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Rev. Anal. Numér. Théor. Approx., vol. 32 (2003) no. 2, pp. 235–242

ictp.acad.ro/jnaat

EFFICIENCY AND GENERALIZED CONCAVITY
FOR MULTIOBJECTIVE SET-VALUED PROGRAMMING

Ş. ŢIGAN∗ and I. M. STANCU-MINASIAN†

Abstract. The purpose of this paper is to give sufficient conditions of general-
ized concavity type for a local (weakly) efficient solution to be a global (weakly)
efficient solution for an vector maximization set-valued programming problem. In
the particular case of the vector maximization set-valued fractional programming
problem, we derive some characterizations properties of efficient and properly
efficient solutions based on a parametric procedure associated to the fractional
problem.
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1. INTRODUCTION

Let X ⊂ Rn and Q : X −→ P(Rp) be a set-valued map defined on X, where
P(Rp) denotes the family of subsets in Rp.

The vector maximization set-valued programming problem is formulated as

(MSVP) VmaxQ(x), subject to x ∈ X.

The optimal solutions of the MSVP that we deal with include the concepts
of efficient, weakly efficient, local efficient and properly efficient solutions that
will be defined with respect to a semiorder relationship between subsets in Rp.

The paper is organized as follows. In Section 2 we introduce the notations
and definitions, which will be used throughout of the paper.

In Section 3, we give sufficient conditions of generalized concavity type for
a local (weakly) efficient solution to be a global (weakly) efficient solution of
an MSVP.

In Section 4, for the particular case of the vector maximization set-valued
fractional programming problem, we obtain some characterizations properties
of efficient and properly efficient solutions by using a parametric auxiliary
problem.

Some concluding remarks are made in the last section.

∗Department of Medical Informatics, University of Medicine and Pharmacy “Iuliu Haţie-
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2. NOTATION AND DEFINITIONS

Let A,B ⊂ Rp be non-empty subsets in Rp and θ a given real number. Then
we define the following set operations and relations:

(i) A+B = {a+ b | a ∈ A, b ∈ B};
(ii) Min(A,B) = {min(a, b)|a ∈ A, b ∈ B};

(iii) θ A = {θa | a ∈ A};
(iv) A

B =
{

a
b = (a1

b1
, a2

b2
, . . . ,

ap

bp
) | a ∈ A, b ∈ B

}
, for any B ⊂ Rp

+, where Rp
+

denotes the positive orthant of Rp;
(v) A ≥ B if for each b ∈ B, there exists a ∈ A such that a ≥ b , that is,

ai ≥ bi, for any i ∈ J = {1, 2, . . . , p};
(vi) A > B if for each b ∈ B, there exists a ∈ A such that a > b, that is,

ai ≥ bi, for any i ∈ J and there is j ∈ J such that aj > bj ;
(vii) A � B if for each b ∈ B, there exists a ∈ A such that a � b, that is,

ai > bi, for any i ∈ J .
Next, we consider some classes of generalized concave functions.
Let f : X −→ P(Rp) be a set-valued function defined on the convex non-

empty set X in Rn.
a) The function f is said to be quasiconcave if for any x′, x′′ ∈ X and

t ∈ (0, 1),

f
(
tx′ + (1− t)x′′

)
≥ Min

(
f(x′), f(x′′)

)
.

b) The function f is said to be semistrictly quasiconcave if for any x′, x′′ ∈
X such that f(x′) 6= f(x′′), we have

f
(
tx′ + (1− t)x′′

)
> Min

(
f(x′), f(x′′)

)
, ∀t ∈ (0, 1).

c) The function f is said to be semiexplicitly quasiconcave if it is quasi-
concave and semistrictly quasiconcave.

d) The function f is said to be strictly quasiconcave if for all x′, x′′ ∈ X
such that f(x′) 6= f(x′′), we have

f
(
tx′ + (1− t)x′′

)
� Min

(
f(x′), f(x′′)

)
, ∀t ∈ (0, 1).

e) The function f is said to be explicitly quasiconcave if it is quasiconcave
and strictly quasiconcave.

