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WEIGHTED QUADRATURE FORMULAE
OF GAUSS-CHRISTOFFEL-STANCU TYPE

DIMITRIE D. STANCU,* IOANA TASCU' and ALINA BEIAN-PUTURA?

Abstract. In the present paper we consider weighted integrals and develop ex-
plicit quadrature formulae of Gauss—Christoffel-Stancu type using simple Gauss-
ian nodes and multiple fixed nodes. Given the multiple fixed nodes and their
multiplicities, we present some algorithms for finding the Gaussian nodes, the co-
efficients and the remainders of the corresponding quadrature formulae. Several
illustrative examples are presented in the case of some classical weight functions.
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1. INTRODUCTION

Let w be a nonnegative weight function assumed integrable over a bounded
or unbounded interval (a,b) of the real axis. We require that all the moments
of this weight function

b
cp = / Pw(z)dz, k=0,1,2,...
a

exist and ¢y > 0.

Integrands in which such a weight function is present, as a multiplicative
factor, appear frequently in the theory of orthogonal families of functions.

Let f be a real-valued function having continuous derivatives of whatever
orders will be needed.

We suppose that we want to construct quadrature formulae, for weighted
integrals, of the following form

(1) U(f) = F(f) + R(f),

where

m s ri—1
(2) F(f) =3 Apfzr) + 3.3 Ciif9(a)
k=1 i=1 j=0
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and R(f) = R(w; f), the remainder or the complimentary term, is, by defini-
tion, the difference U(f) — F(f).

We denote by u the polynomial of the distinct nodes zp and by w the
polynomial of the multiple fixed nodes a;, namely

(3) u(z) = (z—x1)(x —x2) ... (x — Tm),
(4) w@)=(r—a) (x—az2)?...(x —as)"™.
Here r1,79,...,7s are nonnegative integers and a; are preassigned nodes,

such that w(x) > 0 on the interval (a,b).

2. USE OF THE LAGRANGE-HERMITE INTERPOLATION

We will use a method of parameters (see D. D. Stancu [14], [15]) for con-
structing a general Gauss—Christoffel type quadrature rule by using simple
nodes z; and preassigned multiple nodes a;.

We shall start from the Lagrange-Hermite interpolation formula correspon-
ding to the function f, to the simple nodes x, to the multiple nodes a; and to

other nondetermined simple nodes t1, ts, .. ., t;,, distinct from the other nodes.
This formula has the form
(5) (@) = (Lamtp—1)(x) + (Q2mtp-1f)(2).

The interpolating polynomials

(Lomip-1f)(x) = v(:c)(LHf1)(m; Tk, j‘f) + w(z)u(@) (L f2)(z; th),
where
v(@)= (@ —t)...(x—tw), Fi=L f=2L, p=r+-tr
and the remainder is expressed by
@ 16) = a0 [ % 501]

the square brackets indicating the divided difference of f on the indicating
nodes; the numbers beneath the nodes designate their multiplicities.
More explicitly the interpolating polynomial can be written as follows

(6) (L2m+p71f) (SL‘) :k_l ::((mmk)) ’ vv((rxk)) ’ ::J((;c))f(xk)

u(z)  wp(r) w(x)
" hz—:l u(ty) ”:(th) . w(th)f(th)+

r—a;)” ) :
o () i) 9 ),

a;

where
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3. CONSTRUCTION OF THE QUADRATURES BY THE METHOD OF PARAMETERS

If we multiply formula (5) by w(z) and integrate we obtain a quadrature
formula of the form

) [ w@r@)e =3 A + 3 Buston
e k=1 h=1

s ri—1

+3°3 CiifD(a) + R(S),

i=1 j=0

where

® R =R = [eEueeee@ [§ ]

Because the divided difference which occurs in (8) is of order 2m + p, it
follows that the quadrature formula (7) has the degree of exactness N =

2m+p—1.
Now we want to determine the nodes x; so that we have By = By = --- =
B, = 0, for any values of the parameters t1,t2,...,tm.

