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Abstract. We consider the multiattribute decision making problem under risk
with imprecise information on the decision maker’s preferences, modelled by
means of a vector utility function. We propose an interactive decision aid ap-
proach, which uses an idea of approximation to the utility efficient set and qual-
itative comparisons for the decision maker, to overcome the possible difficulty in
generate it. An application to university selection illustrates the procedure.
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1. INTRODUCTION

We consider the multiattribute decision making problem under risk with
partial information on the DM’s (decision maker) preferences, in the sense
that his/her preferences are modelled by means of a vector utility function,
Roberts (1972, 1979) and Rietveld (1980) instead of a scalar one, Fishburn
(1976) and Keeney and Raiffa (1993). This vector utility function represents
imprecise preferences and can be seen as a way for lack of precision of the true
but unknown scalar utility function, which is usually defined on the attributes
associated with the lowest-level objectives of a hierarchy, which often exhibit
well defined multi-objective problems. In other words, if no independence
assumption is accepted for the DM to reach a more structured form in the
utility function (additive, multiplicative, ...), he/she has to cope with such a
vector function in the decision making process.

In this framework, the utility efficient set, Ŕıos-Insua and Mateos (1997),
plays a fundamental role because of its property: from any strategy in this
set, it is not possible to feasibly move in order to increase one component
without necessarily decreasing at least one of the remainder. However, the
generation of such set can be involved, specially in continuous problems. In
the case of discrete problems it is easier, but we note that the set of utility
efficient solutions might be far too big in most practical situations. Hence, the
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generation of the utility efficient set is not usually considered the resolution of
the multiattribute problem because this set may have many elements and is not
generally totally ordered. Thus, there is a need for more intelligent strategies
to generate a set of representative efficient solutions or an approximation that
gives a fair representation of the whole set. Although there are several methods
to aid DMs to generate the efficient set or a representative subset, see, e.g., Gal
(1972), Goicoechea et al. (1982), Yu (1985), Chankong and Haimes (1983),
Steuer (1986), Vincke (1992), Gal (1995) and Gal et al. (1999), there is not a
definitive solution to this problem, particularly for problems under risk.

In this paper we consider a utility-based procedure, see e.g., von Neumann
and Morgenstern (1947) or Keeney and Raiffa (1993), which uses an approx-
imation concept, Mateos and Ŕıos-Insua (1996), which intends, on one hand,
to facilitate the generation process of a representative set of the whole utility
efficient set and, on the other, its interactive reduction to reach a final strategy.

Throughout the paper we shall employ the following notation: For two
scalars a and b, a = b denotes a > b or a = b. For two vectors x,y ∈ Rn,
x = y denotes xi = yi for i = 1, . . . , n, and x ≥ y denotes x = y but x 6= y.
Our framework is the multiattribute decision making problem under risk with
a finite set Z of outcomes zi, i = 1, . . . , s, characterized by a number of at-
tributes z1, . . . , zN and a set PZ of simple probability distributions over Z,
with elements p, q, . . . , called strategies or (risky) prospects, where for ex-
ample, p = (p1, z1; p2, z2; . . . ; ps, zs), pj = 0 for all j and

∑s
j=1 pj = 1. We

assume partial information in the sense that we can assess a vector utility
function u : Z → Rm, where u = (u1, . . . , um) represents a preference order �
(asymmetric and transitive) on PZ , leading to a dominance principle defined
by

p � q ⇔ E (u, p) ≥ E (u, q) ,

where E(u, p) =
(
E (u1, p) , . . . , E (um, p)

)
is the expected utility vector with

E (ui, p) =
s∑

j=1
pjui(zj), for i = 1, . . . ,m.

Throughout the paper, we will assume that the real-valued functions ui,
i = 1, . . . ,m, on Z are continuous, monotonous and bounded. This framework
leads to the vector maximum problem over PZ , defined

(1) max
{
E (u, p) : p ∈ PZ

}
.

