) ≤ 1.

As can be seen by inspection, this is the case if and only if

H2 ≤M(x) := min
{

1−x
x , x

1−x
}
≤ 1,

or

0 ≤ H ≤ min
{√

1−x
x ,
√

x
1−x

}
≤ 1.

That is, for t > 1 one has

(2.1) ωϕ2 (f ; t) = ωϕ2 (f ; 1).

The functional Kϕ
2 (f, t2), in contrary, is well-defined for any t ≥ 0. But due

to (2.1), in the sequel it will be sufficient to deal with inequalities of the type

c3 · ωϕ2 (f ; t) ≤ Kϕ
2 (f, t2) ≤ c4 · ωϕ2 (f ; t)
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for 0 ≤ t ≤ 1 only. Also, sometimes it will be advantageous to deal with the
analogous inequality

c3 · ωϕ2 (f ; t) ≤ Kϕ
2 (f, t2) ≤ c4(γ) · ωϕ2 (f ; t),

where t is now restricted to the range 0 ≤ t ≤ γ. In certain instances below,
the latter observation will become relevant for our purposes.

Several papers appeared in the past in which the question was dealt with

of how to bridge the gap between the use of ω2(f ; ·) = ω1
2(f ; ·) = ωϕ

0

2 (f ; ·)
and that of ωϕ2 (f ; ·) = ωϕ

1

2 (f ; ·) in estimates for (positive) linear operators.
See [15] and the references cited there for more information about the historical
background.

The relevant moduli ωϕ
λ

2 , 0 ≤ λ ≤ 1, will also figure below. Their definition
is in complete analogy to those of ω2(f ; ·) and ωϕ2 (f ; ·), namely

ωϕ
λ

2 (f ; t) := sup
0≤h≤t

‖∆2
hϕλf‖∞,

where

∆2
hϕλf(x) :=


f
(
x− hϕλ(x)

)
− 2f(x) + f

(
x+ hϕλ(x)

)
,

if [x− hϕλ(x), x+ hϕλ(x)] ⊆ [0, 1];

0, otherwise.

For λ = 0, this is the definition of ω2(f ; ·) = ω1
2(f ; ·). For λ = 1, we get that

of ωϕ2 (f ; ·). As was observed earlier, they become constant at different values
of the second parameter t:

ω2(f ; t) = ω2(f ; 1
2), for t ≥ 1

2 ,

ωϕ2 (f ; t) = ω2(f ; 1), for t ≥ 1.

Considerations similar to those for the case of ωϕ2 yield that, for 0 ≤ λ ≤ 1,

ωϕ
λ

2 (f ; t) = ωϕ
λ

2

(
f ; (1

2)1−λ), for t ≥ (1
2)1−λ,

which generalizes the previous two equalities.

Associated with ωϕ
λ

2 is the functional

(2.2) Kϕλ

2 (f ; t2) := inf
{
‖f − g‖∞ + t2 · ‖ϕ2λ · g′′‖∞

}
, t ≥ 0,

where the infimum is taken over all g such that g′ ∈ ACloc[0, 1] and
‖ϕ2λ · g′′‖∞ <∞.

When considering inequalities of the type

Kϕλ

2 (f ; t2) ≤ c4(λ, t0) · ωϕ
λ

2 (f ; t), 0 ≤ t ≤ t0,
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it is therefore natural to consider these for t ≤ (1
2)1−λ first and to deal with

values of T ≥ (1
2)1−λ =: t

(λ)
max only afterwards. If such T is given, then

Kϕλ

2 (f ;T 2) = inf

{
‖f − g‖∞ +

(
T

t
(λ)
max

)2
·
(
t(λ)
max

)2
· ‖ϕ2λ · g′′‖∞

}
≤

(
T

t
(λ)
max

)2
· c4(λ, t(λ)

max) · ωϕ
λ

2 (f ; t(λ)
max).

Hence for all t ≥ 0 we have

Kϕλ

2 (f ; t2) ≤ max

{
1,
(

t

t
(λ)
max

)2
}
· c4(λ, t(λ)

max) · ωϕ
λ

2 (f ; t).

3. MAIN RESULTS

We recall that it was observed in [8] and [12] that

‖f −Bnf‖∞ ≤ 2 ·Kϕ
2 (f, 1

n).

The method from there will also be applied in the first step of the proof of
our main result. In order to formulate it, we need to introduce the following
sequence d(m).

For m a natural number we set

d := d(m) =
√
m4+m2+1−1√
m4+m2+1+m2

.

It is easy to compute

d(1) ≈ 0.268, d(2) ≈ 0.4174, d(3) ≈ 0.4606, d(10) ≈ 0.4962, lim
m→∞

d(m) = 1
2 ,

and to note that the sequence (d(m))m≥1 is strictly increasing. As a conse-
quence, (

1
m·d(m)

)
m≥1

strictly decreases to zero.
The significance of d(m) will become clear in the course of the proof of the

following

Theorem 3.1. If L : C[0, 1] → C[0, 1] is a linear positive operator which

preserves linear functions, h ∈
[ √

2
md(m) ,

√
2

(m−1)d(m−1)

)
, m ≥ 2 a natural number,

then ∣∣Lf(x)− f(x)
∣∣ ≤ [2 +

(
m
m−1

)2 48
d2(m−1)

L((e1−x)2;x)
h2ϕ2(x)

]
ωϕ2 (f, h).

