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Abstract. We provide new and weaker sufficient local and semilocal conditions
for the convergence of a certain iterative method of order 1.839. . . to a solution of
an equation in a Banach space. The new idea is to use center-Lipschitz/Lipschitz
conditions instead of just Lipschitz conditions on the divided differences of the
operator involved. This way we obtain finer error bounds and a better informa-
tion on the location of the solution under weaker assumptions than before.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
x∗ of equation

(1) F (x) = 0,

where F is a Fréchet differentiable operator on an open convex subset D of a
Banach space X with values in a Banach space Y .

The iterations

xn+1 = xn − L−1
n F (xn),(2)

Ln = [xn, xn−1] + [xn−2, xn]− [xn−2, xn−1], n ≥ 0,

have been already used to generate a sequence converging to x∗ with R-order
1.839 . . . [4], [12] and [13]. Here, [x, y] ∈ L(X,Y ), [x, y, z] ∈ L(X,L(X,Y ))
denote divided differences of order one and two respectively of operator F
satisfying

(3) [x, y](y − x) = F (y)− F (x)

and

(4) [x, y, z](y − z) = [x, y]− [x, z]

for all x, y, z ∈ D [4].
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Method (2) is considered to be a discretized version of the famous cubi-
cally convergent methods of Euler–Chebyshev (tangent hyperbola) or Halley
(parabola) [1]–[3], [6], [10] and [11]. Discretized versions of the above meth-
ods using divided differences of order one and two or just one have also been
considered in [5], [7] and [9].

Here we provide a new local and semilocal convergence analysis for method
(2). Using Lipschitz and center Lipschitz conditions on the divided differences
of operator F instead of just Lipschitz conditions we introduce weaker sufficient
convergence conditions than before. Moreover we obtain finer error bounds
on the distances involved as well as a better information on the location of
the solution x∗. Furthermore in the case of local analysis a larger convergence
radius is obtained.

2. SEMILOCAL ANALYSIS

Let di, i = 0, 1, . . . , 5, η0, η1 be non-negative parameters and δ ∈ [0, 1).
Define the parameters α0, α1, α2, β0, β1 by

α2 = (1− δ2)d5,(5)
α1 = δ

{
δ(d1 + δd0)− (1− δ2)(d3 + δd2)

}
,(6)

α0 = −δ(1− δ)(η0 + η1)d5η1,(7)
β1 = d3 + δ(d0 + d2),(8)
β0 = (η0 + η1)η1(d5 + δd4)− δ,(9)

and functions f , g by

f(t) = α2t
2 + α1t+ α0,(10)

g(t) = β1t+ β0.(11)

We can show the following result on majorizing sequences.

Theorem 1. Let η be a non-negative parameter such that

(12) η ≤


min{α3, β2}, β2 = −β0

β1
, if β1 6= 0,

0, if α0 = 0,
α3, if β1 = 0,

provided

(13) β0 ≤ 0,

where α3, β2 are the non-negative zeros of functions f and g respectively.
Then
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(a) Iteration {tn}, n ≥ −2, given by

t−2 =0,
t−1 =η0,

t0 =η0 + η1,

t1 =η0 + η1 + η,

tn+2 =tn+1 + d3(tn+1−tn)+d5(tn−tn−2)(tn−tn−1)
1−d4η1(η0+η1)−d0(tn+1−t0)−d1(tn−t0)−d2(tn+1−tn)(tn+1 − tn),(14)

n ≥ 0,

is non-decreasing, bounded above by

(15) t∗∗ = η

1− δ + η0 + η1

and converges to t∗ such that

(16) 0 ≤ t∗ ≤ t∗∗.

Moreover, the following error bounds hold for all n ≥ 0

(17) 0 ≤ tn+2 − tn+1 ≤ δ(tn+1 − tn) ≤ δn+1η.