The natural solution concept is the utility efficiency: p ∈ PZ is a utility efficient
strategy if there is no q ∈ PZ such that E (u, q) ≥ E (u, p) . Such set of
strategies will be called the utility efficient set and denoted by E(PZ ,u). Note
that this definition extends the one for problems under certainty, i.e., if PZ

consists of sure prospects pz = (1, z), then E(PZ ,u) = E(Z,u), where E(Z,u)
would be the efficient set for Z given u.
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It is clear that if E(PZ ,u) has a unique element p, it would be the compro-
mise strategy for the DM. However, as mentioned above, this is not the case
for most real problems, as E(PZ ,u) may have a lot of strategies and its gener-
ation can be difficult. Thus, we shall consider an approximation to the utility
efficient set that will be easier to generate and that could be interactively
reduced in the process of reaching a final strategy.

The paper includes five more sections. In Section 2 we introduce some the-
ory and concepts related to the approximation set. In Section 3, we propose a
procedure to reduce the utility efficient set for the case of two utility compo-
nents, considering a linear preference structure. In Section 4, we extend the
procedure to any number of utility components. In Section 5, we present an
application of the procedures and, finally, in Section 6, some conclusions are
provided.

2. APPROXIMATION OF THE UTILITY EFFICIENT SET

We consider the decision making problem where the DM’s preferences are
modelled by means of a vector utility function u : Z → Rm and the DM
can reveal more information on his preferences through an interactive process,
obtaining a more precise vector utility function, as we next shall see.

Let k1 = (k1
1, . . . , k

1
m), . . . ,kr = (kr

1, . . . , k
r
m) be the extreme points of the

polyhedral of possible weights or scaling constants, which we shall denote by
the matrix M = (k1, . . . ,kr)t. Let us define the information set IM associated
to M as

IM =
{

k ∈ Rm : k
r∑

i=1
αiki, with α = (α1, . . . , αr) ∈ Sr

}
,

with Sr the simplex on Rr. Now, assume that DM’s preferences satisfy the
conditions to agree with a (scalar) utility function as a linear function of
the components in u, see e.g., French (1986) and Stewart (1996). We define
uM = Mu =(k1u, . . . ,kru) (each component denotes the inner product of two
vectors, and we understand that the first one is a row vector and the second one
a column one) as the vector utility function associated to the information set
IM . Thus, IM represents the DM’s information on the weights in uM . Hence,
uM is an imprecise vector utility function. When M = M0 (the identity
matrix of order r) there is null information about the scaling constants and
we have the original vector utility function u = uM0 . On the other hand, if
k1 = . . . = kr = k, we have the scalar utility function uM = ku, with complete
information about the weights.

From the vector function uM , we can also consider the corresponding utility
efficient set, denoted E(PZ ,uM ). We have the following

Proposition 1. Given a vector utility function u : Z → Rm and an infor-
mation set IM with M = (k1, . . . ,kr)t, then for all p ∈ PZ

(2) E(uM , p) =
(
k1E(u, p), . . . ,krE(u, p)

)
.
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The proof follows immediately.
Now we shall provide a practical way to find E(u,pj) by means of an al-

gorithm. Let (i1, . . . , im) be a permutation of the set of indexes (1, . . . ,m) of
components in u. We follow the next algorithm to solve the problem Pi1...im :

Step 1. Let Y1 = PZ .
Step 2. From j = 1 to m, solve

u∗ij
= max

p∈Yj

E(uij , p)(3)

Yj+1 =
{
p ∈ Yj : E(uij , p) = u∗ij

}
Step 3. End.
Then we obtain the set Ym+1, which usually has a single strategy. Thus,

to find E(u,pj) means to solve problem Pj,j+1,...,m,1,...,j−1, which provides a
solution pj . In analogous way, we can find u(zj).

Now, we provide the approximation to the utility efficient set for the case
of a function with two components u =(u1, u2). Given u defined over Z, the
approximation set to E(PZ ,u) is defined as
(4)
A(PZ ,u) =

{
p ∈ PZ : E (u1, p) = E

(
u1, p

2
)

and E (u2, p) = E
(
u2, p

1
)}

,

where the strategies p1, p2 are obtained by solving P12 and P21, respectively.
As a particular case, we have the definition under certainty, Mateos and Ŕıos-
Insua (1997a, 1997b). Some desirable properties, that fulfils the approximation
set (4), are:

1) Let u : Z → R2 be a vector utility function and IM an information
set; then

(5) E(PZ ,uM ) ⊆ A(PZ ,uM ) .

