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A CONVERGENCE ANALYSIS OF AN ITERATIVE ALGORITHM
OF ORDER 1.839... UNDER WEAK ASSUMPTIONS
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Abstract. We provide new and weaker sufficient local and semilocal conditions
for the convergence of a certain iterative method of order 1.839. .. to a solution of
an equation in a Banach space. The new idea is to use center-Lipschitz/Lipschitz
conditions instead of just Lipschitz conditions on the divided differences of the
operator involved. This way we obtain finer error bounds and a better informa-
tion on the location of the solution under weaker assumptions than before.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
x* of equation

(1) F(z) =0,

where F' is a Fréchet differentiable operator on an open convex subset D of a
Banach space X with values in a Banach space Y.
The iterations

(2) Tyl = Tp — LV (),
L, = [$naxn—1] + [xn—ann] - [xn—nyn—l]a n > 0,

have been already used to generate a sequence converging to z* with R-order
1.839... [4], [12] and [13]. Here, [z,y] € L(X,Y), [z,y,2] € L(X,L(X,Y))
denote divided differences of order one and two respectively of operator F'
satisfying

(3) [z,yl(y —x) = F(y) — F(x)
and
(4) [w,y, Z](y - Z) = [xay] - [.CL‘,Z]

for all z,y,z € D [4].
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Method (2) is considered to be a discretized version of the famous cubi-
cally convergent methods of Euler—-Chebyshev (tangent hyperbola) or Halley
(parabola) [1]-[3], [6], [10] and [11]. Discretized versions of the above meth-
ods using divided differences of order one and two or just one have also been
considered in [5], [7] and [9)].

Here we provide a new local and semilocal convergence analysis for method
(2). Using Lipschitz and center Lipschitz conditions on the divided differences
of operator F' instead of just Lipschitz conditions we introduce weaker sufficient
convergence conditions than before. Moreover we obtain finer error bounds
on the distances involved as well as a better information on the location of
the solution z*. Furthermore in the case of local analysis a larger convergence
radius is obtained.

2. SEMILOCAL ANALYSIS

Let d;, i = 0,1,...,5, o, m1 be non-negative parameters and 6 € [0,1).
Define the parameters «q, a1, as, 5o, 1 by

(5) ay = (1—0%)ds,

(6) ar = 6{8(di +ddo) — (1 —6°)(ds + dda)},
(7) ap = —6(1—38)(no +m)dsm,

(8) p1 = dz+d(do+da),

(9) Bo = (no+m)m(ds+dds) -9,

(10) f(t) = agt? +ait+ ag,
(11) g(t) = pBit+ fo.

We can show the following result on majorizing sequences.

THEOREM 1. Let n be a non-negative parameter such that

min{as, Bo}, B2 =%,  if 1 #0,

(12) n < 0, if ag =0,
Qs, Zf /81 = 07

provided

(13) 60 < Oa

where ag, Po are the non-negative zeros of functions f and g respectively.
Then
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(a) Iteration {t,}, n > —2, given by

t_o :07
t—1 =mno,
to =10 + M,
t1 =no +m +n,
B di (bt —tn ) s (bt ) (bn—tn—1)
(14) tni2 =tut1 + 1—d4771(noi‘nlJ)ridO(tnwa—tO)_dl(Qtn_t())_d;(thrl_tn) (tn+1 = tn),
n > 0,

is non-decreasing, bounded above by

(15) = % +1 +m
and converges to t* such that
(16) 0<t* <t

Moreover, the following error bounds hold for alln >0
(17) 0 <tpnio—tnp1 < O(tny1 —tn) < 0"
(b) Iteration {s,}, n > —2, given by

S—2 —S8-1 =71,
$—1 — S0 ="o,
S0 — 81 =1,
(18)

_ _ d3(sn—5n+1)+d5(Sn—2—5n)(Sn—1—5n) _
Sn+1 = Snd2 =Ty (no+m )—do(s0—5n11)—d1 (50—5n)—d2(Sn—sn+1) (80 = sn+1);

n >0,

for s_1, so, s1 > 0 is non-increasing, bounded below by

%k TI
19 — gy — —
(19) ST TS
and converges to some s* such that
(20) 0 < 8™ < s*.

Moreover, the following error bounds hold for all n > 0:
(21) 0 < Spi1 — Snia < 0(Sp — Snp1) < 0.

Proof. (a) We must show:

(ds + dd2)(te1 — t) + ds(tk — tk—2)(tk — tk—1) + ddo(tg41 — to)+
(22) + 0dy (t — to) + ddami(no + m)
(23) L —dym(no +m) — dotks1 — dity — da(trs1 — te)
for all kK > 0.

< 9
> 0
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Inequalities (22) and (23) hold for £ = 0 by the initial conditions. But then
(14) gives

(24) 0<ty—t; <6(t —to).