Sketch of proof of Theorem 3.1. As was indicated above, the well-known
smoothing technique will be applied. As in the proof of Theorem 1 in [12]
and Theorem 8.1 in [8] it follows that∣∣Lf(x)− f(x)

∣∣ ≤ ∣∣L(f − g)(x)
∣∣+
∣∣f(x)− g(x)

∣∣+
∣∣Lg(x)− g(x)

∣∣
≤ 2

∥∥f − g∥∥∞ + L((e1−x)2;x)
ϕ2(x)

‖ϕ2g′′‖∞
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for arbitrary g ∈ Wϕ
2,∞, and taking into account that ‖L‖ = 1. To choose an

appropriate function g we follow some ideas from [16]. Like there, the function
g will be constructed in a two stage process, will be a spline in Wϕ

2,∞ (with

non-equidistant knots), and will satisfy here inequalities of the types

‖f − g‖∞ ≤ ωϕ2
(
f,

√
2

m·d(m)

)
and

‖ϕ2g′′‖∞ ≤ 24m2 · ωϕ2
( √

2
m·d(m)

)
,

where the natural number m ≥ 2 is related to h as described in the theorem.
Clearly, g will depend on h (via m) and on the function ϕ.

As mentioned earlier, g will be constructed in two steps. The first step will
be to define a piecewise linear continuous function based upon an appropriate
sequence of non-equidistant knots. The construction and properties of these
are given in Lemma 3.2. In Lemma 3.3 we will eventually construct the spline
g and prove its quantitative properties listed above. �

We now turn to

Lemma 3.2. For m ≥ 2, let

y0 = 0, y1 = 1
m2+1

, y2 = y1 + ϕ(y1)
m , . . . ,yk+1 = yk + ϕ(yk)

m ,

k = 1, 2, . . . ,M − 1,

where M is the biggest number, such that

zM = yM + ϕ(yM )
M < 1

2 ,

(3.1) zM + ϕ(zM )
M < 1

2 .

We set

yM+1 = 1
2 ,

and, symmetrically,

yM+2 = 1− yM , yM+3 = 1− yM−1, . . . , y2M+1 = 1− y1, y2M+2 = 1.

Then, for k = 1, 2, . . . , 2M and x ∈ [yk, yk+1], we have

(3.2) d(m)(yk+1 − yk) ≤ ϕ(x)
m ≤

√
2(yk+1 − yk).

Proof. By symmetry it is enough to consider k = 1, 2, . . . ,M. First we
consider 1 ≤ k ≤ M − 1, and then the case k = M separately. The function
ϕ(x) is strictly increasing for 0 ≤ x < 1

2 . Hence, for x ∈ [yk, yk+1],

yk+1 − yk = ϕ(yk)
m ≤ ϕ(x)

m ≤ ϕ(yk+1)
m .
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We claim that

(3.3)

ϕ2(yk+1) ≤ 2ϕ2(yk)

⇐⇒ yk+1(1− yk+1) ≤ 2yk(1− yk)

⇐⇒
(
yk + ϕ(yk)

m

)(
1− yk − ϕ(yk)

m

)
≤ 2yk(1− yk)

⇐= ϕ(yk)
m (1− 2yk) ≤ yk(1− yk) = ϕ2(yk)

⇐⇒ 1−2yk
m ≤ ϕ(yk).

The latter inequality is fulfilled for

yk ∈
[

1
2

(
1− m√

m2+4

)
, 1

2

(
1 + m√

m2+4

)]
.

So the question remains if all yk satisfy the latter inequality.
After simple calculation we obtain

yk ≥ y1 = 1
1+m2 >

1
2

(
1− m√

m2+4

)
,

and so (3.3) is proved.
Now we consider the case k = M , so let x ∈ [yM ,

1
2 ]. It only remains to

prove that

d(m)
(

1
2 − yM

)
≤ ϕ(x)

m ≤
√

2
(

1
2 − yM

)
.

Obviously
ϕ(yM )
m ≤ ϕ(x)

m ≤ 1
2m .

Therefore it is enough to establish

(3.4) 1
2m ≤

√
2
(

1
2 − yM

)
and

(3.5) d(m)
(

1
2 − yM

)
≤ ϕ(yM )

m .

The inequalities (3.4)–(3.5) are satisfied for

(3.6) yM ∈
[

1
2

(
1− 1√

m2d2(m)+1

)
, 1

2

(
1− 1√

2m2

)]
.

The inequalities (3.1) and (3.2) are satisfied for

(3.7) yM ∈
[

1
2

(
1− m2+

√
m4+m2+1

(m2+1)
√
m2+1

)
, 1

2

(
1− 1√

m2+1

)]
.

It is not difficult to verify that the interval in (3.6) contains that in (3.7). With
this the proof of Lemma 3.2 is completed. �

Having proven Lemma 3.2, we are now in the state to construct the de-
sired function g using an intermediate continuous polygonal spline S1(f),
f ∈ C[0, 1].
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At the points yk, k = 0, . . . , 2M + 2, the function f is interpolated by
the polygonal spline S1(f). Each point (yk, S1(yk)), k = 1, . . . , 2M + 1, we
associate with two other points (ak, S1(ak)), (bk, S1(bk)), such that

a1 = y1
2 , b1 − y1 = y1 − a1,

and

ak =
yk+yk−1

2 , bk − yk = yk − ak, k = 1, 2, . . . ,M + 1.