2) Monotonicity. Given a vector utility function u : Z → R2 and two
information sets, IM1 and IM2 , such that IM2 ⊆ int (IM1) , then

(6) A(PZ ,uM2) ⊆ A
(
PZ ,uM1

)
.

3) Convergence. Let u : Z → R2 be a vector utility function and {IMn} a
decreasing sequence of information sets such that IM1 ⊆ int(IM0) and
{IMn} ↓ {q} , when n → ∞. If p0 ∈ A(PZ ,uMn), for every n, then
p0 ∈ E(PZ ,u).

The above definition and properties cannot be extended in immediate way
to m-dimensional utilities, i.e. m = 3, as we show in next example. Con-
sider the set of outcomes Z =

{
z1, z2, z3, z4} and the vector utility function

u : Z → R3, such that u(z1) = (1, 2, 3), u(z2) = (3, 2, 1), u(z3) = (1, 3, 1)
and u(z4) = (3, 0, 3). Assume that PZ has four strategies p1 =

(
2
3 , z

1; 1
3 , z

3
)
,
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p2 =
(

2
3 , z

2; 1
3 , z

3
)
, p3 =

(
1
3 , z

1; 1
3 , z

2; 1
3 , z

3
)

and p4 =
(

1
2 , z

3; 1
2 , z

4
)
. The ap-

proximation set is A(PZ ,u) =
{
p1, p2, p3} , but note that it does not contain

to E(PZ ,u) = {p1, p2, p3, p4}, which is a fundamental property.
To extend (4) to m-dimensional utilities, let us first consider the two-

dimensional vector utility u (·) = (u1 (·) , u2 (·)) and the nondominated set
by pi, defined as

N (pi) =
{
p ∈ PZ : E(uj , p) > E(uj , p

i), j 6= i, j = 1, 2
}

⋃{
p ∈ PZ : E(uj , p) = E(uj , p

i), ∀j
}

for i = 1, 2. Thus, the approximation set (4) can be rewritten as follows:

(7) A(PZ ,u) = N (p1) ∩N (p2).
In analogous way, we can stretch out this idea to the general case of a vec-
tor utility function u (·) = (u1 (·) , . . . , um (·)) , with m = 3, considering the
nondominated set

N (pi) =
{
p ∈ PZ : ∃j = 1, . . . ,m, j 6= i, with E(uj , p) > E(uj , p

i)
}

⋃{
p ∈ PZ : E(uj , p) = E(uj , p

i), ∀j = 1, . . . ,m
}

for each i = 1, . . . ,m, being pi the solution to problem Pi,i+1,...,m,1,...,i−1. Thus,
we define the approximation set to the utility efficient set E(PZ ,u) as

(8) A(PZ ,u) =
m⋂

i=1
N (pi).

Properties 1. to 3. are also verified in this general case.

3. AN ALGORITHM TO REDUCE THE APPROXIMATION SET

In this section we provide an algorithm designed to decision aid in dis-
crete multiattribute decision making problems where a two-dimensional vec-
tor utility function has been assessed. The basic idea is as follows: Assume
that we have two utility efficient strategies pi and pj , with expected utili-
ties vectors E

(
u,pi

)
=
(
ui

1, u
i
2
)

and E
(
u,pj

)
= (uj

1, u
j
2), respectively. Sup-

pose that uj
2 > ui

2 and the DM prefers E
(
u,pi

)
than E

(
u,pj

)
, then the

DM would like to have a better utility for uj
1. Among the improvement

directions we shall consider α = (1, 0) because pj has its best utility in
E (u2, ·) and we are maximizing. In this way, and from the assumption on
continuity of the vector utility function, we can improve E

(
u,pj

)
by taking

(uj∗
1 , u

j∗
2 ) = (uj

1, u
j
2) + βα, β > 0, such that (uj∗

1 , u
j∗
2 ) ∼ E(u,pi) (∼ means

indifference). Then, from the monotonicity of the utility, we only have to con-
sider the strategies p ∈ A = A(PZ ,u) that verifies E (u1, p) > uj∗

1 , i.e., the set
PZ is reduced to PZ∗ =

{
p ∈ A : E(u1, p) > uj∗

1
}
. Similarly, if uj

1 > ui
1, we
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take α = (0, 1) as the improvement direction, being the most preferred strat-
egy the one that verifies E (u2, p) > uj∗

2 . In this case, the set PZ is reduced to
PZ∗ =

{
p ∈ A : E (u2, p) > uj∗

2
}
.