Obviously, f is semiexplicitly quasiconcave if it is explicitly quasiconcave.
However, the converse is not true (see, [5]).

Next we consider for Problem MSVP some efficiency concepts based on the
semiorder relationships presented above (see, (v)–(vii)) between the subsets
in Rp.

Definition 1. A point x̄ ∈ X is said to be an efficient solution to Problem
MSVP if there does not exist y ∈ X such that Q(y) > Q(x̄).

Let E denote the set of all efficient solutions to Problem MSVP.
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Definition 2. A point x̄ ∈ X is said to be a weakly efficient solution to
Problem MSVP if there does not exist y ∈ X such that Q(y)� Q(x̄).

Let WE denote the set of all efficient solutions to Problem MSVP.

Definition 3. A point x̄ ∈ X is said to be a local (weakly) efficient solution
to Problem MSVP if there does not exist y ∈ X ∩ U such that Q(y) > Q(x̄)
(Q(y)� Q(x̄)) for some neighborhood U of x̄.

Let LE (LWE) denote the set of all local (weakly) efficient solutions to
Problem MSVP.

Definition 4. An efficient solution x̄ ∈ X to Problem MSVP is said to be
a properly efficient solution if there exists ū ∈ Q(x̄) and a scalar M > 0 such
that for all i ∈ J and each x ∈ X, for which there exists u ∈ Q(x) such that
ui > ūi, there exists j ∈ J − {i}, for which uj > ūj and ui−ūi

ūj−uj
≤M.

Let PE denote the set of all properly efficient solutions to Problem MSVP.
Obviously, from Definitions 1–4 we have the following relationship between

the different classes of optimal solutions of MSVP:

(1) PE ⊂ E ⊂WE, E ⊂ LE, WE ⊂ LWE, LE ⊂ LWE.

The efficiency notions given by Definitions 1–3 are analogous to that consid-
ered for vector real valued objective functions in refs. [1], [5], [6]. The proper
efficiency concept is a generalization of that introduced by Geoffrion [3]. We
also mention that in the case of vector real valued objective functions rela-
tionships between another types of proper efficiency solutions was studied by
Giorgi and Guerraggio [4].

3. GENERALIZED CONCAVE CONDITIONS FOR LOCAL-GLOBAL PROPERTIES

We now generalize to set-valued vector optimization problems a charac-
terization of local efficient solutions obtained in [5] and [6] for usual vector
optimization problems. A similar result is given for local weakly efficient so-
lutions.

Theorem 5. Let Q : X −→ P(Rp) be a set-valued semiexplicitly quasicon-
cave function, where X ⊂ Rn is a non-empty convex set. Then x̄ ∈ X is a
local efficient solution to Problem MSVP if and only if x̄ is a (global) efficient
solution (i.e., E = LE).

Proof. From (1) we have E ⊂ LE. To prove the converse inclusion, assume
to the contrary that x̄ ∈ X is a local efficient solution (with respect to a
neighborhood U of x̄), which is not a global efficient solution. Then there
exists y ∈ X such that Q(y) > Q(x̄). Since Q is semiexplicitly quasiconcave,
we have

(2) Q
(
ty + (1− t)x̄

)
> Q(x̄), for all t ∈ (0, 1).
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But for t sufficiently close to zero, x(t) = ty + (1 − t)x̄ will be in the neigh-
borhood U of x̄. But this shows by (2) and Definition 1 that x̄ would not be
a local efficient solution, which is a contradiction. �

We supplement the result in Theorem 5 by a similar one for weakly efficient
solutions.

Theorem 6. Let Q : X −→ P(Rp) be a set-valued explicitly quasiconcave
function, where X ⊂ Rn is a non-empty convex set. Then x̄ ∈ X is a local
weakly efficient solution of MSVP if and only if x̄ is a (global) weakly efficient
solution.

