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Abstract. The motivation of the paper is to construct the largest and small-
est families of functions that allow us to generate the bivariate continuous sto-
chastic orderings of increasing convex type introduced recently in Denuit et al.
(1999). The main step will consist in deriving a spline approximation for bivari-
ate continuous increasing convex functions, which extends to the bivariate case
a fundamental result obtained by Popoviciu (1941).
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1. INTRODUCTION

The remarkable works of Tiberiu Popoviciu on the theory of convexity have
deeply influenced certain research areas in numerical analysis, in theory of
approximation and in functional analysis. A good idea of such developments
can be found in the special issues 1–2 (vol. 26, 1997), of the Revue d’Analyse
Numérique et de Théorie de l’Approximation, dedicated to the memory of
Tiberiu Popoviciu.

Recently, another central role of the theory of convexity has also been
pointed out in probability and statistics within the theory of stochastic or-
derings. This is not really surprising since the question of comparison is of-
ten encountered in the works of Tiberiu Popoviciu (as underlined, e.g., by
E. Popoviciu [11]).

So, wide classes of stochastic orderings, univariate or bivariate, discrete
or continuous, of (increasing) convex type have been introduced in order to
compare random variables, univariate or bivariate, discrete or continuous.
Roughly, a random variable is said to be smaller than another one in that
sense that if the expectation of any (increasing) convex function of this ran-
dom variable is smaller than for the other variable.
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A problem of interest on its own and for certain applications is the derivation
of the largest and smallest families of functions that allow us to generate the
orderings. This question has been solved in Denuit et al. [4] for the univariate
continuous case. Our purpose in the present paper is to determine the extremal
generators for the bivariate continuous increasing convex stochastic orderings.
The main step here will consist in constructing a spline approximation for
bivariate continuous increasing convex functions. This extends to the bivariate
case a fundamental result obtained by Popoviciu [14] and reexamined later by
Bojanic and Roulier [2] and Dadu [3], inter alia.

For the notation in the sequel, the real line is denoted by R, the set of the
non-negative integers by N and any point (x1, x2) of the real space R2 by an
underlined small letter x. The vector of ones, that is (1, 1), is written as 1;
similarly, 2 = (2, 2) and so on; x± y stands for (x1 ± y1, x2 ± y2). The space
R2 is endowed with the usual componentwise partial order, that is x ≤ y if
xi ≤ yi for i = 1, 2. Given x ∈ R and k ∈ N, xk+ is equal to xk when xk > 0
and 0 otherwise (with the convention that x0

+ is equal to 1 when x > 0 and 0
otherwise).

2. BIVARIATE REAL FUNCTIONS AND STOCHASTIC ORDERINGS OF

INCREASING CONVEX TYPE

A stochastic ordering is any binary relation defined on a set of probability
measures and that allows us to compare any pair of these probability measures.
Thus, it translates the notions of being greater or being more variable, for
instance, to probability measures. Usually, the stochastic orderings under
interest are partial orderings, i.e. binary relations � satisfying the properties
of reflexivity, transitivity and anti-symmetry.

In practice, it is often more convenient to work with random variables rather
than with probability measures. A random variable is said to be smaller
than another random variable in the � sense when this ordering holds for
their probability measures. Note that, as a consequence, the property of anti-
symmetry is lost.

A number of stochastic orderings have been introduced during the last two
decades, mostly motivated by different areas of applications (statistics, queue-
ing theory, reliability theory, economics, biomathematics, actuarial sciences,
physics. . .). They gave rise to a rich and abundant literature; see, e.g., the
books by Shaked and Shanthikumar [15] and Stoyan [16], and the classified
bibliography by Mosler and Scarsini [9].

A rather general class of bivariate stochastic orderings is the class of inte-
gral orderings generated by some cones of bivariate functions (see, e.g., Mar-
shall [8]). Let X and Y be a pair of bivariate random variables assumed to be
continuous and valued in an interval [a, b] = [a1, b1]× [a2, b2] of R2. Consider a
cone F of measurable functions φ : [a, b]→ R2. Then, X is said to be smaller
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than Y for the integral stochastic ordering �[a,b]
F generated by F when

(1) Eφ(X) ≤ Eφ(Y ), for all functions φ ∈ F ,
provided that the expectations exist.

In the present work, we will be concerned with a particular class of bivariate
continuous integral orderings introduced in Denuit et al. [5]. This class is
generated by the cone of the bivariate continuous increasing convex functions
on [a, b], hence its appellation of bivariate continuous of increasing convex
type.