(b) Iteration {sn}, n ≥ −2, given by

s−2 − s−1 =η1,

s−1 − s0 =η0,

s0 − s1 =η,

sn+1 − sn+2 = d3(sn−sn+1)+d5(sn−2−sn)(sn−1−sn)
1−d4η1(η0+η1)−d0(s0−sn+1)−d1(s0−sn)−d2(sn−sn+1)(sn − sn+1),

(18)

n ≥ 0,

for s−1, s0, s1 ≥ 0 is non-increasing, bounded below by

(19) s∗∗ = s0 −
η

1− δ
and converges to some s∗ such that

(20) 0 ≤ s∗∗ ≤ s∗.

Moreover, the following error bounds hold for all n ≥ 0:

(21) 0 ≤ sn+1 − sn+2 ≤ δ(sn − sn+1) ≤ δn+1η.

Proof. (a) We must show:

(d3 + δd2)(tk+1 − tk) + d5(tk − tk−2)(tk − tk−1) + δd0(tk+1 − t0)+
+ δd1(tk − t0) + δd4η1(η0 + η1) ≤ δ(22)

1− d4η1(η0 + η1)− d0tk+1 − d1tk − d2(tk+1 − tk) > 0(23)

for all k ≥ 0.
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Inequalities (22) and (23) hold for k = 0 by the initial conditions. But then
(14) gives
(24) 0 ≤ t2 − t1 ≤ δ(t1 − t0).
Let us assume (22), (23) and (17) hold for all k ≤ n + 1. By the induction
hypotheses we get

(d3 + δd2)(tk+2 − tk+1) + d5(tk+1 − tk−1)(tk+1 − tk) + δd0(tk+2 − t0)
+δd1(tk+1 − t0) + δd4η1(η0 + η1) ≤(25)

≤ (d3 + δd2)δk+1η + d5(δk + δk−1)η2δk + δd0
η

1−δ + δd1
η

1−δ + δd4η1(η0 + η1).
It is clear that (25) will be bounded above by δ if
(d3 + δd2)δk+1η + d5(δk + δk−1)η2δk + δd0

η
1−δ + δd1

η
1−δ + δd4η1(η0 + η1) ≤

≤ (d3 + δd2)η + d5(η0 + η1)η1 + δd0η + δd4η1(η0 + η1)
or

(d3 + δd2)(1− δ)δk+1η + d5δ
k−1(1− δ2)η2δk + δd0η + δd1η ≤

≤ (1− δ)(d3 + δd2)η + (1− δ)d5(η0 + η1)η1 + (1− δ)δd0η

or, for k ≥ 0,

(d3 + δd2)δ(1− δ)η + 1−δ2

δ d5η
2 + δd1η + δd0η ≤

≤ (d3 + δd2)(1− δ)η + d5(1− δ)(η0 + η1)η1 + (1− δ)δd0η

or, for δ 6= 0,
(26) α2η

2 + α1η + α0 ≤ 0,
which is true by the choice of η. By the same proof as above we show (23) for
k = n+ 1.

We must also show:
(27) tk ≤ t∗∗, k ≥ 1.
For k = 1, 2 we have t1 ≤ t∗ and t2 ≤ t1 + δη = η0 + η1 + (1 + δ)η ≤ t∗∗.
Assume (27) holds for all k ≤ n+ 1. It follows from (17) that

tk+2 ≤ tk+1 + δ(tk+1 − tk)
≤ tk + δ(tk − tk−1) + δ(tk+1 − tk)
· · ·

≤ t1 + δ(t1 − t0) + · · ·+ δ(tk+1 − tk)
≤ η0 + η1 + η + δη + · · ·+ δk+1η

= η0 + η1 + 1−δk+2

1−δ η

< t∗∗.

That is, {tn}, n ≥ 0, is bounded above t∗∗. By (22) and (23) we get
(28) tk+2 − tk+1 ≥ 0.
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Hence sequence {tn}, n ≥ 0, is also non-decreasing and as such it converges
to some t∗ satisfying (16).

(b) The proof follows along the lines of part (a).
That completes the proof of Theorem 1. �
We show the following semilocal convergence theorem for method (2).