We define the points (ak, S1(ak)), (bk, S1(bk)), k = M + 2, . . . , 2M + 1, by
symmetry according to 1

2 . Using the definition of the knots {yk} it is clear
that

y1 = 1
1+m2 , y2 = 2

1+m2 , a2 = b1,

ak < yk < bk < ak+1 < yk+1 < bk+1, 2 ≤ k ≤ 2M, yk = ak+bk
2 ,

bk − ak = 2(yk − ak) = yk − yk−1 =
ϕ(yk−1)

m .

We are ready to define the function g.
For x ∈ [0, a1] ∪ [b2M+1, 1], we set g(x) ≡ S1(f)(x).
For x ∈ [ak, bk], k = 1, . . . , 2M+1, g(x) is the 2nd degree Bernstein polyno-

mial over the interval [ak, bk], determined by the ordinates S1(ak), f(yk), S1(bk).
For x ∈ [bk, ak+1], k = 1, . . . , 2M , we set g(x) ≡ S1(f)(x).
Thus, g(x) is uniquely determined by the interpolation conditions, is C1-

continuous and can be composed of “Bernstein parabolas” by the well-known
control point construction, and of some straight line segments.

Let k = 1, . . . ,M . From the convex-hull property of Bernstein operator and
the considerations in [16] (see pp. 28–29) for x ∈ [ak, bk], it follows that

(3.8)
∣∣(f − g)(x)

∣∣ ≤ ω2

(
f ;

yk+1−yk−1

2

)
[yk−1,yk+1]

≤ ω2

(
f ; yk+1 − yk

)
[yk−1,yk+1]

.

Here ω2(f, ·)[c,d] denotes the classical second order modulus of f restricted to
the interval [c, d]. We consider two cases:

Case I: x ∈ [yk, bk], k = 1, . . . ,M.
From (3.2) and (3.8) we get∣∣(f − g)(x)

∣∣ ≤ sup
{∣∣f(x+ h)− 2f(x) + f(x− h)

∣∣, x ∈ [yk, bk],

x± h ∈ [yk−1, yk+1], |h| ≤ yk+1 − yk ≤ ϕ(x)
md(m)

}
≤ sup

{∣∣f(x+ h)− 2f(x) + f(x− h)
∣∣, x ∈ [yk, bk],(3.9)

x± h ∈ [yk−1, yk+1], |h| ≤ ϕ(x)
md(m)

}
.

Hence

(3.10)
∣∣f(x)− g(x)

∣∣ ≤ ωϕ2 (f, 1
md(m)

)
.

Case II: x ∈ [ak, yk], k = 1, . . . ,M.
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Following (3.2), it is easy to observe that

yk+1 − yk = ϕ(yk)
m ≤

√
2(yk − yk−1) ≤

√
2ϕ(x)

md(m) ,

for x ∈ [ak, yk] ⊂ [yk−1, yk].
The last inequality and (3.10) yield, for x ∈ [ak, bk],∣∣(f − g)(x)

∣∣ ≤ ωϕ2 (f, √
2

md(m)

)
.

Cases I and II from above cover the cases x ∈ [a1, bM ].
Let x ∈ [aM+1,

1
2 ]. Similarly we obtain∣∣(f − g)(x)

∣∣ ≤ ω2

(
f ; yM+1 − yM

)
≤ ωϕ2

(
f, 1

md(m)

)
.

By the definition of the function g(x), for x ∈ [bk, ak+1], k = 1, . . . ,M, g(x) ≡
S1(f)(x) and in this case∣∣(f − g)(x)

∣∣ ≤ ω2

(
f ;

yk+1−yk
2

)
≤ ωϕ2

(
f, 1

2md(m)

)
.

From (3.8)–(3.10) we have (‖ · ‖C[c,d] denoting the sup norm over [c, d])

(3.11) ‖f − g‖C[a1,
1
2

] ≤ ω
ϕ
2

(
f,

√
2

md(m)

)
.

It remains to consider x ∈ [0, a1]. Over the interval [0, a1], using the same
arguments as above we get∣∣(f − g)(x)

∣∣ ≤ sup
{∣∣f(x+ h)− 2f(x) + f(x− h)

∣∣,(3.12)

x, x± h ∈ [0, y1], |h| < a1

}
.

From x− h ≥ 0, it follows

(3.13) h ≤ x ≤ a1 = 1
2(1+m2)

.

But x < ϕ(x)/m holds if and only if x < (1 + m2)−1, and the latter is true
due to (3.13). In other words, we have (3.12) for h < ϕ(x)/m. Hence

(3.14) ‖f − g‖C[0,a1] ≤ ω
ϕ
2

(
f, 1

m

)
.

By symmetry, the cases x ∈ [b2M+1, 1] and x ∈ [1
2 , b2M+1] are analogous to the

ones previously considered. Combining (3.11)–(3.14), we arrive at

(3.15) ‖f − g‖∞ ≤ ωϕ2
(
f,

√
2

md(m)

)
.