Since the coeflicients By, are given by the formula

b
Bn = /a w(z) u((th)) ' 'U:((th)) ' w((th)) dz

and t;, are arbitrary, it follows that B, =0, h = 1,2,...,m, if and only if the
polynomial u(z) is orthogonal on (a,b), with respect to the weight function
ww, to any polynomial of degree m —1. Consequently the nodes z1,x2,...,Tn
should be the m real and distinct roots of the polynomial of Christoffel-Szego,
defined by the formula
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Py (z) Prii(z) ... Ppyp(z)

Pp(ar) Ppii(ar) ... Ppgplar)

Py, (a1) Pr/n—l-l(al) P?Q’Hrp( 1)
: P a) PO @) P,S:j_pl)(al)

(9) Un(z) = @ | P Pap(e) o Paglaz) |

P (as) Pprii(as) ... Prgplas)

Py, (as) 7/77,—‘,-1 (as) ... P7/n+p( 5)
P Vas) POV (as) . P,f,:j;l)(as)

where {P, } is the orthogonal family of polynomials on (a,b), with respect to
the weight function w.

We mention that formula (9) was given by E. B. Christoffel [1] in the case
w(z) =1,r . =ryg=--- =71y =1 and by G. Szegd [18] in the case w(z) =1
and arbitrary ry,72,...,7s.

As a consequence, if xj are the roots of the polynomial (9) then we get the
following quadrature formula

s ri—1

(10) /abw(x) dx_ZAkka+ZZch (a;) + R(f).

=1 57=0

It should be remarked that xj, (the Gaussian nodes) can be found also by
determining the relative minimum of the following function of m variables

b
G(ul,...,um):/a w(z)(z —ur)?. .. (x — upm)?de.

4. DETERMINATION OF THE COEFFICIENTS AND THE REMAINDER

Because t1,t9,...,t,, are arbitrary numbers, we can make tp — xi, k =
1,2,...,m, and we are able to see that we have
b 2
_ uk () w()
(11) A _/a w() (Uk(xk)) w(xk)dx
and
b
(12) R(f) :/ w(x)u2(x)w(x) [ac 552’“ @i f} dz,

where k=1,2,...,mandi=1,2,...,s.
We can see from (11) that the coefficients Ay are all positive, but the coef-
ficients C; ; are not necessarily positive.
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According to the interpolation formula (6) these last coefficients can be
expressed by the formula

b z—a;)? T—a;)¥ @)

a;

If we assume that f € C?™*P(q,b), by using the mean-value theorem of
divided differences we can write the following representation of the remainder

f(2m+p> 5)

(13) R(f) = L)

(x)dz,

for a certain point £ € (a, b).

REMARK. In some special cases formula (9) can be simplified. For in-

stance if a = —b, w(z) and w(x) are even in (—b,b) and the fixed nodes are
+ai,+ay, ..., +aq, 2¢ = r, having the orders of multiplicity the even numbers
T1,72,...,Tq, then the determinant from (9) reduces to a determinant having

the ﬁrst row formed by the following elements P,,(x), Ppi2(2), ..., Ppntr(x)

and the next rows are P(J)( i)s P,(n_)m(al) . anﬁ)ﬁ(al) where 1 = 1,2,...,q;
F=0,1,...,m —1. 0

5. SPECIAL CASES OF FORMULA (7)

1) If —a; =ay =0 (p =2), (a,b) = (—b,b) and w(x) is an even function
then we obtain the quadrature formula

b ri—1 ro—1

(14)/ w(z) dfoAkka +ZBf<J +ZChf

b
(2m+rq+ry) b
+ 7]0(;”;:;72"2%) B w(z)(z 4 b)" (z — b)2u?(x)dx.

We can see that when 71 = 7o = r we have B; = ()} if j is even and
Bj = —Cj if j is odd. In this case the preceding formula becomes

/" dx—ZAkf o +ZB + (=17 fO b))

—b

f(2m+2r g

T (2m2r)! )TUQ <‘T)dx7

where B; > 0,5 =0,1,...,r — 1.
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2) When (a,b) = (=b,b), —a1 = a3 =b, aa =0, 11 =1r3 =71, 12 = 28,
m = 2k and w(x) is an even function we obtain the quadrature formula

r—1

2s
1) [ w@ e =Y Afw) + X B[ + (17 590)
=1

—b =0
s—1 )
+ 3 O f @) (0)
j=0

(4k+2r+42s) b s ”
+ @Tms(ﬁ) /_bW(w)x2 (2?2 — b*)* v’ (z)da.

Here the coefficients of £()(0) are zero if i is odd.

When the number of Gaussian nodes m is odd: 2k—+1, then one of these will
coincide with zero and we get a quadrature formula similar with the preceding
one with the multiplicity of the fixed node ao increased by two.

