A CONVERGENCE ANALYSIS OF AN ITERATIVE ALGORITHM OF ORDER 1.839... UNDER WEAK ASSUMPTIONS

IOANNIS K. ARGYROS

Abstract. We provide new and weaker sufficient local and semilocal conditions for the convergence of a certain iterative method of order 1.839... to a solution of an equation in a Banach space. The new idea is to use center-Lipschitz/Lipschitz conditions instead of just Lipschitz conditions on the divided differences of the operator involved. This way we obtain finer error bounds and a better information on the location of the solution under weaker assumptions than before.

Keywords. Banach space, majorizing sequence, Halley method, Euler–Chebyshev method, divided differences of order one and two, Fréchet-derivative, R-order of convergence, convergence radius.

1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution x^* of equation

$$F(x) = 0,$$

where F is a Fréchet differentiable operator on an open convex subset D of a Banach space X with values in a Banach space Y.

The iterations

$$x_{n+1} = x_n - L_n^{-1}F(x_n),$$

$$L_n = [x_n, x_{n-1}] + [x_{n-2}, x_n] - [x_{n-2}, x_{n-1}], \quad n \geq 0,$$

have been already used to generate a sequence converging to x^* with R-order 1.839... [4], [12] and [13]. Here, $[x, y] \in L(X, Y)$, $[x, y, z] \in L(X, L(X, Y))$ denote divided differences of order one and two respectively of operator F satisfying

$$[x, y](y - x) = F(y) - F(x)$$

and

$$[x, y, z](y - z) = [x, y] - [x, z]$$

for all $x, y, z \in D$ [4].
Method (2) is considered to be a discretized version of the famous cubically convergent methods of Euler–Chebyshev (tangent hyperbola) or Halley (parabola) \[1\]–\[3\], \[6\], \[10\] and \[11\]. Discretized versions of the above methods using divided differences of order one and two or just one have also been considered in \[5\], \[7\] and \[9\].

Here we provide a new local and semilocal convergence analysis for method (2). Using Lipschitz and center Lipschitz conditions on the divided differences of operator F instead of just Lipschitz conditions we introduce weaker sufficient convergence conditions than before. Moreover we obtain finer error bounds on the distances involved as well as a better information on the location of the solution x^\ast. Furthermore in the case of local analysis a larger convergence radius is obtained.

2. SEMILOCAL ANALYSIS

Let d_i, $i = 0, 1, \ldots, 5$, η_0, η_1 be non-negative parameters and $\delta \in [0, 1)$. Define the parameters α_0, α_1, α_2, β_0, β_1 by

\[
\begin{align*}
\alpha_2 &= (1 - \delta^2)d_5, \\
\alpha_1 &= \delta\{\delta(d_1 + \delta d_0) - (1 - \delta^2)(d_3 + \delta d_2)\}, \\
\alpha_0 &= -\delta(1 - \delta)(\eta_0 + \eta_1)d_5\eta_1, \\
\beta_1 &= d_3 + \delta(d_0 + d_2), \\
\beta_0 &= (\eta_0 + \eta_1)\eta_1(d_5 + \delta d_4) - \delta,
\end{align*}
\]

and functions f, g by

\[
\begin{align*}
f(t) &= \alpha_2 t^2 + \alpha_1 t + \alpha_0, \\
g(t) &= \beta_1 t + \beta_0.
\end{align*}
\]

We can show the following result on majorizing sequences.