Proof. One can follow the lines of previous proof. To prove the nontrivial
implication, assume to the contrary that x̄ ∈ X is a local weakly efficient
solution (with respect to a neighborhood U of x̄), which is not a global weakly
efficient solution. Then there exists y ∈ X such that Q(y)� Q(x̄). Since Q is
explicitly quasiconcave, we have
(3) Q

(
ty + (1− t)x̄

)
� Q(x̄), for all t ∈ (0, 1).

But for t sufficiently close to zero, x(t) = ty + (1 − t)x̄ will be in the neigh-
borhood U of x̄. But this shows by (3) and Definition 2 that x̄ would not be
a local weakly efficient solution, which is a contradiction. �

In contrast to what observed for efficient solutions in Theorem 5, the more
general assumption of semiexplicit quasiconvexity is no longer sufficient to
prove the local-global property for weakly efficient solutions. To see this, if in
the previous proof the inequality (3) would be replaced by (2) (that holds in
the case of semiexplicit quasiconvexity assumption) then the final conclusion
is no longer true. Moreover, Luc and Schaible [5] give an example for vector
real valued objective functions, which shows that semiexplicit quasiconvexity
assumption is no longer sufficient to obtain the local-global property for weakly
efficient solutions.

4. MULTI-OBJECTIVE FRACTIONAL SET-VALUED PROGRAMMING PROBLEM

The vector maximization fractional set-valued problem is formulated as

(FSVP) Vmax F (x)
G(x) ≡

(
F1(x)
G1(x) , . . . ,

Fp(x)
Gp(x)

)
, subject to x ∈ X,

where F : X −→ Rp and G : X −→ Rp are vector set-valued maps, and for
each x ∈ X, and i = 1, 2, . . . , p, we assume that
(4) Gi(x) ⊂ Rp

+.

Bhatia and Mehra [1] studied Lagrangian duality for vector optimization
fractional set-valued problem FSVP.

Let
Q(x) = F (x)

G(x) , ∀x ∈ X.
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We mention that some particular cases of vector maximization fractional
set-valued problems was studied via inexact programming in [7], [8] and [9].

In the fractional case, by using a parametric approach, we consider for a
p-dimensional vector θ = (θ1, . . . , θp) ∈ Rp, the following vector set-valued
optimization problem
(SVP(θ)) VmaxH(θ, x) ≡ (F1(x)− θ1G1(x), . . . , Fp(x)− θpGp(x)),
subject to x ∈ X.

The following theorem generalizes similar results obtained by Ţigan [10]
and Chandra, Craven and Mond [2] for real valued objective functions and
Bhatia and Mehra [1] for set-valued objective functions.

Theorem 7. Let x′ ∈ X. Then x′ is efficient (weakly efficient) for problem
FSV P with u′ = y′

z′ ∈ Q(x′), y′ ∈ F (x′), z′ ∈ G(x′) as an efficient (a weakly
efficient) value of FSVP if and only if x′ is efficient (weakly efficient) for
problem SVP(u′), where 0 ∈ F (x) − u′G(x) as an efficient (weakly efficient)
value of SVP(u′).

Proof. i) Assume that x′ is an efficient solution for problem FSVP. Let
x ∈ X and i ∈ J for which there exists u = y/z ∈ Q(x) such that ui >
u′i. Then, since x′ is efficient for FSVP, there exists j ∈ J \ {i} such that
uj < u′j . By assumption (4), the inequality uj = yj

zj
< u′j is equivalent to

vj = yj − u′jzj < 0 = v′j = y′j − u′jz′j ∈ H(u′, x′).
Therefore, for every x ∈ X and i ∈ J for which vi = yi − u′izi > 0 = y′i −

u′iz
′
i = v′i, there exists j ∈ J \{i} such that vj = yj−u′jzj < 0 = v′j = y′j−u′jz′j .

