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Abstract. In this note we consider a general compound approximation operator
using binomial sequences and we give a representation for its corresponding
remainder term. We also introduce a more general compound approximation
operator using Sheffer sequences. We provide convergence theorems for both
studied operators.
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1. INTRODUCTION

A sequence of polynomials (pm (x))m≥0 is called a sequence of binomial type
if deg pm = m, ∀m ∈ N, and satisfies the identities

pm (x+ y) =
m∑
k=0

(m
k

)
pk (x) pm−k (1− x) .

We will denote by Ea the shift operator defined by (Eap) (x) = p (x+ a),
for every polynomial p and every real number x.

A linear operator T is said to be shift invariant if it commutes with the shift
operator Ea, for every real number a.

Sequences of binomial type are connected with the notion of theta ope-
rators (J. F. Steffensen [27], [28]) which were called delta operators by F. B.
Hildebrand [7] and G.-C. Rota and his collaborators [15].

A delta operator Q is a shift invariant operator for which Qx = const. 6= 0.
Definition 1. Let Q be a delta operator. A sequence (pm (x))m≥0 is a

sequence of basic polynomials for Q (basic sequence, for short) if:
i) p0 = 1,
ii) pm (0) = 0, if m ≥ 1,
iii) Qpm = mpm−1, if m ≥ 1.

For every delta operator there exists a unique basic sequence. A polynomial
sequence is a sequence of binomial type if and only if it is the sequence of basic
polynomials for a delta operator.
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Sequences of binomial type were called poweroids by Steffensen [27], because
the action of any delta operator on the binomial sequence, which is its basic
sequence, is the same as the action of the derivative D on xm.

Definition 2. A sequence of polynomials (sm (x))m≥0 is called a Sheffer
sequence for Q if:

i) s0 = const. 6= 0,
ii) Qsm = msm−1, if m ≥ 1.

It is known [15] that if (sm (x))m≥0 is a Sheffer sequence for a delta operator
Q with the basic sequence (pm (x))m≥0 then there exists a shift invariant and
invertible operator S such that sm = S−1pm, ∀m ∈ N, so every pair (Q,S)
gives us a unique Sheffer sequence.

A Sheffer sequence satisfies the relations

(1) sm (x+ y) =
m∑
k=0

(m
k

)
pk (x) sm−k (1− x) , ∀m ∈ N.

A Sheffer sequence for the usual derivative D is an Appell sequence.
The Umbral Calculus allows a unified and simple study of binomial, Appell

and Sheffer sequences. More details about Umbral Calculus can be found in
[15], [5] and [6].

T. Popoviciu proposed in [14] the use of binomial sequences in order to
construct a class of approximation operators of the form

(2)
(
TQmf

)
(x) = 1

pm(1)

m∑
k=0

(m
k

)
pk (x) pm−k (1− x) f

(
k
m

)
,

for every function f ∈ C [0, 1] .
This kind of operators and their generalizations were intensively studied.

They interpolate the function f at 0 and 1 and preserve the polynomials of
degree one. The expressions for TQmen, n ≥ 2, were computed by C. Manole
(see [10] and [11]) using the umbral calculus and later by P. Sablonnière using
the generating function for the binomial sequences (see [16]). We mention
that Sablonnière called them Bernstein–Sheffer operators while D. D. Stancu
called them binomial operators of Tiberiu Popoviciu type.

Different results regarding the operator TQm were obtained by several au-
thors: D. D. Stancu and M. R. Occorsio found representations for the re-
mainder in the approximation formula f(x) = (TQmf)(x) + (RQmf)(x) [24]; V.
Miheşan proved that TQm preserve the Lipschitz constant for a Lipschitz func-
tion [12]; D. D. Stancu and A. Vernescu studied bivariate operators of this
type [26]; O. Agratini considered a generalization of TQm in the Kantorovich
sense [1]; L. Lupaş and A. Lupaş introduced and studied a modified operator
of binomial type replacing x by mx and 1 by m [9], [8]. More details about the
role of the binomial polynomials in the Approximation Theory can be found
in [2], [8] and [24].
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2. COMPOUND POWEROID OPERATORS

Let Q be a delta operator with the basic sequence (pm (x))m≥0 . If pm (1) 6=
0, ∀m ∈ N, for every function f ∈ C [0, 1] we consider the general approxima-
tion operator defined by