Theorem 1. Let η be a non-negative parameter such that

\[
\eta \leq \begin{cases}
\min\{\alpha_3, \beta_2\}, & \text{if } \beta_1 \neq 0, \\
0, & \text{if } \alpha_0 = 0, \\
\alpha_3, & \text{if } \beta_1 = 0,
\end{cases}
\]

provided

\[
\beta_0 \leq 0,
\]

where α_3, β_2 are the non-negative zeros of functions f and g respectively. Then
(a) Iteration \(\{t_n\} \), \(n \geq -2 \), given by
\[
\begin{align*}
t_{-2} &= 0, \\
t_{-1} &= \eta_0, \\
t_0 &= \eta_0 + \eta_1, \\
t_1 &= \eta_0 + \eta_1 + \eta, \\
t_{n+2} &= t_{n+1} + \frac{d_3(t_{n+1} - t_n) + d_2(t_n - t_{n-2}) + d_1(t_{n-2} - t_{n-3})}{1 - d_4 \eta_1 (\eta_0 + \eta_1) - d_3 (t_{n+1} - t_0) - d_2(t_n - t_{n-2}) - d_1(t_{n-2} - t_{n-3}) - d_0(t_{n-3} - t_{n-4})} (t_{n+1} - t_n),
\end{align*}
\]
\(n \geq 0, \)
is non-decreasing, bounded above by
\[
t^{**} = \frac{\eta}{1 - \delta} + \eta_0 + \eta_1
\]
and converges to \(t^* \) such that
\[
0 \leq t^* \leq t^{**}.
\]
Moreover, the following error bounds hold for all \(n \geq 0 \)
\[
0 \leq t_{n+2} - t_{n+1} \leq \delta(t_{n+1} - t_n) \leq \delta^{n+1} \eta.
\]
(b) Iteration \(\{s_n\} \), \(n \geq -2 \), given by
\[
\begin{align*}
s_{-2} - s_{-1} &= \eta_1, \\
s_{-1} - s_0 &= \eta_0, \\
s_0 - s_1 &= \eta, \\
s_{n+2} - s_{n+1} &= \frac{d_3(s_{n+1} - s_{n+2}) + d_2(s_{n+2} - s_{n+3}) + d_1(s_{n+3} - s_{n+4})}{1 - d_4 \eta_1 (\eta_0 + \eta_1) - d_3 (s_{n+1} - s_{n+2}) - d_2(s_{n+2} - s_{n+3}) - d_1(s_{n+3} - s_{n+4}) - d_0(s_{n+4} - s_{n+5})} (s_n - s_{n+1}),
\end{align*}
\]
\(n \geq 0, \)
for \(s_{-1}, s_0, s_1 \geq 0 \) is non-increasing, bounded below by
\[
s^{**} = s_0 - \frac{\eta}{1 - \delta}
\]
and converges to some \(s^* \) such that
\[
0 \leq s^{**} \leq s^*.
\]
Moreover, the following error bounds hold for all \(n \geq 0 \):
\[
0 \leq s_{n+1} - s_{n+2} \leq \delta(s_n - s_{n+1}) \leq \delta^{n+1} \eta.
\]
\[\text{Proof.}\] (a) We must show:
\[
(d_3 + \delta d_2)(t_{k+1} - t_k) + d_5(t_k - t_{k-2})(t_{k-1} - t_{k-2}) + d_0(t_{k+1} - t_0) + \delta d_4(t_k - t_0) + \eta_1(\eta_0 + \eta_1) \leq \delta
\]
\[
1 - d_4 \eta_1 (\eta_0 + \eta_1) - d_3 t_{k+1} + d_2(t_{k+1} - t_k) > 0
\]
for all \(k \geq 0. \)
Inequalities (22) and (23) hold for \(k = 0 \) by the initial conditions. But then (14) gives
\[
0 \leq t_2 - t_1 \leq \delta(t_1 - t_0) .
\]
Let us assume (22), (23) and (17) hold for all \(k \leq n + 1 \). By the induction hypotheses we get
\[
(d_3 + \delta d_2)(t_{k+2} - t_{k+1}) + d_5(t_{k+1} - t_{k+1})(t_{k+1} - t_k) + \delta d_0(t_{k+2} - t_0) + \delta d_1(t_{k+1} - t_0) + \delta d_4\eta_1(\eta_0 + \eta_1) \leq
\]
\[
(3 + \delta d_2)\delta^{k+1} + d_5(\delta^k + \delta^{k-1})\eta^2 \delta^k + \delta d_0 \frac{\eta}{1 - \delta} + \delta d_1 \frac{\eta}{1 - \delta} + \delta d_4\eta_1(\eta_0 + \eta_1).
\]
It is clear that (25) will be bounded above by \(\delta \) if
\[
(d_3 + \delta d_2)\delta^{k+1} + d_5(\delta^k + \delta^{k-1})\eta^2 \delta^k + \delta d_0 \frac{\eta}{1 - \delta} + \delta d_1 \frac{\eta}{1 - \delta} + \delta d_4\eta_1(\eta_0 + \eta_1) \leq
\]
\[
(3 + \delta d_2)\eta + d_5(\eta_0 + \eta_1)\eta_1 + \delta d_0\eta + \delta d_4\eta_1(\eta_0 + \eta_1)
\]
or
\[
(3 + \delta d_2)(1 - \delta)\delta^{k+1} + d_5(1 - \delta^2)\eta^2 \delta^k + \delta d_0\eta + \delta d_1\eta \leq
\]
\[
(3 + \delta d_2)(1 - \delta)(3 + \delta d_2)\eta + (1 - \delta)d_5(\eta_0 + \eta_1)\eta_1 + (1 - \delta)\delta d_0\eta
\]
or, for \(k \geq 0 \),
\[
(3 + \delta d_2)(1 - \delta)\eta + d_5(1 - \delta)(\eta_0 + \eta_1)\eta_1 + (1 - \delta)\delta d_0\eta
\]
or, for \(\delta \neq 0 \),
\[
\alpha_2\eta^2 + \alpha_1\eta + \alpha_0 \leq 0 ,
\]
which is true by the choice of \(\eta \). By the same proof as above we show (23) for \(k = n + 1 \).