Now, we show how to obtain the two utility efficient strategies which are
necessary on each run of the procedure. Let Ph

Z be the set of strategies ob-
tained in iteration h. The process find E

(
u, p1) and find E

(
u, p2) is conducted

by solving P12 and P21. In each iteration h, we compute p1 and p2 to obtain
the approximation set (7). We compare their expected utilities vectors and,
consequently, a new set Ph

Z∗ is obtained. In the algorithm, we call pj(pk) to
the best (worst) current strategy between p1 and p2. We consider a set N
and we add to this set the strategies indifferent to pj . On the other hand, to
find

(
uk∗

1 , u
k∗
2

)
means to calculate

(
uk∗

1 , u
k∗
2

)
= E

(
u,pk

)
+ βα, β ∈ R+, such

that
(
uk∗

1 , u
k∗
2

)
∼ (uj

1, u
j
2). We will use the auxiliary variable x to keep the

superscript of the best strategy in the previous iteration, to know when there
is a movement to a better strategy.

The algorithm is:
Step 0. Let P0

Z∗ = PZ , h = 0, j = 1 and N = ∅.
Step 1. Find E

(
u,p1) and E

(
u,p2).

Step 2. Let Ph
Z = A(Ph

Z∗ ,u).
Step 3. If E

(
u,p1) = E

(
u,p2), the most preferred strategies are

N = N ∪
{
p ∈ Ph

Z : E (u,p) = E
(
u,p1

) }
and stop. Otherwise, go to next step.

Step 4. If E
(
u,p1) ∼ E

(
u,p2) , let

(
u2∗

1 , u
2∗
2
)

= E
(
u,p2) (note that we can

also take (u1∗
1 , u

1∗
2 ) = E(u,p1)) and go to step 9. Otherwise, go to next

step.
Step 5. Let x = j.
Step 6. If E

(
u,p1) � E (u,p2), then

j = 1 (the best)
- If x 6= 1, then N = ∅
- Find

(
u2∗

1 , u
2∗
2
)

and go to step 9
Otherwise, go to next step.

Step 7. If E
(
u,p2) � E (u,p1), then

j = 2 (the best)
– If x 6= 2, then N = ∅
– Find

(
u1∗

1 , u
1∗
2
)

and go to next step.
Step 8. Let N = N ∪

{
p ∈ Ph

Z : E (u,p) =
(
u1∗

1 , u
1∗
2
)}
, determine

Ph+1
Z∗

=
{
p ∈ Ph

Z : E (u2, p) > u1∗
2

}
and find E

(
u,p1) in Ph+1

Z∗
. Let h = h+ 1 and go to step 2.
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Step 9. Let N = N ∪
{
p ∈ Ph

Z : E (u,p) =
(
u2∗

1 , u
2∗
2
)}
, determine

Ph+1
Z∗

=
{
p ∈ Ph

Z : E (u1, p) > u2∗
1

}
and find E(u,p2) in Ph+1

Z∗
. Let h = h+ 1 and go to step 2.

The procedure find
(
uk∗

1 , u
k∗
2

)
may be conducted by means of questions to

the DM about two appropriate strategies to converge to an indifferent point.
Graphically, this means that the point E(u,pk) would move in the improve-
ment direction until the intersection with the isocurve through E(u,pj) in a
point

(
uk∗

1 , u
k∗
2

)
.

Therefore, we have a search-oriented algorithm that will interactively re-
duce the set of strategies because of the irrevocable DM’s responses. The
method is not very demanding because the DM only has to answer to qual-
itative questions he is faced. On the other hand, the computational effort
is small. Observe that if we do not consider the procedures find

(
uk∗

1 , u
k∗
2

)
and calculate Ph+1

Z∗
, we shall have for each iteration an optimization problem

(maximize or minimize), except in the first iteration where we have two, one
for each component of the expected utility vector. Note that in the method we
take the approximation set to the utility efficient set instead of the whole set
PZ , this may considerably reduce the number of strategies to be investigated.
Furthermore, if we assume that the DM fulfils the assumptions that lead to
have linear preference structure, French (1986), then the above algorithm may
be rewritten in another simple way. Before providing the algorithm, we shall
explain the process determine the information set IMh+1 .