Theorem 2. Let F : D ⊆ X → Y be a differentiable operator with divided
differences of the first and second order denoted by [·, ·], [·, ·, ·] respectively.
Assume:

– there exist points x−2, x−1, x0 ∈ D so L0 is invertible and non-negative
numbers η, di, i = 0, 1, . . . , 5 such that∥∥L−1

0
(
[x0, x0]− [y, x0]

)∥∥ ≤ d0‖x0 − y‖,(29) ∥∥L−1
0
(
[x, x0]− [x, y]

)∥∥ ≤ d1‖x0 − y‖,(30) ∥∥L−1
0
(
[x, y]− [x, z]

)∥∥ ≤ d2‖y − z‖,(31) ∥∥L−1
0
(
[x, y]− [x, x]

)∥∥ ≤ d3‖x− y‖,(32) ∥∥L−1
0
(
[x, y, x0]− [z, y, x0]

)∥∥ ≤ d4‖x− z‖,(33) ∥∥L−1
0
(
[x, x, y]− [z, x, y]

)∥∥ ≤ d5‖x− z‖, for all x, y, z ∈ D,(34)
‖x−1 − x0‖ ≤ η1, ‖x−1 − x−2‖ ≤ η0, ‖x1 − x0‖ ≤ η;(35)

– hypotheses of Theorem 1 hold, and

(36) U(x0, t
∗) =

{
x ∈ X : ‖x− x0‖ ≤ t∗

}
⊆ D.

Then method {xn}, n ≥ 0, generated by (2) is well defined, remains in
U(x0, t

∗) for all n ≥ 0 and converges to a solution x∗ ∈ U(x0, t
∗) of equation

F (x) = 0. Moreover, the following error bounds hold for all n ≥ 0:

(37) ‖xn+2 − xn+1‖ ≤ tn+2 − tn+1

and

(38) ‖xn − x∗‖ ≤ t∗ − tn.

Furthermore, if there exists R ≥ t∗ such that

(39) U(x0, R) ⊆ D,

(40)
∥∥L−1

0
(
[x, y]− [z, w]

)∥∥ ≤ d6
(
‖x− z‖+ ‖y − w‖

)
, for all x, y, z, w ∈ D,

and

(41) d6(R+ t∗ + 2η0 + 2η1) ≤ 1

or [·, ·] is symmetric and

(42) d6(R+ t∗ + η0 + η1) + d1(η0 + η1) ≤ 1,

the solution x∗ is unique in U(x0, R).
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Proof. Let us prove
(43) ‖xk+1 − xk‖ ≤ tk+1 − tk k ≥ −2.
For k = −2,−1, 0 (43) holds by the initial conditions. Assume (43) holds for
all n ≤ k. Using (29), (30), (31), (33) and (43) we obtain∥∥L−1

0
(
L0 − Lk+1

)∥∥ =
=

∥∥L−1
0
(
L0 − [x0, x0] + [x0, x0]− [xk+1, x0] + [xk+1, x0]

− [xk+1, xk] + [xk+1, xk]− Lk+1
)∥∥

≤
∥∥L−1

0
(
[x0, x−1, x0]− [x−2, x−1, x0]

)
(x−1 − x0)‖

+
∥∥L−1

0
(
[x0, x0]− [xk+1, x0]

)∥∥+
∥∥L−1

0
(
[xk+1, x0]− [xk+1, xk]

)∥∥
+
∥∥L−1

0
(
[xk−1, xk]− [xk−1, xk+1]

)∥∥
≤ d4‖x−1 − x0‖ ‖x0 − x−2‖+ d0‖xk+1 − x0‖

+ d1‖xk − x0‖+ d2‖xk − xk+1‖
≤ d4η1(η0 + η1) + d0(tk+1 − t0) + d(tk − t0) + d2(tk+1 − tk)
≤ d4η1(η0 + η1) + d0(t∗ − t0) + d1(t∗ − t0) + d2δ

kη

< 1.(44)
by the choice of δ and (12).