We must also show:
\[
t_k \leq t^{**}, \quad k \geq 1 .
\]
For \(k = 1,2 \) we have \(t_1 \leq t^* \) and \(t_2 \leq t_1 + \delta\eta = \eta_0 + \eta_1 + (1 + \delta)\eta \leq t^{**} \). Assume (27) holds for all \(k \leq n + 1 \). It follows from (17) that
\[
t_{k+2} \leq t_{k+1} + \delta(t_{k+1} - t_k) \leq t_1 + \delta(t_1 - t_0) + \delta(t_{k+1} - t_k) \]
\[
\leq t_1 + \delta(t_1 - t_0) + \cdots + \delta(t_{k+1} - t_k) \leq \eta_0 + \eta_1 + \delta\eta + \cdots + \delta^{k+1} \eta
\]
\[
= \eta_0 + \eta_1 + \frac{1 - \delta^{k+2}}{1 - \delta} \eta
\]
\[
< t^{**} .
\]
That is, \(\{ t_n \}, \quad n \geq 0 \), is bounded above \(t^{**} \). By (22) and (23) we get
\[
t_{k+2} - t_{k+1} \geq 0 .
\]
Hence sequence \{t_n\}, \(n \geq 0\), is also non-decreasing and as such it converges to some \(t^*\) satisfying (16).

(b) The proof follows along the lines of part (a).

That completes the proof of Theorem 1. \(\square\)

We show the following semilocal convergence theorem for method (2).

Theorem 2. Let \(F : D \subseteq X \to Y\) be a differentiable operator with divided differences of the first and second order denoted by \([\cdot, \cdot], [\cdot, \cdot, \cdot]\) respectively. Assume:

- there exist points \(x_{-2}, x_{-1}, x_0 \in D\) so \(L_0\) is invertible and non-negative numbers \(\eta, d_i, i = 0, 1, \ldots, 5\) such that

\[
\begin{align*}
\|L_0^{-1}(x_0, x_0) - [y, y]\| &\leq d_0\|x_0 - y\|, \\
\|L_0^{-1}(x, x_0) - [x, y]\| &\leq d_1\|x_0 - y\|, \\
\|L_0^{-1}(x_0, y) - [x, z]\| &\leq d_2\|y - x\|, \\
\|L_0^{-1}(x, y) - [x, x]\| &\leq d_3\|y - x\|, \\
\|L_0^{-1}(x, y, x_0) - [z, y, x_0]\| &\leq d_4\|y - x\|, \\
\|L_0^{-1}(x, y, y) - [z, z, y]\| &\leq d_5\|x - y\|, \quad \text{for all } x, y, z \in D, \\
\|x_{n-1} - x_0\| &\leq \eta_1, \quad \|x_{n-1} - x_{-2}\| \leq \eta_0, \quad \|x_1 - x_0\| \leq \eta;
\end{align*}
\]