(3)
(
SQm,r,sf

)
(x) =

m−sr∑
k=0

pQm−sr,k (x)
s∑
j=0

pQs,j (x) f
(k+jr

m

)
,

where pQn,k (x) =
(n
k

)pk(x)pn−k(1−x)
pn(1) , while s and r are two nonnegative integers

satisfying the condition 2sr ≤ m.
If p′m (0) ≥ 0, ∀m ∈ N, then pm (x) ≥ 0, ∀x ∈ [0, 1] , so the operator SQm,r,sf

is a positive approximation operator.
Different instances of this compound poweroid operator were previously

studied by D. D. Stancu and his collaborators as follows:
1. For Q = D, pk (x) = xk, s = 1 the corresponding compound operator

was introduced and studied by D. D. Stancu (see [18]); if s is arbitrary,
the operator SDm,r,s is a special case of the operator Lα,βm,r1,...,rs , consid-
ered by D. D. Stancu in [19] (in fact SDm,r,s is obtained from Lα,βm,r1,...,rs
when α = β = 0 and r1 = r2 = . . . = rs = r);

2. The case obtained for Q = 1
α∇α = I−E−α

α , pαk (x) = x[k,−α] was studied
by D. D. Stancu and J. W. Drane in [23];

3. D. D. Stancu and A. C. Simoncelli studied in [25] the compound powe-
roid operator for Q = 1

αE
−β∇α = 1

α

(
E−β − E−α−β

)
, pα,βk (x) =

x (x+ α+ kβ)[k−1,−α]. They proved that if α = α (m)→ 0, mβ (m)→
0, as m→∞, then (Sα,βm,r,sf) converges uniformly to f on the interval
[0, 1] . Using the Peano theorem, the authors also gave a representation
of the remainder Rα,βm,r,sf for the approximation formula

f (x) = (Sα,βm,r,sf)(x) + (Rα,βm,r,sf)(x)

D. D. Stancu considered also a class of linear positive compound operators
Sα,β,γ,δm,r,s f (see [22]) with modified knots defined by the following relation

(
Sα,β,γ,δm,r,s f

)
(x) =

m−sr∑
k=0

pα,βm−sr,k(x)
s∑
j=0

pα,βs,j (x)f
(k+jr+γ

m+δ
)
,

where 0 ≤ γ ≤ δ.
If s = 0 or r = 0 then SQm,r,0 and SQm,0,s reduce to the binomial operator of

T. Popoviciu TQm , defined by (2).
From the definition of a basic sequence it results that

pQn,k (0) =
{

1, if k = 0
0, if k 6= 0

and pQn,k(1) =
{

1, if k = n

0, if k 6= n.
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Using these relations we obtain that the polynomial SQm,r,sf interpolates f
at both sides of the interval [0, 1], that is,

(
SQm,r,sf

)
(0) = f(0),

(
SQm,r,sf

)
(1) =

f(1).

Lemma 3. The values of the operator SQm,r,s for the test functions are(
SQm,r,se0

)
(x) = e0 (x) ,(

SQm,r,se1
)

(x) = e1 (x) ,(4) (
SQm,r,se2

)
(x) = x2 + x (1− x)AQm,s,r,

where AQm,s,r = (m−sr)2dQm−sr+r2s2dQs
m2 and dQm = 1− m−1

m
(Q′)−2pm−2(1)

pm(1) .

Proof. From the definition of a sequence of binomial type we have that∑m
k=0 p

Q
m,k (x) = 1, so it follows that

(
SQm,r,se0

)
(x) =

m−sr∑
k=0

pQm−sr,k (x)
s∑
j=0

pQs,j (x) = 1 = e0 (x) ,

(
SQm,r,se1

)
(x) = 1

m

m−sr∑
k=0

pQm−sr,k(x)
[
k

s∑
j=0

pQs,j (x) + r
s∑
j=0

jpQs,j (x)
]

= 1
m

m−sr∑
k=0

pQm−sr,k(x)
[
k
(
TQs e0

)
(x) + rs

(
TQs e1

)
(x)

]
= 1

m

[
(m− sr)(TQm−sre1)(x) + xrs(TQm−sre0) (x)

]
= 1

m

[
(m− sr)x+ rsx

]
= x.

Hence the operator SQm,r,s preserves the polynomials of degree one.
Analogously, we obtain that(

SQm,r,se2
)
(x) =

= 1
m2

[
(m− sr)2 (TQm−sre2

)
(x) + 2 (m− sr) srx2 + r2s2(TQs e2

)
(x)
]
.

Using the expression found by C. Manole in [11] for TQme2,(
TQme2

)
(x) = x2 + x (1− x) dQm,

with dQm = 1− m−1
m

(Q′)−2pm−2(1)
pm(1) , we obtain(

SQm,r,se2
)

(x) = x2 + x (1− x)AQm,s,r,

where AQm,s,r = (m−sr)2dQm−sr+r2s2dQs
m2 . �
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If Q = D then dDm = 1
m and ADm,s,r = m+sr(r−1)

m2 .

For Q = ∇α
α we have d

∇α
α
m = 1+αm

(1+α)m so it follows that

A
∇α
α
m,s,r = sr2(1+αs)+(m−sr)(1+α(m−sr))

(1+α)m2 .