Let IMo = R+, if the DM reveals that E
(
uMh , p1

)
% E

(
uMh , p2

)
, h ≥ 0

(% means more preferred or indifferent to), the information set will be IMh+1

with Mh+1 =
(
k1(h+1),k2(h+1)

)t
where k1(h+1),k2(h+1) are the generators of

the polyhedral cone {λk : λ > 0, k ∈ K}, where K is the set of elements k
that verify

kE
(
uMh , p1

)
= kE

(
uMh , p2

)
k ∈ IMh

.

In case that E
(
uMh , p2

)
% E

(
uMh , p1

)
, then elements k must fulfil

kE
(
uMh , p2

)
5 kE

(
uMh , p1

)
k ∈ IMh

.

The algorithm is:
Step 0. Let P0

Z∗ = PZ , h = 0, j = 1 and N = ∅.
Step 1. Find E

(
uMh , p1

)
and E

(
uMh , p2

)
on Ph

Z∗ .

Step 2. Determine Ph
Z = A(Ph

Z∗ ,u
Mh).
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Step 3. If E
(
uMh , p1

)
= E

(
uMh , p2

)
, stop. We have an ideal point and

the solutions are N = N ∪
{
p ∈ Ph

Z : E(uMh , p) = E(uMh , p1)
}

.
Step 4. Let x = j.
Step 5. If E

(
uMh , p1

)
∼ E

(
uMh , p2

)
, then N = {p2} ∪ N ,

(
u2∗

1 , u
2∗
2
)

=

E
(
uMh , p2

)
and go to step 10.

Step 6. If E
(
uMh , p1

)
� E

(
uMh , p2

)
, then j = 1 and k = 2. Otherwise,

j = 2 and k = 1.
Step 7. If j 6= x, then N = ∅.
Step 8. Let Ph+1

Z∗ = Ph
Z and h = h+ 1.

Step 9. Determine IMh
and go to step 1.

Step 10. Calculate

Ph+1
Z∗

=
{
p ∈ Ph

Z : E(uMh
1 , p) > u2∗

1

}
and find E

(
uMh , p2

)
on Ph+1

Z∗
. Let IMh+1 = IMh

, h = h+ 1 and go to
step 2.

Note that this algorithm is used when the true (but unknown) scalar utility
function can be written as a linear combination of the components in u, which
is a particular case of the former one.

4. THE GENERAL CASE

In the general case of a vector utility function u(·) with m = 3 components,
the set of improvement directions will be included in

(9) D =
{

(α1, . . . , αm) ∈ Rm : αi = 0,
m∑

i=1
αi = 1

}
.

If one strategy pj has their best values in the expected utility vector E
(
u, pj

)
for coordinates i1, . . . , ir, we take as improvement directions the subset

Dj = {α ∈ D : αi1 = 0, . . . , αir = 0} .
For example, we can take as improvement direction the vector α ∈ Dj such

that αi = 1/(m− r), i 6= i1, . . . , ir, or simply, ask DM to suggest improvement
directions in Dj , to conduct the process find

(
uk∗

1 , . . . , u
k∗
m

)
in the general case.

The procedure find E
(
u, pj

)
is led by solving problem Pj,j+1,...,m,1,...,j−1.

Procedure modify Ph
Z due to

(
uk∗

1 , . . . , u
k∗
m

)
is analogous to the case m = 2

and now it means that Ph
Z∗ = Ph

Z −
{
p ∈ Ph

Z : E (ui, p) 5 uk∗
i , i 6= i1, . . . , ir

}
.

The best solution in the current iteration will be E
(
u,pt

)
and Y will remain

as the set of indifferent solutions to the current best solution.
Now, let I be the set that contains the superscripts of the strategies that

provides the same expected utility than pt. The algorithm is as follows:
Step 0. Let P0

Z∗ = PZ , h = 0, t = 1, Y = ∅ and I = ∅.
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Step 1. For all l ∈ {1, . . . ,m} − I, find E
(
u,pl

)
in Ph

Z∗ .

Step 2. Determine Ph
Z = A

(
Ph

Z∗ ,u
)
.