Hence, it follows that x′ is an efficient solution for SVP(u′).
ii) The proof of converse part of the theorem follows the same lines as the

direct part.
The proof for weakly efficient solutions is analogous. �

In order to obtain a similar result for the properly efficient solutions of
FSVP, we need the following assumption:

There exists M1 > 0, such that
(5) sup

{ yi
yj
| yi ∈ Gi(x), yj ∈ Gj(x), i ∈ J, j ∈ J \ {i}

}
≤M1, ∀x ∈ X.

The following theorem generalizes a similar result obtained by Ţigan [10].

Theorem 8. Let u′ = y′

z′ ∈ Q(x′), y′ ∈ F (x′), z′ ∈ G(x′) be an efficient
value of FSVP, where y′ ∈ F (x′), z′ ∈ G(x′). If the assumptions (4) and (5)
hold, then x′ ∈ X is properly efficient solution for FSVP if and only if it is
properly efficient for SVP(u′).

Proof. i) Let x′ be a properly efficient solution of FSVP. We must show that
x′ is a properly efficient solution of SVP(u′), where u′ = y′/z′ ∈ Q(x′). Let
i ∈ J and x ∈ X and ui = yi/zi ∈ Qi(x), yi ∈ Fi(x), zi ∈ Gi(x) such that:
(6) yi − u′izi > 0 = y′i − u′iz′i,
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where yi − u′izi ∈ Hi(u′, x) = Fi(x)− u′iGi(x) and 0 = y′i − u′iz′i ∈ Hi(u′, x′) =
Fi(x′)− u′iGi(x′).

Then, from (4), (5) and (6), since zi > 0, it follows that

(7) yi
zi
> u′ = y′i

z′i
.

Since x′ is properly efficient for FSVP, it results from (7) that there exists
M > 0 and j ∈ J \ {i} such that yj

zj
<

y′j
z′j

, where yj ∈ Fj(x), zj ∈ Gj(x),
y′j ∈ Fj(x′), zj ∈ Gj(x′) and

(8)
yi
zi
− y′i

z′i
y′j
z′j
− yj

zj

≤M.

Then, from (4), (5) and (8), we have

(9) yi − u′izi

zju′j − yj
=

yi
zi
− y′i

z′i
y′j
z′j
− yj

zj

· zi

zj
≤M ·M1.

Therefore, it follows that x′ is properly efficient for SVP(u′).
ii) Now let suppose that x′ ∈ X is a properly efficient solution for SVP(u′)

and, furthermore, for a certain x ∈ X and i ∈ J , there exists u = y/z ∈ Q(x)
such that ui > u′i. Then, by (4), from ui > u′i it follows that (6) holds. Since
x′ is a properly efficient solution for SVP(u′), there exists j ∈ J \ {i} and
M ′′ > 0 such that the inequality
(10) vj = yj − u′jzj < 0 = v′j = y′j − u′jz′j ∈ H(u′, x′)
holds and

(11) yi − u′izi

zju′j − yj
≤M ′′.

But by (4) the inequality (9) is equivalent to
yj

zj
<
y′j
z′j
,

and from (5) and (10) it results that (8) is verified with M = M ′′ ×M1. This
means that x′ is properly efficient for FSVP.

5. CONCLUSIONS

In this paper we obtained sufficient conditions implying generalized con-
cavity assumptions of the set-valued functions, in order to a local (weakly)
efficient solution be a global (weakly) efficient solution for an vector maxi-
mization set-valued programming problem.

In the particular case of the vector maximization set-valued fractional pro-
gramming problem, we derived some characterizations properties of efficient
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and properly efficient solutions via a parametric procedure associated to the
fractional problem.
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[9] Stancu-Minasian, I. M. and Ţigan, S., Fractional programming under uncertainty,
in “Generalized Convexity” Proceedings of the IV-th International Workshop on Ge-
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