We consider g′′ next. If x ∈ [0, a1] ∪ [bk, ak+1] ∪ [b2M+1, 1], g(x) is a linear
function and thus g′′(x) = 0.
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Let x ∈ [ak, bk], k = 1, . . . , 2M + 1. We use the fact, that

|g′′(x)| =
= 2

(bk−ak)2

∣∣g(bk)− 2g(yk) + g(ak)
∣∣

≤ 2
(bk−ak)2

[∣∣f(bk)− 2f(yk) + f(ak)
∣∣+
∣∣g(bk)− f(bk)

∣∣+
∣∣g(ak)− f(ak)

∣∣]
≤ 2

(bk−ak)2

[
ω2

(
f ; bk−ak2

)
+ 2ωϕ2

(
f,

√
2

md(m)

)]
= 2

(bk−ak)2

[
ω2

(
f ;

yk−yk−1

2

)
+ 2ωϕ2

(
f,

√
2

md(m)

)]
≤ 6

(yk−yk−1)2
ωϕ2
(
f,

√
2

md(m)

)
.

(3.16)

In order to arrive at the last inequality we have applied (3.2) and (3.15).
For x ∈ [ak, yk], from (3.16) and (3.2) we get

|ϕ2(x)g′′(x)| ≤ 12m2ωϕ2
(
f,

√
2

md(m)

)
.

For x ∈ [yk, bk], analogously,∣∣ϕ2(x)g′′(x)
∣∣ ≤ 12m2 (yk+1−yk)2

(yk−yk−1)2
ωϕ2
(
f,

√
2

md(m)

)
= 12m2

(
ϕ(yk)/m
yk−yk−1

)2
ωϕ2
(
f,

√
2

md(m)

)
≤ 24m2ωϕ2

(
f,

√
2

md(m)

)
, by (3.2), and since yk ∈ [yk−1, yk].

Hence,

‖ϕ2g′′‖∞ ≤ 24m2ωϕ2
(
f,

√
2

md(m)

)
.

By the previous considerations we have shown the validity of

Lemma 3.3. Let g = gm,ϕ be the above quadratic C1-spline based upon the
knot sequence

y =
(
0 = y0 < y1 < . . . < yM < yM+1 = 1

2 < yM+2 < . . . < yM+2 = 1
)
.

Then

‖f − g‖∞ ≤ ωϕ2
(
f ;

√
2

md(m)

)
, and(i)

‖ϕ2g′′‖∞ ≤ 24m2 · ωϕ2
(
f ;

√
2

md(m)

)
.(ii)

Here m ≥ 2 is any natural number, and d(m) denotes the sequence defined
prior to Theorem 3.1.

Remark 3.1. (i) We recall our earlier observation that

ωϕ2 (f ; t) = ωϕ2 (f ; 1), for t ≥ 1.
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This means that Lemma 3.3 can be formulated also in the following
way:

‖f − g‖∞ ≤ ωϕ2

(
f ; min

{ √
2

md(m) , 1
})
,(i’)

‖ϕ2g′′‖∞ ≤ 24m2 · ωϕ2
(
f ; min

{ √
2

md(m) , 1
})
.(ii’)

In order to cover the range 0 < t ≤ 1, it will be sufficient to consider
m ≥ m0, where

l.s. =
√

2
(m0+1)d(m0+1) ≤ 1 <

√
2

m0d(m0) = r.s.

This inequality holds for m0 = 3, in which case we have

l.s. =
√

2

4·
√
256+16+1−1√
256+16+1+16

< 1 < 1.0234574 ≈ r.s.

(ii) The observation made in (i) is sometimes useful to reduce the magni-
tude of constants. We postpone a confirmation of this until after the
proofs of Theorems 3.1 and 3.4. �

We are now ready to finalize the

Proof of Theorem 3.1. We recall that∣∣Lf(x)− f(x)
∣∣ ≤ 2 · ‖f − g‖∞ + L((e1−x)2;x)

ϕ2(x)
· ‖ϕ2g′′‖∞

for arbitrary g ∈Wϕ
2,∞, and substitute for g the function gm,ϕ from Lemma 3.3.

This furnishes, for any m ≥ 2,∣∣Lf(x)− f(x)
∣∣ ≤ [

2 + 24m2 · L((e1−x)2;x)
ϕ2(x)

]
· ωϕ2

(
f ;

√
2

md(m)

)
=

[
2 + 24m2 · h2 · L((e1−x)2;x)

h2·ϕ2(x)

]
· ωϕ2

(
f ;

√
2

md(m)

)
,

where h > 0 is arbitrary. For every 0 < h <
√

2/d(1), there exists m ≥ 2 such
that √

2
m·d(m) ≤ h <

√
2

(m−1)·d(m−1) .

Substituting these bounds for h shows the validity of Theorem 3.1. �

As was mentioned in the introduction, we also have the following

Theorem 3.4. For the K-functional Kϕ
2 defined above, m ≥ 2, and h ∈[ √

2
m·d(m) ,

√
2

(m−1)·d(m−1)

)
, the following inequalities hold for any f ∈ C[0, 1]:

1
16 · ω

ϕ
2 (f ;h) ≤ Kϕ

2 (f ;h2) ≤
[
1 +

(
m
m−1

)2 · 48
d2(m−1)

]
· ωϕ2 (f ;h).
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Proof. In order to derive the lower bound we follow the proof of Theorem 6.1
in [5] (see pp. 187–188). This shows that it is possible to take 1

16 as a possible
value for the constant c3.