Step 3. If all E(u,pl) were equals, we would have the most preferred strate-
gies in

Y ∪
{
p ∈ Ph

Z : E (u,p) = E
(
u,pl)}

and stop. Otherwise, let x = t and go to next step.
Step 4. Calculate the minimum t that fulfils E

(
u,pt

)
� E

(
u,pl

)
, for all l

and let I = ∅.
Step 5. If E

(
u,pt

)
6= E (u,px), then Y = ∅. Otherwise, go to next step.

Step 6. From j = 1 to m :
– Find E

(
u,pj

)
;

– If E
(
u,pj

)
= E

(
u,pt

)
, then I = I ∪ {j};

– If E
(
u,pj

)
∼ E

(
u, pt

)
, then

Y = Y ∪
{
p ∈ Ph

Z : E (u, p) = E
(
u, pj

)}
and modify Ph

Z due to
(
uj∗

1 , . . . , u
j∗
m

)
= E

(
u,pj

)
;

– Otherwise, find
(
uk∗

1 , . . . , u
k∗
m

)
let

Y = Y ∪
{
p ∈ Ph

Z : E (u, p) =
(
uk∗

1 , . . . , u
k∗
m

)}
and modify Ph

Z due to
(
uk∗

1 , . . . , u
k∗
m

)
;

– End.
Step 7. Let Ph+1

Z∗
= Ph

Z∗ , h = h+ 1, and go to step 1.
Clearly, this algorithm has same advantages than the one for two compo-

nents. As above, we can also consider a general algorithm for the case of linear
preference structure.

5. AN APPLICATION TO UNIVERSITY SELECTION

In this section we present an example about university selection to illustrate
the algorithms in the case of a vector utility function with two components.
However, we want to emphasize that the more components in the vector utility
function the more useful is the algorithm.

Let us consider a student (DM) selecting a university for the next year. He
uses four attributes, which corresponds to the lowest-level objectives of his
hierarchy tree. Thus, each university is characterized by a four dimensional
attribute vector z = (z1, z2, z3, z4), where

z1 – registration fee (×104 Spanish ptas),
z2 – distance from university to family residence (×10 km),
z3 – distance from university to accommodation (in km),
z4 – accommodation cost (×5 · 104 ptas).
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However, the registration fee as well as the accommodation cost, depend on
the Consumer Price Index (CPI) which may increase or remain. The experts
assert that the CPI will remain with probability of .7 and will increase with
probability .3.

We have grouped z1 and z4 (costs) and, on the other hand, z2 and z3 (dis-
tance). We want to minimize them all. The student reveals that it is more
important to save money in accommodation than in registration, because he
knows that registration fee is proportional to education quality. He considers
six times more important a reduction in accommodation cost than in regis-
tration fee. Moreover, he considers eight times more important to reduce the
distance from university to accommodation than to family residence. Such
information is modelled by means of a vector utility function, where the com-
ponents are u′1(z) = z1 + 6z4 and u′2(z) = z2 + 8z3. We have to minimize
E
(
u,pj

)
over PZ =

{
p1, . . . , p26} , where we identify, for instance, strategy p1

with lottery (
.7 .3

(10, 10, 1, 25) (11, 10, 1, 27)

)
and so on (see Table 1). We can transform both components of u′ to have
u (z) = −u′ (z), and thus a maximization problem. Furthermore, if we nor-
malize the weights, the vector utility function will be

u(z) =
(
−1

7z1 − 6
7z4,−1

9z2 − 8
9z3
)
.

Table 1 presents twenty six strategies pi, one of them must be selected by the
DM. Such table also presents the respective consequences z = (z1, z2, z3, z4)
and utility vectors u = (u1, u2). Table 2 shows the expected utility vectors
E
(
u,pj

)
for each strategy.

In step 1 we obtain by applying the first algorithm to our selection problem
that (see Table 2))

E
(
u,p14

)
= (−.399,−.320) and E

(
u,p1

)
= (−.842,−.052).

and in step 2, the approximation set

P0
Z = A(P0

Z∗,u) =
{
p1, p2, p5, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21

}
which contains 13 strategies.