3) When the polynomial of the fixed nodes is w(z) = 22%, a = —b, m = 2n
and the weight function is even, then we can obtain a quadrature formula of
the following form

a 2n s—1 ‘
(16) [ wl@f@)de = Y Aufw) + 3 Baf®(0) + R(),
k=1 =0

—a

because among the fixed nodes occurs also the point x = 0.
The remainder has the expression

(4n—+2s) a s
R(f) = f@T%g) i w(:v)az2 u2(x)d:v.

The nodes xj, are the roots of the orthogonal polynomial Dsy, 25(x) corre-
sponding to the weight function w(z)z? and to the bounded or unbounded
interval (—a,a) (see D. D. Stancu [13]); u(x) = Daps(x) is with leading
coefficient 1.

For the coefficients Ay one finds the following expressions

a 2 s
Ak:/ w(m)(%) ﬁ%dx.

—a 2m,2s

Consequently all the coefficients Ay of the quadrature formula (16) are
positive.

If we take into account that Dg, 9s(2) is a symmetrical polynomial with
respect to w(x) and the interval (—a,a) and we assume that we have x; <
r9 < -+ < Xo9n, we can see that we have

Ak = Agn_k+1, k= 1,2, ooy 2n.
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By applying the Christoffel-Darboux formula from the theory of orthogonal
polynomials, we can deduce the following explicit expressions for the coeffi-
cients Ay (see D. D. Stancu [13]):

Aop_29s42 1

Ay = = =
2s ! ’
Aop_42s42 27 Dy, o (i) Dan—1,2s(x;)
where Dy, 25() = 2" + ... and by using the moments of w(x) we have
C2s C2s+2 e C2s+2n
C25+2 C25+4 <o C2s42n+2
AQn,Qs = . .
C2s+2n  C2s+2n+2 - - - C2s+4n

6. ILLUSTRATIVE EXAMPLES IN THE CASE OF SOME CLASSICAL WEIGHT
FUNCTIONS

A) In the case of the weight function w(z) = (1 — z)%(1 + z)”, where
a, B > —1, we have the orthogonal polynomial of Jacobi

T () = G sy (1= )" (14 ),

2m-m!  w(x)

For the calculation of the integral
1
U = [ (=271 +2) f()da
we construct some Gauss—Christoffel quadrature formulae.

If the polynomial of the fixed nodes is w(x) = 1 — x2, because r = ry = 1,
formula (9) leads us to the solution of the equation

(@+m+1)(B+m+1)(a+B+2m+4) T (2)+
o — B)(a+ B+ 2m + 3)(m + 1)) (z)

—(a+ B +2m+2)(m+1)(m+2)Jls(x) = 0.

In the case m = 1 we find the Gaussian node z; = oﬁ%ﬁﬂ and the following

Gauss—Christoffel quadrature formula

/qﬂ—wfﬂ+wa@Mx=

-1

_ o T'(a+1)T(B+1
= oAt O ) [(a+ D+ 22F(-1)+

+ @+ 1)@+ D+ B+ (Z52) + (B+ 1B +2)2f(1)]-

+6+2  T'(a+3)I'(8+3) 4)
-2¢ (a+§+4 a+6+6)f( (©),
which was first discovered in 1958 by D. D. Stancu [14] (see also [15]).
In the particular case o = 8 = 0, it reduces to the known Cavalieri—-Simpson

formula.
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Ifa= %, 8= —%, we obtain the following quadrature formula

[ 11 e f(@)de = F[25£(-1) + 32f (=1) +3f(1)] — 55 £ D (©).

If we consider that the polynomial of the fixed nodes is w(z) = (1 — x
then the Gaussian nodes can be found by solving the equation
Im(@)  Imi2(@)  Imia(z)
In(1) Jmi2(1)  Jmra(l) | =0,
In(D) - o) Jhpa(1)
where we have denoted by Jp,(z) the Jacobi polynomial g (x).
For m = 3 we have

[J5(1) (1) = J5(1)J7(1)] Ja(a) — [J5(1)F5(1) — J4(1) J(1)] Js(a) +
F[J5(1)74(1) = J5(1)J5(1)] o () = 0.