For getting the upper bound, we choose m as determined by h and use the
function gm,ϕ in order to find

Kϕ
2 (f ;h2) ≤ ‖f − gm,ϕ‖∞ + h2 · ‖ϕ2 · g′′m,ϕ‖∞

≤ ωϕ2
(
f ;

√
2

m·d(m)

)
+ 48m2

(m−1)2·d2(m−1)
· ωϕ2

(
f ;

√
2

m·d(m)

)
≤
(

1 +
(

m
m−1

)2 · 48
d2(m−1)

)
· ωϕ2 (f ;h). �

Corollary 3.5. (i) For h ∈
(
0,
√

2
d(1)

)
≈ (0, 5.2769) we have

1
16 · ω

ϕ
2 (f ;h) ≤ Kϕ

2 (f ;h2) ≤ 2675 · ωϕ2 (f ;h).

(ii) Defining C :
(
0,
√

2
d(1)

)
→ R by

C(h) := 1 +
(

m
m−1

)2 · 48
d2(m−1)

, if h ∈
[ √

2
m·d(m) ,

√
2

(m−1)·d(m−1)

)
,

we have
lim
h→0

C(h) = 193.

Remark 3.2. In both Theorems 3.1 and 3.4 the upper bound used for h
was
√

2/d(1) ≈ 5.2769. However, we observed earlier that ωϕ2 (f ;h) = ωϕ2 (f ; 1)
for h ≥ 1. If we restrict our attention to values h ≤ 1, then such h is always

<
√

2
3·d(3) ≈ 1.0234574. That is, we may change “m ≥ 2” in both theorems men-

tioned to “m ≥ 4”, and hence the (smaller) relevant bound for the sequence

Γ(m) :=
(

m
m−1

)2 · 48
d2(m−1)

figuring there will be

sup
m≥4

(
m
m−1

)2 · 48
d2(m−1)

=
(

4
3

)2 · 48
d2(3)

≈ 402.22659.

In some instances, it will be enough to consider 0 < h ≤ h0 < 1. In such case
it will be possible to increase the lower bound for m to some m0 = m0(h0)
and thus decrease the upper bound to supm≥m0

Γ(m). �

4. THE MAIN RESULT MODIFIED

In this section we present an alternative method to derive estimates for
positive linear operators in terms of ωϕ2 . The following was communicated to
us by Ding-xuan Zhou already early in 1994.

Theorem 4.1. Let L : C[a, b] → C[a, b], be a positive linear operator re-

producing linear functions, and let φ(x) =
√

(x− a)(b− x). Suppose that for
some α > 0 one has

L
(
(t− x)2;x

)
≤ dL ·

(φ(x)

nα

)2
,
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where dL may depend on L. Then

(4.1)
∣∣L(f ;x)−f(x)

∣∣ ≤ 2·c4

(
λ,

√
dL
2 ·
(
b−a

2

)1−λ )·ωφλ2

(
f ;

√
dL
2 ·n

−α ·φ(x)1−λ
)

for 0 ≤ λ ≤ 1. Here c4(λ, t0) is chosen such that

Kφλ

2 (f, t2) ≤ c4(λ, t0) · ωφ
λ

2 (f, t) for 0 ≤ t ≤ t0,

where Kφλ

2 is defined for [a, b] analogously to (2.2).

Proof. Let g ∈W φλ

2,∞[a, b] :=
{
g : g′ ∈ ACloc[a, b] and ‖φ2λg′′‖∞ <∞

}
, x ∈

(a, b). Then

|L(g, x)− g(x)| =

∣∣∣∣L(∫ t

x
(t− u) · g′′(u) du, x

)∣∣∣∣
≤ L

(
(t−x)2

φ2λ(x)
;x
)
· ‖φ2λ · g′′‖∞

≤ dL · φ(x)2(1−λ)

n2α · ‖φ2λ · g′′‖∞.

Here we used the fact that |t−u|
φ2λ(u)

is monotone for u ∈ [x, t] or [t, x].

Taking the infimum over g ∈W φλ

2,∞[a, b], we have for f ∈ C[a, b], n ∈ N, x ∈
(a, b),

|L(f, x)− f(x)| ≤

≤ inf
g∈C2[a,b]

{
2 · ‖f − g‖∞ + dL · φ(x)2(1−λ)

n2α · ‖φ2λ · g′′‖∞
}

= 2 · inf
g∈C2[a,b]

{
‖f − g‖∞ + dL

2 ·
φ(x)2(1−λ)

n2α · ‖φ2λ · g′′‖∞
}

≤ 2 ·Kφλ

2

(
f ; dL

2 · n
−2α · φ(x)2(1−λ)

)
≤ 2 · c4

(
λ,max

x,n

√
d
2 · n

−α · φ(x)1−λ
)
· ωφ

λ

2

(
f ;
√

d
2 · n

−α · φ(x)1−λ
)

≤ 2 · c4

(
λ,
√

d
2 · ‖φ

1−λ‖
)
· ωφ

λ

2

(
f ;
√

d
2 · n

−α · φ(x)1−λ
)

= 2 · c4

(
λ,
√

d
2 ·
(
b−a

2

)1−λ ) · ωφλ2

(
f ;
√

d
2 · n

−α · φ(x)1−λ
)
.

So inequality (4.1) holds. �

Corollary 4.2. For a positive linear operator L : C[0, 1]→ C[0, 1] repro-
ducing linear functions and satisfying

L
(
(t− x)2, x

)
≤ dL ·

(ϕ(x)

nα

)2

we have

‖Lf − f‖∞ ≤ 2 · c4

(
1,

√
dL
2

)
· ωϕ2

(
f ;

√
dL
2 ·

1
nα

)
.
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5. APPLICATION TO CLASSICAL BERNSTEIN OPERATORS

In this section we first give an application of the general Theorem 3.1 to
classical Bernstein operators. In order to prove a result that parallels the
development in the introduction, we choose h = 1√

n
.