It follows by (44) and the Banach Lemma on invertible operators [8] that
L−1
k+1 is invertible and

‖L−1
k+1L0‖ ≤
≤
[
1− (d4‖x−1 − x0‖ ‖x0 − x−2‖+ d0‖xk+1 − x0‖+ d1‖xk − x0‖

+ d2‖xk+1 − xk‖)
]−1

≤ [1− d4η1(η0 + η1)− d0(tk+1 − t0)− d1(tk − t0)− d2(tk+1 − tk)]−1.(45)
Moreover, we have∥∥L−1

0
(
[xk, xk+1]− Lk

)∥∥
=
∥∥L−1

0
(
[xk, xk+1]− [xk, xk] + [xk, xk]− Lk

)∥∥
≤
∥∥L−1

0
(
[xk, xk+1]− [xk, xk]

)∥∥
+
∥∥L−1

0
(
[xk, xk, xk−1]− [xk−2, xk, xk−1]

)
(xk − xk−1)

∥∥
≤ d3‖xk+1 − xk‖+ d5‖xk − xk−2‖ ‖xk − xk−1‖

≤ d3(tk+1 − tk) + d5(tk − tk−2)(tk − tk−1).(46)

Furthermore using (2), (43), and (46) we get
(47)
‖xk+2 − xk+1‖ ≤ ‖L−1

k+1L0‖
∥∥L−1

0
(
[xk, xk+1]−Lk

)∥∥ ‖xk+1 − xk‖ ≤ tk+2 − tk+1,

which shows (43).
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Theorem 1 and (47) imply {xn}, n ≥ 0, is a Cauchy sequence in a Banach
space X and as such it converges to some x∗ ∈ U(x0, t

∗), since U(x0, t
∗) is a

closed set.
By (43) we get

(48) ‖xn − xm‖ ≤ tm − tn, −2 ≤ n ≤ m,
while by letting m→∞ in (48) we obtain (38).

Finally, by letting k → ∞ in (47), we get F (x∗) = 0. To show uniqueness,
let y∗ ∈ U(x0, R) be a solution of equation F (x) = 0. We can have in turn∥∥L−1

0
(
[y∗, x∗]− L0

)∥∥ ≤
≤
∥∥L−1

0
(
[y∗, x∗]− [x0, x−2]

)∥∥
+
∥∥L−1

0
(
[x−2, x−1]− [x−1, x0]

)∥∥
≤ d6(‖y∗ − x0‖+ ‖x∗ − x−2‖+ ‖x−2 − x−1‖+ ‖x−1 − x0‖)
< d6(R+ t∗ + 2η0 + 2η1)
≤ 1.(49)

It follows by (49) and the Banach Lemma on invertible operators that [y∗, x∗]
is invertible. Hence, from
(50) F (x∗)− F (y∗) = [y∗, x∗](x∗ − y∗),
we deduce that x∗ = y∗.

If [·, ·] is symmetric as in (49) we get
(51)

∥∥L−1
0
(
[y∗, x∗]− L0

)∥∥ < d6(R+ t∗ + η0 + η1) + d1(η0 + η1) ≤ 1.
We conclude again that x∗ = y∗.

That completes the proof of Theorem 2. �

The proof of the following result follows exactly as in Theorem 2 but using
part (b) of Theorem 1.

Theorem 3. Assume hypotheses of Theorems 1 and 2 hold.
Then method {xn}, n ≥ 0, generated by (2) is well defined, remains in

U(x0, s
∗) for all n ≥ 0 and converges to a solution x∗ ∈ U(x0, s

∗) of equation
F (x) = 0. Moreover, the following error bounds hold for all n ≥ 0:
(52) ‖xn+2 − xn+1‖ ≤ sn+1 − sn+2

and
(53) ‖xn − x∗‖ ≤ sn − s∗.
Furthermore if there exists R1 ≥ s∗ such that, together with (40),
(54) U(x0, R1) ⊆ D holds,
and
(55) d6[R1 + s∗ + 2(η0 +R1)] ≤ 1
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or
[·, ·] is symmetric

and

(56) d6(R1 + s∗ + η0 + η1) + d1(η0 + η1) ≤ 1,

the solution x∗ is unique in U(x0, R).