- hypotheses of Theorem 1 hold, and

\[
\mathcal{U}(x_0, t^*) = \{ x \in X : \|x - x_0\| \leq t^* \} \subseteq D.
\]

Then method \(\{x_n\}\), \(n \geq 0\), generated by (2) is well defined, remains in \(\mathcal{U}(x_0, t^*)\) for all \(n \geq 0\) and converges to a solution \(x^* \in \mathcal{U}(x_0, t^*)\) of equation \(F(x) = 0\). Moreover, the following error bounds hold for all \(n \geq 0\):

\[
\|x_{n+2} - x_{n+1}\| \leq t_{n+2} - t_{n+1}
\]

and

\[
\|x_n - x^*\| \leq t^* - t_n.
\]

Furthermore, if there exists \(R \geq t^*\) such that

\[
\mathcal{U}(x_0, R) \subseteq D,
\]

\[
\|L_0^{-1}(x, y) - [z, w]\| \leq d_6(\|x - z\| + \|y - w\|), \quad \text{for all } x, y, z, w \in D,
\]

and

\[
d_6(R + t^* + 2\eta_0 + 2\eta_1) \leq 1
\]

or \([\cdot, \cdot]\) is symmetric and

\[
d_6(R + t^* + \eta_0 + \eta_1) + d_1(\eta_0 + \eta_1) \leq 1,
\]

the solution \(x^*\) is unique in \(\mathcal{U}(x_0, R)\).
Proof. Let us prove
\[(43) \quad \|x_{k+1} - x_k\| \leq t_{k+1} - t_k \quad k \geq -2.\]
For \(k = -2, -1, 0\) (43) holds by the initial conditions. Assume (43) holds for all \(n \leq k\). Using (29), (30), (31), (33) and (43) we obtain
\[
\begin{align*}
\|L_0^{-1}(L_0 - L_{k+1})\| &= \|L_0^{-1}(L_0 - [x_0, x_0] + [x_0, x_0] - [x_{k+1}, x_0] + [x_{k+1}, x_0] - [x_{k+1}, x_k] - [x_{k+1}, x_k] - L_{k+1})\| \\
&\leq \|L_0^{-1}([x_0, x_0] - [x_{k+1}, x_0])\| + \|L_0^{-1}([x_{k+1}, x_0] - [x_{k+1}, x_k])\| \\
&\leq d_4\|x_{k+1} - x_0\|\|x_0 - x_0\| + d_0\|x_{k+1} - x_0\| \\
&\quad + d_1\|x_{k+1} - x_0\| + d_2\|x_{k+1} - x_{k+1}\| \\
&\leq d_4\eta_0(\eta_0 + \eta_1) + d_0(t_{k+1} - t_0) + d(t_k - t_0) + d_2(t_{k+1} - t_k) \\
&\leq d_4\eta_0(\eta_0 + \eta_1) + d_0(t^* - t_0) + d_1(t^* - t_0) + d_2\delta_k\eta \\
&< 1.
\end{align*}
\[(44) \quad \|L_0^{-1}L_0\| \leq 1 - d_4\eta_0(\eta_0 + \eta_1) - d_0(t_{k+1} - t_0) - d_1(t_k - t_0) - d_2(t_{k+1} - t_k)\]^{-1}.
Moreover, we have
\[
\begin{align*}
\|L_0^{-1}([x_k, x_{k+1}] - L_k)\| &= \|L_0^{-1}([x_k, x_{k+1}] - [x_k, x_k] + [x_k, x_k] - L_k)\| \\
&\leq \|L_0^{-1}([x_k, x_{k+1}] - [x_k, x_k])\| + \|L_0^{-1}([x_k, x_{k+1}] - [x_k, x_{k+1}])(x_k - x_{k+1})\| \\
&\leq d_3\|x_{k+1} - x_k\| + d_5\|x_k - x_{k-2}\|\|x_k - x_{k-1}\| \\
&\leq d_3(t_{k+1} - t_k) + d_5(t_k - t_{k-2})(t_k - t_{k-1}).
\end{align*}
\[(46) \quad \|x_{k+2} - x_{k+1}\| \leq \|L_{k+1}^{-1}L_0\|\|L_0^{-1}([x_k, x_{k+1}] - L_k)\|\|x_{k+1} - x_k\| \leq t_{k+2} - t_{k+1},\]
which shows (43).
Theorem 1 and (47) imply \(\{x_n\}, n \geq 0 \), is a Cauchy sequence in a Banach space \(X \) and as such it converges to some \(x^* \in \overline{U}(x_0, t^*) \), since \(\overline{U}(x_0, t^*) \) is a closed set.