Corollary 5.1. If L in Theorem 3.1 is the Bernstein operator Bn and
h = 1√

n
, n ≥ 1, then we have

‖Bnf − f‖∞ ≤ 405 · ωϕ2
(
f, 1√

n

)
.

Proof. It is well-known that Bn
(
(e1−x)2;x

)
= x(1−x)

n = ϕ2(x)
n . We are thus

lead to

‖Bnf − f‖∞ ≤
[
2 +

(
m
m−1

)2 · 48
d2(m−1)

]
· ωϕ2

(
f, 1√

n

)
,

where m = m( 1√
n

) ≥ 2 is such that

√
2

m·d(m) ≤
1√
n
<

√
2

(m−1)·d(m−1) .

It has to be kept in mind, though, that 1/
√
n ≤ 1. That is, we may restrict

our attention to values m− 1 ≥ 3, i.e., m ≥ 4 (cf. Remark 3.1 (i)). Therefore,
we obtain

‖Bnf − f‖∞ ≤
[
2 + sup

m≥4

(
m
m−1

)2 · 48
d2(m−1)

]
· ωϕ2

(
f, 1√

n

)
≤ 405 · ωϕ2

(
f, 1√

n

)
, n ≥ 1. �

Remark 5.1. The limiting constant in a statement akin to that of Corol-
lary 5.1 is

lim
m→∞

2 +
(

m
m−1

)2 · 48
d2(m−1)

= 2 + 1 · 48
1
4

= 194. �

If L in Corollary 4.2 is substituted by Bn, then we obtain

‖Bnf − f‖∞ ≤ 2 · c4

(
1, 1√

2

)
· ωϕ2

(
f, 1√

2n

)
.

We thus have to determine a bound for c4

(
1, 1√

2

)
, where 1√

2
≈ 0.7071067. As

√
2

5·d(5) ≈ 0.5828223 < 0.7071067 < 0.740754 ≈
√

2
4·d(4) ,

we get

c4

(
1, 1√

2

)
≤ 1 + sup

m≥5
Γ(m) < 330.5,

whence we conclude the validity of

Corollary 5.2.

‖Bnf − f‖∞ ≤ 661 · ωϕ2
(
f, 1√

2n

)
, n ≥ 1.
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Remark 5.2. (i) The constant 405 = 2 + 403 from Corollary 5.1 is not
directly comparable to 661 from Corollary 5.2, since ωϕ2

(
f, 1√

n

)
figures

in the former, and ωϕ2
(
f, 1√

2n

)
in the latter.

(ii) The limiting constant in inequalities similar to that in Corollary 5.2 is

2 ·
(
1 + lim

m→∞
Γ(m)

)
= 2 · (1 + 192) = 386. �

6. FURTHER APPLICATIONS

6.1. Piecewise linear interpolation. Let ∆n : a = x0 < x1 < ... < xn = b
be a partition of the interval [a, b], and let S∆n be the positive linear operator
associating with each f ∈ C[a, b] the piecewise linear and continuous function
interpolating f at xi, i = 0, . . . , n. As was observed by T. Popoviciu [30], S∆n

can be represented in the following way:

S∆n(f ;x) = f(x0) + (x− x0) · [x0, x1; f ]

+
n∑
k=2

xk−xk−2

2

(
|x− xk−1|+ x− xk−1

)
· [xk−2, xk−1, xk; f ],

where [a, b; f ] and [a, b, c; f ] denote divided differences of f .
Since S∆n reproduces linear functions, determining S∆n

(
(t−x)2;x

)
amounts

to representing

S∆n(e2, x)− x2, for x ∈ [a, b], or for x ∈ [xk, xk+1], 0 ≤ k ≤ n− 1.

But for x ∈ [xk, xk+1], S∆n(e2, x)−x2 is just the remainder of linear Lagrange
interpolation at xk and xk+1, and thus

S∆n((t− x)2;x) = (x− xk)(xk+1 − x), for x ∈ [xk, xk+1].

The latter is a piecewise quadratic polynomial, and we have to find out its
relationship to φ2(x) = (x − a)(b − x), depending on the structure of the
partition ∆n. For simplicity we consider again the case [a, b] = [0, 1]. Let

tn(u) := (u− xk)(xk+1 − u), for u ∈ [xk, xk+1], 0 ≤ k ≤ n− 1.

We are thus looking for sufficient conditions on ∆n under which

tn(u) ≤ C · u(1−u)
nα , 0 ≤ u ≤ 1,

where C = C(∆n) and α = α(∆n) are suitably chosen.
In Theorem 12 of [14] the following necessary and sufficient conditions on

∆n are given for the existence of positive linear operators solving the so-called
“strong form of Butzer’s problem”:

There exists a sequence of partitions of the interval [0, π2 ],

δn : 0 = θ0 < θ1 < . . . < θn = π
2 ,

such that

(i) xk = sin2 θk, k = 0, . . . , n;
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(ii) θk+1 − θk ≤ c
n , k = 0, . . . , n − 1, where c is a constant independent

of n and k.