Remark 1. In [12, Th. 5.1], condition (40) was used together with

(57)
∥∥L−1

0
(
[x, y, z]− [u, y, z]

)∥∥ ≤ d7‖x− u‖

for all x, y, z, v ∈ D to show convergence of method (2).
The following error bounds were found

(58) ‖xn+1 − xn‖ ≤ vn − vn+1

and

(59) ‖xn − x∗‖ ≤ vn − v∗,

where,

(60) v∗ = lim
n→∞

vn,

and {vn} is similar to {sn} but using d6, d7, η0, η1, η instead of d0, d1, d2, d3,
d4, d5, η0, η1, η. Note also that in general

(61) d0 ≤ d1 ≤ d3 ≤ d2 ≤ d6

and

(62) d4 ≤ d5 ≤ d7.

Hence we can easily obtain by induction

(63) sn − sn+1 ≤ vn − vn+1

and

(64) sn − s∗ ≤ vn − v∗.

That is, under weaker convergence conditions we obtain finer error bounds.�

3. LOCAL ANALYSIS

We can show the following local results for method (2).
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Theorem 4. Let F : D ⊆ X → Y be a differentiable operator. Assume F
has divided differences of the first and second order such that:

F ′(x∗) = [x∗, x∗],(65) ∥∥F ′(x∗)−1([x∗, x∗]− [x, x∗]
)∥∥ ≤ a0‖x− x∗‖,(66) ∥∥F ′(x∗)−1([x, x∗]− [x, y]
)∥∥ ≤ b0‖x− x∗‖,(67) ∥∥F ′(x∗)−1([x, x∗, y]− [z, x∗, y]
)∥∥ ≤ c0‖x− z‖,(68) ∥∥F ′(x0)−1([u, x, y]− [v, x, y]
)∥∥ ≤ c‖u− v‖,(69)

U(x∗, r∗) ⊆ D,(70)

for all x, y, z, u, v ∈ D, where x∗ is a simple zero of F , and

(71) r∗ = 2
a0 + 2b0 +

√
(a0 + 2b0)2 + 8(c+ c0)

.

Then method (2) is well defined, remains in U(x∗, r∗) for all n ≥ 0, and
converges to x∗ provided that x−1, x−2, x0 ∈ U(x∗, r∗).

Moreover, the following error bounds hold for all n ≥ 0:

‖xn+1 − x∗‖ ≤

≤ b0‖xn−x∗‖+c
(
‖xn−x∗‖+‖xn−2−x∗‖

)(
‖xn−1−x∗‖+‖xn−x∗‖

)
1−(a0+b0)‖xn−x∗‖−c0

(
‖xn−x∗‖+‖xn−2−x∗‖

)
‖xn−1−x∗‖

‖xn − x∗‖ = αn.(72)

Proof. We first show linear operator

L ≡ L(x, y, z) = [x, y] + [z, x]− [z, y], x, y, z ∈ U(x∗, r∗)

is invertible. By (65), (67), (69), we get in turn∥∥F ′(x∗)−1(F ′(x∗)− L)∥∥ =
=
∥∥F ′(x∗)−1{[x∗, x∗]− [x, x∗] + [z, x∗]− [z, x]

+ [x, x∗]− [x, y]− [z, x∗] + [z, y]
}∥∥

≤
∥∥F ′(x∗)−1([x∗, x∗]− [x, x∗]

)∥∥+
∥∥F ′(x∗)−1([z, x∗]− [z, x]

)∥∥
+
∥∥F ′(x∗)−1([x, x∗, y]− [z, x∗, y]

)
(x∗ − y)‖

≤ (a0 + b0)‖x− x∗‖+ c‖x− z‖ · ‖x∗ − y‖
≤ (a0 + b0)‖x− x∗‖+ c(‖x− x∗‖+ ‖z − x∗‖)‖y − x∗‖
< (a0 + b0)r∗ + 2c(r∗)2