By (43) we get
\[
\|x_n - x_m\| \leq t_m - t_n, \quad -2 \leq n \leq m,
\]
while by letting \(m \to \infty \) in (48) we obtain (38).

Finally, by letting \(k \to \infty \) in (47), we get
\[
F(x^*) = 0.
\]
To show uniqueness, let \(y^* \in U(x_0, R) \) be a solution of equation \(F(x) = 0 \). We can have in turn
\[
\frac{L_0^{-1}([y^*, x^*] - L_0)}{L_0^{-1}([y^*, x^*] - [x_0, x_2])} \leq d_6 R + t^* + 2(\eta_0 + \eta_1) + d_1 (\eta_0 + \eta_1) \leq 1.
\]

It follows by (49) and the Banach Lemma on invertible operators that \([y^*, x^*]\) is invertible. Hence, from
\[
F(x^*) - F(y^*) = [y^*, x^*](x^* - y^*),
\]
we deduce that \(x^* = y^* \).

If \([\cdot, \cdot]\) is symmetric as in (49) we get
\[
\frac{L_0^{-1}([y^*, x^*] - L_0)}{L_0^{-1}([y^*, x^*] - [x_0, x_2])} \leq d_6 R + t^* + 2(\eta_0 + \eta_1) + d_1 (\eta_0 + \eta_1) \leq 1.
\]
We conclude again that \(x^* = y^* \).

That completes the proof of Theorem 2. \(\square \)

The proof of the following result follows exactly as in Theorem 2 but using part (b) of Theorem 1.

Theorem 3. Assume hypotheses of Theorems 1 and 2 hold.
Then method \(\{x_n\}, n \geq 0 \), generated by (2) is well defined, remains in \(U(x_0, s^*) \) for all \(n \geq 0 \) and converges to a solution \(x^* \in U(x_0, s^*) \) of equation \(F(x) = 0 \). Moreover, the following error bounds hold for all \(n \geq 0 \):
\[
\|x_{n+2} - x_{n+1}\| \leq s_{n+1} - s_{n+2}
\]
and
\[
\|x_n - x^*\| \leq s_n - s^*.
\]
Furthermore if there exists \(R_1 \geq s^* \) such that, together with (40),
\[
U(x_0, R_1) \subseteq D
\]
holds, and
\[
d_6 [R_1 + s^* + 2(\eta_0 + R_1)] \leq 1
\]
or

\[[\cdot, \cdot] \text{ is symmetric} \]

and

\[d_6(R_1 + s^* + \eta_0 + \eta_1) + d_1(\eta_0 + \eta_1) \leq 1, \]

the solution \(x^* \) is unique in \(U(x_0, R) \).

Remark 1. In [12, Th. 5.1], condition (40) was used together with

\[\| L_0^{-1}(x, y, z) - (u, y, z) \| \leq d_7 \| x - u \| \]

for all \(x, y, z, v \in D \) to show convergence of method (2).