From the relations (4) it results that (SQm,r,se2)(x) converges to e2(x) if
AQm,s,r → 0, as m → ∞. But, if dQm → 0, then AQm,s,r → 0, so using the
Bohman–Korokvin criterion of convergence we have the following result.

Theorem 4. Let Q be a delta operator with the basic sequence (pm (x))m≥0,
pm (1) 6= 0 and p′m (0) ≥ 0, for every positive integer m. If dQm → 0 then the
sequence of linear and positive operators SQm,r,sf converges to the function f,
uniformly on the interval [0, 1].

Now we establish an estimate for the order of approximation of a func-
tion f ∈ C [0, 1] by means of the operator SQm,r,s using the first modulus of
continuity.

Taking into account an inequality proved by O. Shisha and B. Mond (see
[17]), we can write∣∣f(x)−

(
SQm,r,sf

)
(x)
∣∣ ≤ [1 + 1

δ2S
Q
m,r,s((t− x)2;x)

]
ω1 (f ; δ) .

Using the expressions obtained for SQm,r,sei, for i = 0, 1, 2, we obtain that
SQm,r,s((t − x)2;x) = x(1 − x)AQm,s,r. Taking into account that x(1 − x) ≤ 1

4 ,

∀x ∈ [0, 1] and replacing δ by
√
AQm,s,r, we obtain that∣∣f(x)−

(
SQm,r,sf

)
(x)
∣∣ ≤ 5

4ω1
(
f ;
√
AQm,s,r

)
.

Example 1. If we consider the delta operator T = ln (I +D), its basic
sequence is the sequence of exponential polynomials:

ϕm (x) =
m∑
k=1

S (m, k)xk,

where S (m, k) = [0, 1, . . . , k; em] are the Stirling numbers of second kind. In
this case, Manole obtained

dTm = 1
m + m−1

m
ϕm−1(1)
ϕm(1) ,

and he proved that there exist two positive constants c1 and c2 such that

c1
lnm
m ≤ ϕm−1(1)

ϕm(1) ≤ c2
lnm
m .

Hence, ϕm−1(1)
ϕm(1) → 0, as m→∞, which implies dTm → 0. Consequently, STm,r,sf

defined by

STm,r,s =
m−sr∑
k=0

ϕk(x)ϕm−sr−k(1−x)
ϕm−sr(1)

s∑
j=0

ϕj(x)ϕs−j(1−x)
ϕs(1) f

(k+jr
m

)
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converges to the function f , uniformly on the interval [0, 1] . �

3. EVALUATION OF THE REMAINDER

Using Peano’s theorem, the remainder of the approximation formula

(5) f (x) =
(
SQm,r,sf

)
(x) +

(
RQm,r,sf

)
(x)

for f ∈ C2 [0, 1] can be represented as

(6)
(
RQm,r,sf

)
(x) =

∫ 1

0
GQm,r,s(t;x)f ′′ (t) dt,

where GQm,r,s (t;x) is the Peano kernel defined by

GQm,r,s (t;x) =
(
RQm,r,sϕx

)
(t) , ϕx (t) = (x− t)+ = 1

2 [x− t+ |x− t|] .

Since the expression

GQm,r,s (t;x) = (x− t)+ −
m−sr∑
k=0

pQm−sr,k (x)
s∑
j=0

pQs,j (x)
(k+jr

m − t
)
+

is negative, one can apply the mean value theorem to the integral from (6)
and we obtain that there exists ξ ∈ [0, 1] such that(

RQm,r,sf
)

(x) = f ′′ (ξ)
∫ 1

0
GQm,r,s (t;x) dt.

Taking f (x) = x2 in the previous relation, we obtain that∫ 1

0
GQm,r,s (t;x) dt = 1

2

(
RQm,r,se2

)
(x) = −1

2x (1− x) (m−sr)2dQm−sr+r2s2dQs
m2 ,

so it follows that, for every function f ∈ C2[0, 1], the remainder in formula (5)
is of the following form:(

RQm,r,sf
)

(x) = x(x−1)
2m2

[
(m− sr)2 dQm−sr + r2s2dQs

]
f ′′ (ξ) .

4. COMPOUND SHEFFER OPERATORS

Let Q be a delta operator with the basic sequence (pm(x)), S a shift invari-
ant and invertible operator and sm = S−1pm a Sheffer sequence. We can also
generalize the operator defined in (3), by considering another compound ap-
proximation operator containing a Sheffer sequence (additionally to the basic
sequence pm):

(7)
(
SQ,Sm,r,sf

)
(x) =

m−sr∑
k=0

wQ,Sm−sr,k (x)
s∑
j=0

wQ,Ss,j (x) f
(k+jr

m

)
,

where wQ,Sn,k (x) =
(n
k

)pk(x)sn−k(1−x)
sn(1) .