Let us assume (22), (23) and (17) hold for all £ < n + 1. By the induction
hypotheses we get

(ds + 0d2)(tk+2 — tkt1) + ds(th1 — th—1) (tkt1 — i) + 0do(tk+2 — to)
(25) +6dy (tr1 — to) + ddami(no +m) <
< (ds + 6d2)6" 1y + ds (6" + 6" )n?6* + 6do L5 + 0dy 155 + Sdam (o + M)
It is clear that (25) will be bounded above by ¢ if

(ds + 3do)8" 1 + ds (6% + F)n?0* + ddo s + ddi 15 + ddami (no +m) <
< (d3 + dd2)n + ds(no + m1)m + ddon + ddani (no + m1)

or

(d3 + dda)(1 — 6)6F 1y + ds6F 1 (1 — 62)n?6% + ddon + ddin <

< (1= 0)(ds + dd2)n + (1 = &)ds(no + m)m + (1 — 6)ddon
or, for k > 0,

(ds + 6d2)3(1 — 8)n + 155 dsn? + ddin + ddon <
< (d3 + 0d2)(1 = 6)n + ds(1 = 6)(no + m)m + (1 — 6)ddon
or, for § # 0,
(26) agn’ 4+ ann+ag <0,
which is true by the choice of 7. By the same proof as above we show (23) for
k=n+1.
We must also show:

(27) th <™, k>1.
For k = 1,2 we have t; < t* and to < t1 +0n =no+m + (1 4+ §)n < t**
Assume (27) holds for all £ < n + 1. It follows from (17) that
tht1 + 0(tks1 — t)
te + 0(tk — tr—1) + 0(tpy1 — tr)

trio

VANVAN

ti+0(tt —to) + -+ 6(tks1 — ti)
o+ + 1+ 4 -+ 0y
1-6k+2
No+m+ =51
<t
That is, {t,}, n > 0, is bounded above t**. By (22) and (23) we get
(28) thps — tisr > 0.

IA N
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Hence sequence {t,}, n > 0, is also non-decreasing and as such it converges
to some t* satisfying (16).
(b) The proof follows along the lines of part (a).
That completes the proof of Theorem 1. O
We show the following semilocal convergence theorem for method (2).

THEOREM 2. Let F': D C X — Y be a differentiable operator with divided
differences of the first and second order denoted by [-,-], [-,-,-] respectively.
Assume:

— there exist points x_o,x_1,x0 € D so Ly is invertible and non-negative
numbers n, d;, 1 =0,1,...,5 such that

(29) HLEl([IO,xo ly,zo])| < dollwo —yll,

(30) [rs (JU vo] = [z y))[| < dillzo —yll,

(31) 1o " ([, [z,2])|| < dally - =,

(32) IILal([ w,a])l| < dslle—yll,

(33) Lo ([, y, zo] — [Z y,wo))|| < dallz— 2|,

(34) Lo ([, 2, 9] — [2,2,9))|| < dsllw—2z|, forallz,y,z€ D,
B5)[[x—1 — ol <m, flo—r —z—2| < mo, [z — 2ol < m;

— hypotheses of Theorem 1 hold, and
(36) Uz, t*) ={z € X : ||z — x| <t'} CD.

Then method {x,}, n > 0, generated by (2) is well defined, remains in
U(zo,t*) for alln > 0 and converges to a solution z* € U(xq,t*) of equation
F(x) = 0. Moreover, the following error bounds hold for all n > 0:

(37) [#n42 = Tnga | < tng =t
and

(38) [zn — 2*|| < ° =t
Furthermore, if there exists R > t* such that

(39) U(wo, R) C D,

40) ||Lg " ([z,9] — [z, w])[| < ds(llz — 2] + lly = wll),  for all z,y,z,w € D,

and

(41) do(R+1" +2n0 +2m) <1

or [+, -] is symmetric and
)

(42 de(R+t*+mn0 +m) +di(no +m) <1,

the solution x* is unique in U(xg, R).
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Proof. Let us prove
(43) lzkt1 — okl < tpr — e k> -2

For k = —2,—1,0 (43) holds by the initial conditions. Assume (43) holds for
all n < k. Using (29), (30), (31), (33) and (43) we obtain

ILgH (Lo — L) || =
= |[Lo ! (Lo — [x0, xo] + [x0, %0] — [wh41, %0) + [wh11, 0]
— [@pg1, k) + [Trg1, 2k] — Ligr) |
| 71([x0,x,1,x0] — [z_2,2_1,x0]) (x_1 — o) |
Lo ([0, o) = [r41, o)) | + 126 ([r41, 0] = [0, 2] |