Specifically, given any s ∈ N2 with s1 + s2 ≥ 1, let U [a,b]
s−cx be the family of

functions φ defined as

(2) U [a,b]
s−cx =

{
φ : [a, b]→ R

∣∣ φ(s1,s2) ≥ 0 on [a, b]
}
,

where φ(s1,s2) ≡ ∂s1+s2φ
∂x

s1
1 ∂x

s2
2

is assumed to exist. For reasons given below (see (8)),

the functions in U [a,b]
s−cx are called regular s-convex. Putting

K(s) =
{
k ∈ N2 | 0 ≤ k ≤ s, k1 + k2 ≥ 1

}
,

U [a,b]
s−icx denotes the subfamily of the regular s-increasing convex functions de-

fined as
U [a,b]
s−icx =

⋂
k∈K(s)

U [a,b]
k−cx

=
{
φ : [a, b]→ R | φ(k1,k2) ≥ 0 on [a, b], for all k ∈ K(s)

}
.(3)

Then, X is said to be smaller than Y in the s-increasing convex (resp. s

convex) ordering, which is denoted by X�[a,b]
s−icxY (resp. X�[a,b]

s−cxY ), when (1)
holds with F = U [a,b]

s−icx (resp. U [a,b]
s−cx).

The notion of convex functions in the sense of Popoviciu [12] is more ge-
neral than that defined in (2). Let us first recall the definition of the divided
difference operator. In the univariate case, given a function φ : [a, b] → R
and points x0 < x1 < . . . < xs ∈ [a, b], with s ∈ N, this operator is defined
recursively by [xi]φ = φ(xi), i = 0, 1, . . . , s, and

(4) [x0, . . . , xs]φ = [x1, . . . , xs]φ− [x0, . . . , xs−1]φ
xs − x0

.

In the bivariate case, given a function φ : [a, b] → R and points x0 < x1 <
. . . < xs1 ∈ [a1, b1] and y0 < y1 < . . . < ys2 ∈ [a2, b2], s ∈ N2, the partial
divided difference operator is defined by[ x0, . . . , xs1

y0, . . . , ys2

]
φ = [x0, . . . , xs1 ]

(
[y0, . . . , ys2 ]φ

)
(5)

= [y0, . . . , ys2 ]
(
[x0, . . . , xs1 ]φ

)
.



148 Michel Denuit, Claude Lefèvre and Mhamed Mesfioui 4

Then, φ : [a, b] → R is s-convex, s ∈ N2, if the partial divided differences (5)
are non-negative for all points x0 < x1 < . . . < xs1 ∈ [a1, b1] and y0 < y1 <

. . . < ys2 ∈ [a2, b2]. We denote by U [a,b]
s−cx, s ∈ N2, the family of the continuous

s-convex functions, i.e.

U [a,b]
s−cx =

{
φ : [a, b]→ R | φ is continuous and

[ x0, . . . , xs1

y0, . . . , ys2

]
φ ≥ 0,

for all points x0 < . . . < xs1 ∈ [a1, b1] and y0 < . . . < ys2 ∈ [a2, b2]
}
.(6)

As above, the family U [a,b]
s−icx of the continuous s-increasing convex functions is

defined by

(7) U [a,b]
s−icx =

⋂
k∈K(s)

U [a,b]
k−cx.

It is well-known that if φ(s1,s2) exists, then

(8) φ ∈ U [a,b]
s−cx ⇔ φ(s1,s2) ≥ 0, on [a, b],

but a function φ in U [a,b]
s−cx has not necessarily a partial derivative φ(s1,s2) (al-

though the s-convexity implies certain regularity properties); therefore,

(9) U [a,b]
s−cx ⊂ U

[a,b]
s−cx and U [a,b]

s−icx ⊂ U
[a,b]
s−icx.

Moreover, any function φ in U [a,b]
s−icx, for some s ≥ 2, is continuous on [a, b];

this is not true, however, when s1 or s2 = 1.
We now introduce the following family of bivariate functions, denoted by

U [a,b]
s−icx, for s ≥ 1:

U [a,b]
s−icx =

{
(x1 − a1)i1(x2 − a2)i2 , 0 ≤ i ≤ s− 1;

(x1 − a1)i1(x2 − t2)s2−1
+ , 0 ≤ i1 ≤ s1 − 1, t2 ∈ [a2, b2];

(x1 − t1)s1−1
+ (x2 − a2)i2 , 0 ≤ i2 ≤ s2 − 1, t1 ∈ [a1, b1];

(x1 − t1)s1−1
+ (x2 − t2)s2−1

+ , t ∈ [a, b]
}
.(10)

Note that the functions in (10) have a very simple product form. It is easily
seen that these functions are continuous s-increasing convex, i.e.