2)2?

w(@)Un(z) =

Because
Ja(1) = {etled2)(ets)
Ty(1) = et ladd)
Js5(1) = (a+1)(a+21)2(g+3)(a+5)’
JE(1) = (a+2)(@+3)224(a+4)(a+5)7
Jz(1) = (O‘“)(@+2)(a+3)(?£g)(a+5)(a+6)(a+7)7
JH(1) = (et2atdatt @rs)(at6)(arn)

we find that the corresponding Gaussian nodes are

_ /3 _ _ 3
Ty = 5ator 12=0, 3=1/9,79"

In this case we obtain the following Gauss—Christoffel-Stancu quadrature
formula

[ -y -

-1

_ 22a+3m{32(a + 1) (a4 2)(a + 3)2£(0)

(ot Do +2)2a+9°[7(— /o) + 7 (Voo

where

220127 (a44)T'(a+6
R(f) = 4725(204(-"-9)1—‘)(224-"-12))']0(10) (€)-
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In the case a = —% we find for the Chebyshev first kind weight function
the quadrature formula

1
;/1 Ty s [488£(=1) +15//(—1) + 512 ( — %E) + 500£(0)

+512f (42) = 15f/(1) +438F(1)| + ryzagomon /" (©)-

If a = % we get for the Chebyshev second kind weight function the quadra-
ture formula

i/i¢rﬂﬁﬂww=
_ 37g).32{6860f(0) + 5000[f( — \/130) + f(\/%)}+

+978[f(—1) + f(1)] + 63[f'(-1) — f’(l)]} + sesmasas LU (6).

When the polynomial of the fixed nodes is w(z) = 22, m = 3, and w(x) =

(1 — 22)* then we find a quadrature formula of degree of exactness eleven,
namely

[ - @ =

-1

_ 4% (a1l (a+4) {896(a +1)(a +2)%(34a + 123) £(0)

1225(a+2)[ (ot 2)

+2240(cr + 1)(a + 2)2£7(0) + 3(2a + 9) [T( + 2) (5207 + 3160 + 389)

— (9202 + 3960 + 179) | \/7(a + 2) (20 + 9) [ (1) + f(x5)]

+3(20+ 9) [T(a + 2)(520% + 3160 + 389)

+ (9202 + 3960 + 179)} V(e +2)(2a +9)[f(w2) + f(24)] }

a+1 T'a+3)T(a+7
+ 4455(20i#9)(2a+11) ’ (F(20)1+(14) )f(12) (),

where the Gaussian nodes are

o — \/ T@at9) 2T DRt

(2a+9)(2a+11) ’

— Ty =x4 = \/7(2a+9)—2 7(a+2)(20:4-9) .

(2a+9)(2a+11)
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In the particular case a = % it becomes
1
/ V1—a?f(z)de =i [392f(0) + 7£7(0) 4+ 2(49 — 10V7) (f () + f(x5))+

1
+2(49 +10V7) (f(z) + £(21))] + smrmseammmn F 2 €),

where

T+V7 / / 7—/7

!/ ! _ _
—T1 = Ty = 2 “L2=Ty= 2 *

B) In the case of w(z) = e *", the interval (—o0o0,00) and w(z) = z2, the
Gaussian nodes are given by the equation

Hgmfl(I) + 2(2m + 1)H2m,1(1‘) =0,

where by H,(x) we denote the Hermite orthogonal polynomial:

2

Hy () = (—1)"e" [e™]™.
For m = 3 we find the Gaussian nodes

/1414 7—/14
—zp =a5 =\ TR, w3 =0, —xp=uwx4=1/"F"

and the Gauss—Christoffel-Stancu quadrature formula
/ e f(x)da =5 [3808f(0) +280f"(0) + 3(91 + 23V14) (f(22) + f(24))

+3(91 — 23V14) (f (1) + f(25)) | + saabasao [ 12,

of degree of exactness eleven.
If we assume that w(z) = e ", w(x) = 2*, m = 3 and (a,b) = (—o0, 00) we
get the Gaussian generalized quadrature formula

x? 4

/ T e f(a)da = %{15744 £(0) + 2856 (0) + 147 £1V)(0)

+360[F (=) + F(D)] } + s S0 (©)

of degree of exactness nine.

7. IMPORTANT FINAL REMARKS

In the papers [4], [5], [6] of W. Gautschi, there are called Gauss—Christoffel
quadrature formulae the Gaussian quadrature formulae for weighted integrals.
But we consider that the principal contribution of E. B. Christoffel [1] was
to introduce in quadrature formulae some preassigned (fixed) nodes and to
maximize the degree of exactness of such a quadrature formula.