+||Lal([1‘k_1,$k] - [$k—1a$k+1])||

IA
=
o

< daflz—1 — ol [|wo — z—2f| + dol|zkt1 — 20|

+ dillzg — @0 + d2|lzk — Tk
< dym(no +m1) + do(tksr — to) + d(tx — to) + da(tpr1 — tr)
< dami(no +m) + do(t* — to) + di(t* — to) + dad"n

(44) < 1.
by the choice of § and (12).
It follows by (44) and the Banach Lemma on invertible operators [8] that
L,;j_l is invertible and
1Lyt Lol <
< [1 = (dallz—1 — 2ol lwo — z—2| + dollzk+1 — 2ol + di|zk — 2ol
+ dgfleran —axl)]
(45) < [1—dami(no +m) = do(tis1 — to) — di(ty — to) — da(ter1 — t)]
Moreover, we have
I1LG " ([, 2ha] — L) |
= |Lo " ([2h, Thpa] = [og, 2a) + [on, 2] — L)
< 1o ([ 1] = s @) |
120" (e s ] = e, o we-a) (o = )|
< dsl|zpgr — k|l + dsllok — zp—2l| |k — 21l

(46) < dy(tps1 — ) + ds(te — te—2) (tk — th—1)
Furthermore using (2), (43), and (46) we get
(47)

|@rr2 — 2|l < WL Loll 126 (ks @] — L) | [ @ks1 — @ll < thgo — trgas
which shows (43).
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Theorem 1 and (47) imply {z,}, n > 0, is a Cauchy sequence in a Banach
space X and as such it converges to some z* € U(xg,t*), since U(zg,t*) is a
closed set.

By (43) we get
(48) [0 = Tm|| < tm —tn, —2<n<m,
while by letting m — oo in (48) we obtain (38).

Finally, by letting k¥ — oo in (47), we get F(z*) = 0. To show uniqueness,
let y* € U(zp, R) be a solution of equation F'(x) = 0. We can have in turn

1L ([y*, =*] — Lo) | <
< |I1Lg" ([y*,2"] = [x0, 2]
+ | Lo ([z—2, 1] — [2—1, 20])
< ds(lly” — zoll + la* — z—al| + llz—2 — 21| + [lz_1 — o)
< dg(R+t*+ 2n9 + 2m)
(49) <1.

It follows by (49) and the Banach Lemma on invertible operators that [y*, x|
is invertible. Hence, from

(50) F(z®) = Fy") = [y, 2"](=" —y"),
we deduce that =* = y*.
If [-, -] is symmetric as in (49) we get
(1) L' (I 2" = Lo) | < de(R+t" + 1m0 +m) +da(no +m) < 1.
We conclude again that z* = y*.
That completes the proof of Theorem 2. ]

The proof of the following result follows exactly as in Theorem 2 but using
part (b) of Theorem 1.

THEOREM 3. Assume hypotheses of Theorems 1 and 2 hold.

Then method {x,}, n > 0, generated by (2) is well defined, remains in
U(zg,s*) for all n > 0 and converges to a solution z* € U(zo, s*) of equation
F(x) = 0. Moreover, the following error bounds hold for all n > 0:

(52) [Zn+2 — Zpta | < Sna1 — s

and

(53) |xn — || < sp — s™.

Furthermore if there exists Ry > s* such that, together with (40),
(54) U(zo,R1) € D holds,

and

(55) do[Ry + s + 2(no + R1)] < 1
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or
[-,]] is symmetric
and
(56) de(R1+s" +mno+m) +di(no+m) <1,

the solution x* is unique in U(zo, R).
REMARK 1. In [12, Th. 5.1], condition (40) was used together with
(57) ’|L51([$7y72] - [u,y,z])H §d7Hx_uH

for all z,y, z,v € D to show convergence of method (2).
The following error bounds were found

(58> Hxn—&-l - xn” < Up — Up41
and
(59) lxn — 2™ < vy — V¥,
where,

1
(00 vt =l v,

and {v,} is similar to {s,} but using dg, d7, no, M, n instead of dy, d1, da, d3,
dy4, ds, Mo, m1, . Note also that in general

(61) do < dy < dg < dy < dg
and
(62) dy < ds < ds.

Hence we can easily obtain by induction

(63) Sn — Spt1 < Up — Upat
and
(64) Sp — §* < vy — 0.

That is, under weaker convergence conditions we obtain finer error bounds.[]

3. LOCAL ANALYSIS

We can show the following local results for method (2).