The following error bounds were found

\[\| x_{n+1} - x_n \| \leq v_n - v_{n+1} \]

and

\[\| x_n - x^* \| \leq v_n - v^*, \]

where,

\[v^* = \lim_{n \to \infty} v_n, \]

and \(\{v_n\} \) is similar to \(\{s_n\} \) but using \(d_6, d_7, \eta_0, \eta_1, \eta \) instead of \(d_0, d_1, d_2, d_3, d_4, d_5, \eta_0, \eta_1, \eta \). Note also that in general

\[d_0 \leq d_1 \leq d_3 \leq d_2 \leq d_6 \]

and

\[d_4 \leq d_5 \leq d_7. \]

Hence we can easily obtain by induction

\[s_n - s_{n+1} \leq v_n - v_{n+1} \]

and

\[s_n - s^* \leq v_n - v^*. \]

That is, under weaker convergence conditions we obtain finer error bounds. □

3. LOCAL ANALYSIS

We can show the following local results for method (2).
Theorem 4. Let $F : D \subseteq X \to Y$ be a differentiable operator. Assume F has divided differences of the first and second order such that:

\[(65)\quad F'(x^*) = [x^*, x^*],\]

\[(66)\quad \|F'(x^*)^{-1}([x^*, x^*] - [x, x^*])\| \leq a_0\|x - x^*\|,\]

\[(67)\quad \|F'(x^*)^{-1}([x, x^*] - [x, y])\| \leq b_0\|x - x^*\|,\]

\[(68)\quad \|F'(x^*)^{-1}([x, x^*] - [z, x^*])\| \leq c_0\|z - x^*\|,\]

\[(69)\quad \|U(x_0)\| \leq c\|u - v\|,\]

\[(70)\quad \mathcal{U}(x^*, r^*) \subseteq D,\]

for all $x, y, z, u, v \in D$, where x^* is a simple zero of F, and

\[(71)\quad r^* = \frac{2}{a_0 + 2b_0 + \sqrt{(a_0 + 2b_0)^2 + 8(c + c_0)}}.\]

Then method (2) is well defined, remains in $U(x^*, r^*)$ for all $n \geq 0$, and converges to x^* provided that $x_{-1}, x_{-2}, x_0 \in U(x^*, r^*)$.

Moreover, the following error bounds hold for all $n \geq 0$:

\[(72)\quad \|x_{n+1} - x^*\| \leq \frac{b_0\|x_n - x^*\| + c([\|x_{n-1} - x^*\| + \|x_{n-2} - x^*\|])}{1 - (a_0 + b_0)\|x_n - x^*\| - c_0([\|x_n - x^*\| + \|x_{n-2} - x^*\|])\|x_{n-1} - x^*\|} \|x_n - x^*\| = \alpha_n.\]

Proof. We first show linear operator

\[L \equiv L(x, y, z) = [x, y] + [z, x] - [z, y], \quad x, y, z \in U(x^*, r^*)\]

is invertible. By (65), (67), (69), we get in turn

\[(73)\quad \|F'(x^*)^{-1}(F'(x^*) - L)\| = \]

\[= \|F'(x^*)^{-1}([x^*, x^*] - [x, x^*] + [z, x^*] - [z, x] + [x, x^*] - [x, y] - [z, x^*] + [z, y])\| \]

\[\leq \|F'(x^*)^{-1}([x^*, x^*] - [x, x^*])\| + \|F'(x^*)^{-1}([z, x^*] - [z, x])\| + \|F'(x^*)^{-1}([x, x^*] - [x, y] - [z, x^*] + [z, y])\| \]

\[\leq (a_0 + b_0)\|x - x^*\| + c\|x - z\| \cdot \|x^* - y\| \]

\[\leq (a_0 + b_0)\|x - x^*\| + c(\|x - x^*\| + \|z - x^*\|)\|y - x^*\| \]

\[< (a_0 + b_0)r^* + 2c(r^*)^2 \]

by the choice of r^*. It follows from (73) and the Banach Lemma on invertible operators that L is invertible.
By (2) we can write

\[
(75) \quad x, y, u, v
\]