Let us define

θk = (2k−1)π
4(n−1) , k = 1, . . . , n− 1, n ≥ 2, θ0 = 0, θn = π

2 .

In this case the xk are obtained from the zeros of the Chebyshev polynomial
Tn−1(x) = cos

(
(n− 1) · arccosx

)
after a linear transformation of [−1, 1] onto

the interval [0, 1].
We have

θk+1 − θk = π
2(n−1) = π

2 ·
n
n−1 ·

1
n ≤ π ·

1
n , k = 1, . . . , n− 2, n ≥ 2,

as well as

θ1 − θ0 = θn − θn−1 = π
4(n−1) = π

4 ·
n
n−1 ·

1
n ≤

π
2 ·

1
n .

So we get c = π in (ii) above.
Here we point out that in Theorem 9 in [22] sufficient conditions on the

nodes are given, such that a certain operator satisfies the DeVore-Gopengauz
inequality.

The nodes

yk = 2xk − 1, k = 0, . . . , n,

satisfy these conditions if the range [−1, 1] is considered instead of [0, 1]. For
our choice of θk it is easy to compute that in Theorem 9 in [22] we can take
c = 2π and β = 3.

We go on with the estimate of the function

gn(u) := tn(u)
u(1−u) , u ∈ [xk, xk+1], 0 ≤ k ≤ n− 1.

First we consider 1 ≤ k ≤ n− 2. It is easy to compute that

max
u∈[xk,xk+1]

gn(u) = sin2(θk+1 − θk) ≤ (θk+1 − θk)2 =
(

π
2(n−1)

)2 ≤ π2 · 1
n2 .

Let u ∈ [0, x]. Then

gn(u) = u(x1−u)
u(1−u) ≤ x1 ≤ θ2

1 ≤
(
π
2

)2 · 1
n2 .

The same holds for u ∈ [xn−1, 1].
Similar estimates for gn(u) are given in [22], but without explicit description

of the constants appearing in the proof.
We thus proved that

S∆n

(
(t− x)2;x

)
≤ π2 · u(1−u)

n2 .

Setting h = 1
n , n ≥ 2, and choosing m0 = m0(n) ∈ N such that

h ∈
[ √

2
m0·d(m0) ,

√
2

(m0−1)·d(m0−1)

]
,

as a straightforward corollary from Theorem 3.1 we obtain the following
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Corollary 6.1. For n ≥ 2 and S∆n(f ;x), the piecewise linear function
interpolating f at the nodes {xk} defined above, we have∥∥S∆nf − f

∥∥
∞ ≤ cn · ω

ϕ
2

(
f, 1

n

)
,

where

cn = 2 +
(

m0
m0−1

)2 · 48π2

d2(m0−1)
−→ 2 + 192 · π2, n→∞.

Next we consider a different way to obtain an estimate for
∣∣S∆n(f ;x)−f(x)

∣∣,
i.e., one with a constant smaller than cn, and without using Theorem 3.1. We
follow the proof of (3.8)–(3.10). For k = 1, . . . , n − 2, x ∈ [xk, xk+1], in the
same way as there we verify that∣∣S∆n(f ;x)− f(x)

∣∣ ≤ sup
{∣∣f(x+ h)− 2f(x) + f(x− h)

∣∣,
x, x± h ∈ [xk, xk+1], |h| ≤ xk+1−xk

2 =
yk+1−yk

4

}
,

where yk are the zeros of Tn−1(x).
To estimate yk+1 − yk we use (7.8) in Chapter 8 of [5]. We get

|h| ≤ 9π
4 ·
√

1−y2
n = 9π

2 ·
√
x(1−x)

n ,

where y = 2x− 1. Hence

‖S∆nf − f‖∞ ≤ ω
ϕ
2

(
f ; 9π

2n

)
, for x ∈ [x1, xn−1].

An analogous estimate holds for x ∈ [0, x1] ∪ [xn−1, 1]. To the best of our
knowledge it is not known how to take the constant 9π

2 out of the modulus ωϕ2
without using Theorem 3.1, while the latter leads to an enormous increase of
the constant multiplying ωϕ2 .

Considering the last inequality and Corollary 6.1 the following question
arises: Can we obtain an estimate of the type

‖S∆nf − f‖∞ ≤ β · ω
ϕ
2

(
f ; γn

)
with positive constants β and γ as small as possible?

In the next to the last inequality we have γ = 9π/2, β = 1, and in Corol-
lary 6.1 we got γ = 1, β = cn → 2 + 192 · π2. It is clear that a smaller value
of β leads to a bigger one of γ and vice versa.

Remark 6.1. The number of nodes {xk} of S∆n(f ;x) is n+1 in this section,
while the number of nodes in Lemma 3.2 is O(n2), if we write m = n there.
Obviously, increasing the number of nodes, i.e., using {yk} from Lemma 3.2
instead of {xk}, leads to a constant better than 9π/2, obtained in the second
estimate of this section. �
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6.2. Bernstein-Stancu operators. In the article [32] published in 1972, D. D.
Stancu introduced a multiparameter generalization of the classical Bernstein
operator which was further investigated, generalized and modified in some 40
papers since then. One recent contribution is due to Stancu himself (see [35]),

who presented certain even more general mappings Lα,β,γn,p,r , thus unifying se-
veral earlier approaches.