Gaussian quadrature formulae for weighted integral were considered by G.
C. Jacobi [7], F. G. Mehler [10], C. Posse [11], later by E. B. Christoffel (in a
second paper [2]), T. J. Stieltjes [17], A. Markov [9], J. Deruyts [3] and others.
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In the paper [15] D. D. Stancu has investigated an extended generalization
of the P. Turan [19] quadrature formula by using multiple fixed nodes and
multiple Gaussian nodes having odd orders of multiplicities.

We mention that in the paper [16] D. D. Stancu, in collaboration with A.
H. Stroud, has tabulated the values of the Gaussian nodes, the coefficients
and the remainders, with 20 significant digits, for several weighted quadrature
formulae using different multiple fixed nodes.

[10]

[11]
[12]

[13]

[14]
[15]
[16]
17)
18]

[19]

REFERENCES

CHRISTOFFEL, E. B., Uber die Gaussiche Quadratur und eine Veralgemeinerung der-
selben, J. Reine Angew. Math., 55, pp. 61-82, 1858.

CHRISTOFFEL, E. B., Sur une classe particuliére de fonctions entiéres et de fractions
continues, Ann. Mat. Pura Appl., 2, 8, pp. 1-10, 1877.

DERUYTS. J., Sur le calcul approché de certaines intégrales définies, Bull. Acad. Roy.
Belgique, (3) 11, pp. 307-311, 1986.

GAuTscHI, W., Construction of Gauss—Christoffel quadrature formulas, Math. Comp.,
22, pp. 251-270, 1968.

GAUTSCHI, W., A survey of Gauss—Christoffel quadrature formulae, in E. B. Christoffel:
The influence of his work on mathematics and the physical sciences, edit. by P. Butzer,
F. Fehér, Birkhauser, Basel, pp. 72-147, 1981.

GAUTSCHI, W., Recognition of Christoffel work on quadrature during and after his life-
time, ibid., pp. 724-727, 1981.

Jacosl, C. G. J., Uber Gauss neue Methode, die Werthe der Integrale niherungsweise
zu finden, J. Reine Angew. Math., 1, pp. 301-308, 1826.

Kryrov, V. 1., Approzimate Calculation of Integrals, McMillan, New York, 1962.
MARKOV, A., Sur la méthode de Gauss pour le calcul approché des intégrales, Math.
Ann., 25, pp. 427-432, 1885.

MEHLER, F. G., Bemerkungen zur Theorie der mecanischen Quadraturen, J. Reine
Angew. Math., 63, pp. 152-157, 1864.

Possk, C., Sur les quadratures, Nouri Ann. Math., (2) 14, pp. 147-156, 1875.
Stancu, D. D., Generalizarea formulei de cuadraturd a lui Gauss—Christoffel, Acad.
R. P. Rom., Fil. Tagi, Stud. Cerc. Sti., 8, pp. 1-18, 1957.

StaNcU, D. D., On a class of orthogonal polynomials and on some general quadrature
formulae with minimum number of terms, Bull. Math. Soc. Sci. Math. Phys. R. P.
Roumaine (N. 5.), 1, no. 49, pp. 479-498, 1957.

StaNcu, D. D., O metodd pentru construirea de formule de cuadraturd de grad inalt de
exactitate, Comunic. Acad. R. P. Rom., 8, pp. 349-358, 1958.

StanNcu, D. D., Sur quelques formules générales de quadrature du type Gauss—
Christoffel, Mathematica (Cluj), 1(24), pp. 167-182, 1959.

Stancu, D. D. and STROUD, A. H., Quadrature formulas with simple Gaussian nodes
and multiple fized nodes, Math. Comp., 17, pp. 384-394, 1963.

STIELTJES, T. J., Quelques recherches sur la théorie des quadratures dites mécaniques,
Ann. Sci. Ec. Norm. Paris, Sér. 3, 1, pp. 409-426, 1884.

SzEGO, G., Uber die Entwickelungen einer analytischen Funktion nach dem Polynomen
eines Orthogonalsystems, Math. Ann., 82, pp. 188-212, 1921.

TURAN, P., On the theory of the mechanical quadrature, Acta Sci. Math. Szeged, 12,
pp. 30-37, 1950.

Received by the editors: May 23, 2003.



	1. Introduction
	2. Use of the Lagrange–Hermite interpolation
	3. Construction of the quadratures by the method of parameters
	4. Determination of the coefficients and the remainder
	5. Special cases of formula (7)
	6. Illustrative examples in the case of some classical weight functions
	7. Important final remarks
	References