Estimate (72) now follows from (74), (75) and (76). By the choice of (76) we get

\[
(79) \quad \text{and from which it follows}
\]

Moreover, by (67) and (69) we get

\[
\|F'(x^*)^{-1}([x_k, x^*] - L_k)\| = \\
= \|F'(x^*)^{-1}([x_k, x^*] - [x_k, x_k] + [x_k, x_k] - [x_k, x_k]) - [x_k, x_k] + [x_k, x_k, x_k]\| \\
\leq \|F'(x^*)^{-1}([x_k, x^*] - [x_k, x_k])\| + \|F'(x^*)^{-1}([x_k, x_k, x_k] - [x_k, x_k, x_k]) - [x_k, x_k, x_k] + [x_k, x_k, x_k])\| \\
\leq b_0\|x_k - x^*\| + c\|x_k - x_k\| \|x_k - x_k\| \\
(75) \quad \leq b_0\|x_k - x^*\| + c\|x_k - x^*\| + \|x^* - x_k\| \|x_k - x_k\| \|x_k - x_k\|.
\]

By (2) we can write

\[
\|x_k + x^*\| = \|x_k - x^* - L_k^{-1}(F(x_k) - F(x^*))\| \\
= \| - L_k^{-1}([x_k, x^*] - L_k)(x_k - x^*)\| \\
(76) \quad \leq \|L_k^{-1}F'(x^*)\| \|F'(x^*)^{-1}([x_k, x^*] - L_k)\| \|x_k - x^*\|.
\]

Estimate (72) now follows from (74), (75) and (76). By the choice of \(r^* \) and (76) we get

\[
\|x_k + x^*\| < \|x_k - x^*\| < r^*,
\]

from which it follows \(x_k + 1 U(x^*, r^*) \) and \(\lim_{k \to \infty} x_k = x^* \).

That completes the proof of Theorem 3. \(\square \)

Remark 2. In the elegant paper [12] the following conditions were used:

\[
(77) \quad \|F'(x^*)^{-1}([x, y] - [u, v])\| \leq b\|x - u\| + \|y - v\|
\]

and

\[
(78) \quad \|F'(x^*)^{-1}([u, v, x, y])\| \leq c\|u - v\|
\]

for all \(x, y, u, v \in D \). Note that (77) implies \(F'(x^*) = [x^*, x^*] \), [4], [8].

The convergence radius is given by

\[
r_p = \frac{2}{3b + \sqrt{9b^2 + 16c}}.
\]
Moreover the corresponding error bounds are
\[
\|x_{n+1} - x^*\| \leq \beta_n \\
\leq \frac{6\|x_n - x^*\| + c(\|x_n - x^*\| + \|x_{n-2} - x^*\|)\left(\|x_{n-1} - x^*\| + \|x_n - x^*\|\right)}{1 - 2b\|x_n - x^*\| - c(\|x_n - x^*\| + \|x_{n-2} - x^*\|)}\|x_n - x^*\|, \quad n \geq 0.
\]
It can easily be seen that conditions (65)–(69) are weaker than (77) and (78). Moreover in general
\[
a_0 \leq b_0 \leq b \quad \text{and} \quad c_0 \leq c.
\]
Hence,
\[
r_p \leq r^*
\]
and
\[
\alpha_n \leq \beta_n, \quad n \geq 0.
\]
In case strict inequality holds in one of (81) or (82) then (83), (84) hold as strict inequalities also. That is under weaker conditions we provide finer error bounds and a wider choice of initial guesses. This observation is important in computational mathematics.

Finally note that it was also shown in [12] that the \(R\)-order of convergence of method (2) is the unique positive root of equation
\[
t^3 - t^2 - t - 1 = 0,
\]
being approximately 1.839 . . .

REFERENCES

Received by the editors: October 24, 2002.