9 Convergence analysis of an iterative algorithm of order 1.839. .. 131

THEOREM 4. Let F': D C X — Y be a differentiable operator. Assume F
has divided differences of the first and second order such that:

(65) Fl(z*) = [z* 2%,
(66) 1F (%)~ (2", 2] = [2,27])]| < aollz — 7],
(67) [F' () ([z,2"] = [z, 9)) | < bollx — ¥,
(68) [F/ ()" ([, 2%, 9] = [z, 2%, 9)|| < colle — 2],
(69) |F (o)™ (Ju, 2, y] — [v,2,9) || < cllu—v],
(70) U(z*,r*) C D,

for all x,y,z,u,v € D, where x* is a simple zero of F', and

2

71 r* = )
(71) ao + 2bo + +/(ag + 2bo)% + 8(c + co)

Then method (2) is well defined, remains in U(x*,7*) for all n > 0, and
converges to * provided that x_1, x_9, xg € U(x*,r").
Moreover, the following error bounds hold for all n > 0:

Znt1 — 2] <
bollen—a*||+¢(len—z* | +len—2—2*) (|lzn-1—2* | +/|lzn—z*|)

1—(ao+bo)[zn—a*||—co (|lzn—2* | +l|zn-2—2*||) | 2n—1—2*]|

(72) <

|l

|xn — || = an.

Proof. We first show linear operator
L=L(z,y,z) = [z,y] + [z,2] = [z,9], =y,2€U(",r)
is invertible. By (65), (67), (69), we get in turn
|F" ()~ (F' () = L) | =
= |F'(@)"Hla",2"] = [2,27] + [2,2"] = [, 2]
+ [z, 2% = [2,9] = [2,27] + [z, 9]}
<F (@) (2%, 2] = o e ) || + 1 F (257 ([ 27] = [z, 2])|
+ ||F'($*)_1([x,x*,y] - Z>$*’y])($* sl

< (a0 + bo)llx — ™| + cllz — 2 - [l — y]|
< (a0 +bo)llx — ™| + c(ll — 2*| + [|z — 2" )y — 27
< (ag + bo)r* + 2¢(r*)?

(73) <1,

by the choice of r*. It follows from (73) and the Banach Lemma on invertible
operators that L is invertible.
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Assume x_o, Tp_1, T € U(z*,r*) and set xp = x, xp_1 = Y, Tp—2 = 2,
k=0,1,2,...,n, Ly = L(zk, xx_1, Tk—2). We have

(74) 1L F/ ()] < [1 = (ao + bo) [lz, — 2]
* * w11—1
= co(llee — 27| + llze—2 — 2™} k-1 — 27(]
Moreover, by (67) and (69) we get
| F (2" ([% - Li)|| =

HF/ ([xkv ] [wk’xk] + [xkvxk] - [xkvxkfl]

— [ z,xk] + [2h—2, 2h1]) |

< ||F'(" ([9% = [k, )|
+ HF/ @k, wh h-1] — [Tho2, Thy Tp—1]) (T — T—1) |
< bgllzg — H + c||lxk — sl |xx — K—1]|
(75)

< bollek — 27| + cllwr — 2™ + l2* — wp—2]) (lox — 2™ + (2" — 21 ).

By (2) we can write

lzgyr = a*|| = o — 2" = L (F(xy) — F(2"))]]
= | —L,;l([xk, z*] —Lk)(wk—w*)ﬂ
(76) < N LUF @) F (@) (w2 = Li) ||l — 2.

Estimate (72) now follows from (74), (75) and (76). By the choice of r* and
(76) we get

[@r1 — 2| < |z — 2" <77,
from which it follows x4 € U(z*,r*) and lim zj = z*.
k—o0

That completes the proof of Theorem 3. O

REMARK 2. In the elegant paper [12] the following conditions were used:

(77) 1/ () ([, 9] = [w, o) || < b(lle = ull + ly = oll)
and
(78) [F" (%)~ ([u, 2, 9] = [v,2,9))|] < eflu— o]

for all z,y,u,v € D. Note that (77) implies F'(z*) = [z*, 2*], [4], [8].
The convergence radius is given by

2
79 T, = .
(79) P 3h + V92 + 16¢
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Moreover the corresponding error bounds are

(80) [lzntr — 2| <
< Bn
_ bllza—a*|+e(llzn—a* | +llzn—2—2* ) (lza—1—2* | +llza—a"]) lon — [, 1> 0
= n Y — N

1-2b||zn—z* | —c(||lzn—z* | +l|lzn—2—z*||) |2n—1—2*|

It can easily be seen that conditions (65)—(69) are weaker than (77) and (78).
Moreover in general

(81) ao <byg<b
and

(82) co < c.
Hence,

(83) rp <71

and

(84) an < fBp, n>0.

In case strict inequality holds in one of (81) or (82) then (83), (84) hold as
strict inequalities also. That is under weaker conditions we provide finer error
bounds and a wider choice of initial guesses. This observation is important in
computational mathematics.

Finally note that it was also shown in [12] that the R-order of convergence
of method (2) is the unique positive root of equation

3 —t2—t—-1=0,
being approximately 1.839...
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