< 1,(73)

by the choice of r∗. It follows from (73) and the Banach Lemma on invertible
operators that L is invertible.
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Assume xk−2, xk−1, xk ∈ U(x∗, r∗) and set xk = x, xk−1 = y, xk−2 = z,
k = 0, 1, 2, . . . , n, Lk = L(xk, xk−1, xk−2). We have

‖L−1
k F ′(x∗)‖ ≤

[
1− (a0 + b0)‖xk − x∗‖(74)

− c0
(
‖xk − x∗‖+ ‖xk−2 − x∗‖

)
‖xk−1 − x∗‖

]−1
.

Moreover, by (67) and (69) we get∥∥F ′(x∗)−1([xk, x∗]− Lk)∥∥ =
=
∥∥F ′(x∗)−1([xk, x∗]− [xk, xk] + [xk, xk]− [xk, xk−1]
− [xk−2, xk] + [xk−2, xk−1]

)∥∥
≤
∥∥F ′(x∗)−1([xk, x∗]− [xk, xk]

)∥∥
+
∥∥F ′(x∗)−1([xk, xk, xk−1]− [xk−2, xk, xk−1]

)
(xk − xk−1)

∥∥
≤ b0‖xk − x∗‖+ c‖xk − xk−2‖ ‖xk − xk−1‖

≤ b0‖xk − x∗‖+ c
(
‖xk − x∗‖+ ‖x∗ − xk−2‖

)(
‖xk − x∗‖+ ‖x∗ − xk−1‖

)
.

(75)

By (2) we can write

‖xk+1 − x∗‖ =
∥∥xk − x∗ − L−1

k

(
F (xk)− F (x∗)

)∥∥
=

∥∥− L−1
k

(
[xk, x∗]− Lk

)
(xk − x∗)

∥∥
≤ ‖L−1

k F ′(x∗)‖
∥∥F ′(x∗)−1([xk, x∗]− Lk)∥∥ ‖xk − x∗‖.(76)

Estimate (72) now follows from (74), (75) and (76). By the choice of r∗ and
(76) we get

‖xk+1 − x∗‖ < ‖xk − x∗‖ < r∗,

from which it follows xk+1 ∈ U(x∗, r∗) and lim
k→∞

xk = x∗.
That completes the proof of Theorem 3. �

Remark 2. In the elegant paper [12] the following conditions were used:

(77)
∥∥F ′(x∗)−1([x, y]− [u, v]

)∥∥ ≤ b(‖x− u‖+ ‖y − v‖
)

and

(78)
∥∥F ′(x∗)−1([u, x, y]− [v, x, y]

)∥∥ ≤ c‖u− v‖
for all x, y, u, v ∈ D. Note that (77) implies F ′(x∗) = [x∗, x∗], [4], [8].

The convergence radius is given by

(79) rp = 2
3b+

√
9b2 + 16c

.
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Moreover the corresponding error bounds are

‖xn+1 − x∗‖ ≤(80)
≤ βn

= b‖xn−x∗‖+c
(
‖xn−x∗‖+‖xn−2−x∗‖

)(
‖xn−1−x∗‖+‖xn−x∗‖

)
1−2b‖xn−x∗‖−c

(
‖xn−x∗‖+‖xn−2−x∗‖

)
‖xn−1−x∗‖

‖xn − x∗‖, n ≥ 0.

It can easily be seen that conditions (65)–(69) are weaker than (77) and (78).
Moreover in general

(81) a0 ≤ b0 ≤ b

and

(82) c0 ≤ c.

Hence,

(83) rp ≤ r∗

and

(84) αn ≤ βn, n ≥ 0.

In case strict inequality holds in one of (81) or (82) then (83), (84) hold as
strict inequalities also. That is under weaker conditions we provide finer error
bounds and a wider choice of initial guesses. This observation is important in
computational mathematics.

Finally note that it was also shown in [12] that the R-order of convergence
of method (2) is the unique positive root of equation

t3 − t2 − t− 1 = 0,

being approximately 1.839 . . . .
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