We present E
(
u,p14) and E

(
u,p1) to the DM, who has three options:

(1) E
(
u,p1) ∼ E (u,p14) (Step 4). Then, we obtain

P1
Z∗ = {p2, p5, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21}

and (Step 9) E
(
u,p15) = (−.425,−.080). We come back to Step 2 and

we obtain
P1

Z = A(P1
Z∗ ,u) = {p14, p15}.

The set of strategies has been reduced to only two, one of them must
be chosen by the DM.
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Table 1. The set of strategies with their consequences and utility vectors.

pj Remains
Prob. = .7

Increases
Prob. = .3 pj Remains

Prob. = .7
Increases

Prob. = .3

p1 (10, 10, 1, 25)
(−.830, −.052)

(11, 10, 1, 27)
(−.868, −.052) p14 (23, 64, 3, 10)

(−.353, −.320)
(25, 64, 3, 15)

(−.502, −.320)

p2 (11, 50, 5, 15)
(−.504, −.261)

(13, 50, 5, 17)
(−.553, −.261) p15 (24, 15, 2, 12)

(−.420, −.080)
(25, 15, 2, 13)

(−.439, −.080)

p3 (12, 100, 3, 18)
(−.603, −.494)

(17, 100, 3, 21)
(−.684, −.494) p16 (25, 18, 1, 16)

(−.552, −.090)
(27, 18, 1, 16)

(−.536, −.090)

p4 (13, 120, 2, 16)
(−.539, −.587)

(15, 120, 2, 17)
(−.535, −.587) p17 (26, 24, 6, 18)

(−.618, −.139)
(30, 24, 6, 20)

(−.666, −.139)

p5 (14, 60, 4, 14)
(−.474, −.305)

(15, 60, 4, 19)
(−.618, −.305) p18 (27, 29, 4, 19)

(−.652, −.155)
(30, 29, 4, 20)

(−.666, −.155)

p6 (15, 40, 6, 30)
(−1.0, −.216)

(16, 40, 6, 31)
(−1.0, −.216) p19 (28, 33, 5, 17)

(−.588, −.178)
(28, 33, 5, 17)

(−.569, −.178)

p7 (16, 200, 9, 25)
(−.837, −1.0)

(18, 200, 9, 27)
(−.875, −1.0) p20 (29, 34, 3, 21)

(−.720, −.175)
(30, 34, 3, 22)

(−.729, −.175)

p8 (17, 154, 1, 28)
(−.937, −.747)

(20, 154, 1, 30)
(−.972, −.747) p21 (30, 42, 2, 23)

(−.787, −.210)
(31, 42, 2, 24)

(−.794, −.210)

p9 (18, 160, 5, 26)
(−.872, −.791)

(21, 160, 5, 27)
(−.878, −.791) p22 (31, 157, 1, 25)

(−.854, −.762)
(31, 157, 1, 25)
(−.825, −.762)

p10 (19, 200, 8, 24)
(−.808, −.996)

(25, 200, 8, 25)
(−.819, −.996) p23 (32, 199, 5, 28)

(−.953, −.980)
(35, 199, 5, 30)
(−.988, −.980)

p11 (20, 145, 7, 17)
(−.579, −.727)

(21, 145, 7, 25)
(−.815 − .727) p24 (33, 165, 7, 26)

(−.888, −.823)
(35, 165, 7, 30)
(−.988, −.823)

p12 (21, 45, 5, 11)
(−.384, −.236)

(22, 45, 5, 16)
(−.531, −.236) p25 (34, 187, 9, 23)

(−.791, −.937)
(35, 187, 9, 25)
(−.830, −.937)

p13 (22, 39, 4, 15)
(−.516, −.203)

(25, 39, 4, 20)
(−.661, −.203) p26 (35, 145, 8, 11)

(−.399, −.731)
(37, 145, 8, 12)
(−.420, −.731)

Table 2. Expected utility vectors.
pj E

(
u,pj

)
pj E

(
u,pj

)
p1 (−.842, −.052) p14 (−.399, −.320)
p2 (−.519, −.261) p15 (−.425, −.080)
p3 (−.628, −.494) p16 (−.547, −.090)
p4 (−.544, −.587) p17 (−.633, −.139)
p5 (−.518, −.305) p18 (−.657, −.155)
p6 (−1.0, −.216) p19 (−.582, −.178)
p7 (−.849, −1.0) p20 (−.723, −.175)
p8 (−.948, −.747) p21 (−.789, −.210)
p9 (−.874, −.791) p22 (−.845, −.762)
p10 (−.811, −.996) p23 (−.964, −.926)
p11 (−.652, −.727) p24 (−.919, −.823)
p12 (−.429, −.236) p25 (−.803, −.937)
p13 (−.560, −.203) p26 (−.405, −.731)