In this section we focus on those cases of the above operators which preserve
e0 and e1, namely Lα,0,0n,0,r , and which we will write as Lαn,r for brevity. These

were first investigated in [33] and [34], and are given as follows.
Let r be a non-negative integer parameter, n is a natural number such that

n > 2r, while α is a non-negative parameter which may depend on n. To each
f : [0, 1]→ R we associate

Lαn,r(f ;x) :=

n−r∑
k=0

p
〈α〉
n−r,k(x) ·

{[
1−x+(n− r−k)α

]
·f
(
k
n

)
+(x+kα) ·f

(
k+r
n

)}
,

where, in terms of factorial powers

t[m,h] := t(t− h) . . . (t− (m− 1)h), t[0,h] := 1,

we have

p
〈α〉
n−r,k(x) :=

(
n−r
k

)
· x

[k,−α](1−x)[n−r−k,−α]

(1+α)[n−r,−α]
.

For (α, r) = (0, 0) and (α, r) = (0, 1) the operator becomes the classical Bern-
stein operator. For α ≥ 0 and r given as above, it is a positive linear operator.

Stancu showed that

Lαn,rei = ei, i = 0, 1, and that

Lαn,r(e2;x)− x2 = Lαn,r((e1 − x)2;x)

=
[
1 + αn+ r(r−1)

n

]
· x(1−x)
n(1+α) =: dLαn,r ·

(
ϕ(x)

n1/2

)2
.

We apply Theorem 3.1 first, putting there again h = 1√
n

, n ≥ 1. This gives∣∣Lαn,r(f ;x)− f(x)
∣∣ ≤ [2 +

(
m
m−1

)2 · 48
d2(m−1)

· dLαn,r
]
· ωϕ2

(
f ; 1√

n

)
.

As in the proof of Corollary 5.1, we note that we can restrict our attention to
values m ≥ 4. This implies, using Γ(m) from Remark 3.2 again,∥∥Lαn,rf − f∥∥∞ ≤

[
2 + sup

m≥4
Γ(m) · 1

1+α ·
(

1 + αn+ r(r−1)
n

) ]
· ωϕ2

(
f ; 1√

n

)
≤

[
2 + 403

1+α ·
(

1 + αn+ r(r−1)
n

)]
· ωϕ2

(
f ; 1√

n

)
.

Furthermore, if 0 ≤ α = α(n) ≤ A · 1
n , then∥∥Lαn,rf − f∥∥∞ ≤

[
2 + 403 ·

(
1 +A+ r(r−1)

n

)]
· ωϕ2

(
f ; 1√

n

)
, n ≥ 1.
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For (α, r) = (0, 0) or (α, r) = (0, 1) we arrive again at the statement of
Corollary 5.1.

Applying Corollary 4.2 yields∥∥Lαn,rf − f∥∥∞ ≤ 2 · c4

(
1,
√

1
2dLαn,r

)
· ωϕ2

(
f ;
√

1
2ndLαn,r

)
.

Here
1
2dLαn,r = 1

2(1+α) ·
(
1 + αn+ r(r−1)

n

)
.

It is meaningful to also assume here that α = α(n) ≤ A · 1
n , so that

dLαn,r
2 ≤ 1

2 [1 +A+ r(r − 1)],

whence∥∥Lαn,rf − f∥∥∞ ≤ 2 · c4

(
1,

√
1+A+r(r−1)

2

)
· ωϕ2

(
f ;
√

1 +A+ r(r − 1) · 1√
2n

)
.

For (α, r) = (0, 0) or (α, r) = (0, 1) we have again∥∥Bnf − f∥∥∞ ≤ 2 · c4

(
1, 1√

2

)
· ωϕ2

(
f ; 1√

2n

)
≤ 661 · ωϕ2

(
f ; 1√

2n

)
(cf. Corollary 5.2) �

Inequalities similar to the ones from this section can also be obtained for
a certain class of Bernstein-type operators introduced and investigated by
Brass [1]. These are related to the above Bernstein–Stancu operators and also
generalize other operators. For further results on Brass operators see [25], [26]
and [27].

6.3. Gavrea operators. In 1996 Gavrea published the article [13] in which a
long-standing problem on positive linear operators was solved. Among other
things, he introduced a sequence of positive linear polynomial operatorsH2n+1 :
C[0, 1]→ Π2n+1 which reproduce linear functions and for which one has

H2n+1((e1 − x)2;x) ≤ x(1− x) · (1− xn)

≤ x(1− x) · K
n2 .

Here xn < 1 is the largest root of the Jacobi polynomial J
(1,0)
n (defined on

[0, 1]) and K is a constant independent of n. A numerical value for K was
not given in Gavrea’s paper. We refrain from giving the rather complicated
definition of H2n+1 here and refer the reader instead to [13].

Applying Theorem 3.1, using h = 1
n now, shows that

‖H2n+1f − f‖∞ ≤
(
2 + Γ(m) ·K

)
· ωϕ2

(
f, 1

n

)
,

where
√

2
m·d(m) ≤

1
n <

√
2

(m−1)·d(m−1) .

Again it suffices to consider m ≥ 4 so that we arrive at

‖H2n+1f − f‖∞ ≤ (2 + 403 ·K) · ωϕ2
(
f, 1

n

)
, n ≥ 1.
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It is also possible to apply Theorem 4.1 to H2n+1 in order to derive similar

estimates in terms of ωϕ
λ

2 , 0 ≤ λ ≤ 1.
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