When S = I this operator reduces to the operator defined by (3).
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For s = 0, SQ,Sm,r,0 is in fact the operator that we studied in our paper [3],(
LQ,Sm f

)
(x) =

∑m
k=0w

Q,S
m,k (x) f

(
k
m

)
. We remind that for this operator we have

obtained the following expressions for the test functions

LQ,Sm e0 = e0(
LQ,Sm e1

)
(x) = ame1 (x)(8) (

LQ,Sm e2
)

(x) = bmx
2 + x (am − bm − cm) ,

where

am = (Q′)−1sm−1(1)
sm(1) , bm = m−1

m
[(Q′)−2sm−2](1)

sm(1) , cm = m−1
m

[
(Q′)−2(S−1)′pm−2

]
sm(1) .

If p′n (0) ≥ 0 and sn (0) ≥ 0, ∀n ∈ N, then wQ,Sn,k (x) ≥ 0, ∀x ∈ [0, 1] (see [3])
and so the operator SQ,Sm,r,sf is a positive approximation operator.

For the operator (7) we have
(
SQ,Sm,r,sf

)
(0) = f(0).

In the following we compute the values of the operator SQ,Sm,r,s for the test
functions.

From the convolution-type relation (1) satisfied by a Sheffer sequence, it is
obvious that

SQ,Sm,r,se0 = e0.

For e1 we have(
SQ,Sm,r,se1

)
(x) =

m−sr∑
k=0

wQ,Sm−sr,k(x)
[
k
m

(
LQ,Ss e0

)
(x) + rs

m

(
LQ,Ss e1

)
(x)

]
= m−sr

m

(
LQ,Sm−sre1

)
(x) + asrsx

m

(
LQ,Sm−sre0

)
(x),

and using the relations (8) we obtain that(
SQ,Sm,r,se1

)
(x) = x (m−sr)am−sr+rsas

m .

Finally, for e2 we have(
SQ,Sm,r,se2

)
(x) = 1

m2

[
(m− sr)2(LQ,Sm−sre2

)
(x)

+ 2rs(m− sr)
(
LQ,Sm−sre1

)
(x)
(
LQ,Ss e1

)
(x)

+ r2s2
(
LQ,Ss e2

)
(x)

]
.

Using again the relations (8) we can rewrite the last expression as(
SQ,Sm,r,se2

)
(x) =

= 1
m2

{
x2[(m− sr)2bm−sr + 2sr(m− sr)asam−sr + s2r2bs

]
+ x

[
(m− sr)2 (am−sr − bm−sr − cm−sr) + s2r2(as − bs − cs)

]}
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In [3] we proved that if LQ,Sm is a positive operator then

0 ≤ cm ≤ min
{

1−bm
2 , am − a2

m

}
.

So, if limm→∞ am = limm→∞ bm = 1, then limm→∞ cm = 0. Taking into
account the previous relations and applying the Bohman–Korokvin criterion
convergence we can state the following result.

Theorem 5. If f ∈ C [0, 1] and limm→∞ am = limm→∞ bm = 1, then the
sequence of compound operators constructed with Sheffer sequences defined by
(7) converges uniformly to f on the interval [0, 1] .

Examples. 1. If we consider the special case when Q = D, then in the
expression of SD,Sm,r,sf , instead of sm, there appears an Appell sequence Am.
Because the Pincherle derivative of D is the identity operator I, we have

am = Am−1(1)
Am(1) , bm = m−1

m amam−1, cm = m−1
m am (1− am−1) ,

so the condition for the convergence of the operator SD,Sm,r,s is lim
m→∞

Am−1(1)
Am(1) = 1.

2. If we take the Gould delta operator

G = 1
αE
−β5α = 1

α

(
E−β − E−α−β

)
and the invertible operator

S = Eα+βG′ = 1
α

(
(α+ β) I − βEα

)
then the corresponding basic sequence and Sheffer sequence are

pm (x) = x (x+ α+mβ)[m−1,−α] , resp. sm (x) = (x+mβ)[m,−α] ,

so in this case

wG,Sm,k(x) = 1
(1+mβ)[m,−α]

(m
k

)
x (x+ α+ kβ)[k−1,−α] (1− x+ (m− k)β

)[m−k,−α]
.

We mention that the operator

(
LG,Sm f

)
(x) =

m∑
k=0

wG,Sm,k(x)f
(
k
m

)
was studied by G. Moldovan (see for example [13]).

If α → 0, mβ → 0, mβα → 0, as m → ∞, or mα → 0, mβ → 0, mβα → c,

as m→∞, then the sequence of operators LG,Sm converges uniformly to f on
[0, 1] .

It can be easily proved that, in the same conditions, the operator SG,Sm,r,s

converges also uniformly to f on [0, 1] . �
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