(2) E
(
u,p14) � E

(
u,p1) (Step 6). Then, we have to determine (u2∗

1 , u
2∗
2 )

∼ E(u,p14). Suppose the DM considers
(
u2∗

1 , u
2∗
2
)

= (−.690,−.052).
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Therefore,
P1

Z∗ = {p2, p5, p12, p13p14, p15, p16, p17, p18, p19, p21}

(Step 9). We go back to Step 2 and obtain

P1
Z = A(P1

Z∗ ,u) = {p14, p15}.

Observe that we have same solution as above. In case that u2∗
1 were

greater than −.425, then the most preferred solution would have been
p14.

(3) E
(
u,p1) � E (u,p14) (Step 7). Then, we have to determine (u1∗

1 , u
1∗
2 )∼

E
(
u,p1) . Assume that DM considers

(
u1∗

1 , u
1∗
2
)

= (−.399,−.1). Hence,
P1

Z∗ = {p1, p15, p16} (Step 8). Coming back to step 2, we obtain

P1
Z = A(P1

Z∗ ,u) = {p1, p15} .
We have arrived to situation analogous to the above two cases. In
the event that u1∗

2 were greater than −.080, then the most preferred
solution would be p1.

If the DM assumes the axioms to have a scalar utility function as a linear
combination of the components of the vector utility function, we can use the
information provided by the DM in steps 6 (or 7), where he revealed that
E
(
u,p14) is preferred to E

(
u,p1) (or E

(
u,p1) is preferred to E

(
u,p14)), to

construct the generators of the information set. In fact, if we have the first
assertion, the weights k = (k1, k2) of the true DM’s scalar utility function,
have to verify

kE
(
u,p14) = kE

(
u,p1)

k ∈ IM0

and define a new information set IM1 , where

M1 =
(

1 0
.377 .623

)
.

Hence, the associated vector utility function is

uM1(z) = (−.143z1 −.857z4,−.054z1 −.069z2 −.554z3 −.323z4).

Thus, the approximation set for uM1 (·) (step 2) is

P1
Z = A(P1

Z∗ ,u
M1) = {p14, p15}.

On the other hand, if the DM reveals that E
(
u,p1) � E

(
u,p14) , the weights

k have to verify
kE

(
u,p1) = kE

(
u,p14)

k ∈ IM0

i.e., the information set is IM1 , where

M1 =
(
.377 .623

0 1

)
.
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Now, the associated vector utility function is
uM1(z) = (−.054z1 −.069z2 −.554z3 −.323z4,−.125z2 −.878z3).

The approximation set for uM1(·) (Step 2) is
P1

Z = A(P1
Z∗ ,u

M1) = {p1, p15}.
We note that the solutions obtained applying this algorithm are, in this case,
the same than those obtained with the first one. However, the number of
iterations usually will be smaller, although in this last method it is necessary
for the DM to check the respective assumptions, which might be difficult to
verify.

6. CONCLUSIONS

In multiattribute decision making under risk, the utility efficient set plays
an important role in the solution process. Its generation may be very difficult
and, moreover, it may be too extensive for the DM to make an easy choice.
We propose an interactive approach to overcome such drawbacks, which uses
an idea of approximation to the utility efficient set. Then, we reduce the
set of strategies of interest based on information revealed by the DM from
comparison of pairs of strategies. The procedure stops when a single strategy
is achieved or a reduced enough set of strategies for the DM is obtained. We
also consider a second procedure that is a variant of first one, valid for the
case in which the DM has a linear utility function obtained as a combination
of the components of the vector utility function.

It is a comfortable procedure for the DM, because he only has to answer
qualitative questions for comparison of each pair of strategies. Furthermore,
from a computational point of view, it is only necessary to solve as much
optimization problems as the number of components of the DM’s vector utility
function. Finally, an application to university selection shows the power of the
procedure.
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