(11) U [a,b]
s−icx ⊂ U

[a,b]
s−cx.

Coming back to the notion of integral stochastic ordering �[a,b]
F , it is in-

teresting, from a theoretical point of view as well as for certain applications,
to substitute for the generating cone F , either a dense subfamily of functions
contained in F , or a larger family corresponding to the closure of F in some
topology. The smallest and largest such classes, F and F say, are called the
minimal and maximal generators (Müller [10]). Hereafter, we aim to establish
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that for the �[a,b]
s−icx ordering, s ≥ 1, the extremal generators are F = U [a,b]

s−icx

and F = U [a,b]
s−icx. The proof for F will be immediate from a known approx-

imation property. For F , the result will follow directly by showing that any
function φ in U [a,b]

s−icx can be uniformly approximated by appropriate spline
functions.

3. SPLINE APPROXIMATION FOR FUNCTIONS IN U [a,b]
s−icx

For simplicity, we consider the particular interval [0, 1]; the general case
[a, b] follows by straightforward substitutions.

We are going to establish that the family of functions U [a,b]
s−icx is dense in

U [a,b]
s−icx, s ≥ 1. For that, we will mainly apply to the bivariate case an argument

of Bojanic and Roulier [2], and which is based on an intermediate uniform
approximation of any function φ in U [a,b]

s−icx, s ≥ 2, by Bernstein polynomials.
In the sequel, any partial derivative which will be used is assumed to exist.

Lemma 3.1. Let φ : [0, 1]→ R be a function such that

φ(i1,s2) ≥ 0, for i1 = 0, . . . , s1 and φ(s1,i2) ≥ 0, for i2 = 0, . . . , s2,

for some s ≥ 2. Put

(12) Ωs−1(φ;x) =
s1−1∑
i1=0

s2−1∑
i2=0

φ(i1,i2)(0, 0)x
i1
1 x

i2
2

i1! i2! ,

as the Taylor polynomial of φ of degree (s1−1, s2−1). Then, for every n ≥ 2,
there exist in [0, 1] the points α(i1)

1 < . . . < α
(i1)
n−1, i1 = 0, . . . , s1 − 2, the points

β
(i2)
1 < . . . < β

(i2)
n−1, i2 = 0, . . . , s2−2, the points ε1 < . . . < εn−1 and the points

ϑ1 < . . . < ϑn−1 such that

φ(x) = Ωs−1(φ;x) +
s1−2∑
i1=0

φ(i1,s2−1)(0,1)−φ(i1,s2−1)(0,0)
i1! (s2−1)! n

n−1∑
k=1

xi11 (x2 − α(i1)
k )s2−1

+

+
s2−2∑
i2=0

φ(s1−1,i2)(1,0)−φ(s1−1,i2)(0,0)
i2! (s1−1)! n

n−1∑
k=1

xi22 (x1 − β(i2)
k )s1−1

+(13)

+φ(s1−1,s2−1)(1, 1)− φ(s1−1,s2−1)(0, 0)
(s1 − 1)! (s2 − 1)! n2

n−1∑
`=1

n−1∑
k=1

(x1 − ε`)s1−1
+ (x2 − ϑk)s2−1

+

+R(n)
1 (φ;x) +R

(n)
2 (φ;x) +R(n)(φ;x),
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where

∣∣R(n)
1 (φ;x)

∣∣ ≤ e
(s2−1)! n sup

i1≤s1−2

∫ 1

t2=0
φ(i1,s2)(0, t2)dt2,(14)

∣∣R(n)
2 (φ;x)

∣∣ ≤ e
(s1−1)! n sup

i2≤s2−2

∫ 1

t1=0
φ(s1,i2)(t1, 0)dt1,(15) ∣∣R(n)(φ;x)

∣∣ ≤(16)

≤ 2
(s1−1)! (s2−1)! n

{∫ 1

t2=0
φ(s1−1,s2)(0, t2)dt2 +

∫ 1

t1=0
φ(s1,s2−1)(t1, 0)dt1

}
.

Proof. By Taylor’s expansion of φ(x1, x2) viewed as a function of x1 around
0 (for fixed x2), we have

(17) φ(x) =
s1−2∑
i1=0

φ(i1,0)(0, x2)x
i1
1
i1! +

∫ x1

t1=0

(x1−t1)s1−2

(s1−2)! φ(s1−1,0)(t1, x2)dt1.

Inserting in (17) Taylor’s expansions of φ(i1,0)(0, x2) and φ(s1−1,0)(t1, x2) as
functions of x2, i.e.

φ(i1,0)(0, x2) =
s2−2∑
i2=0

φ(i1,i2)(0, 0)x
i2
2
i2! +

∫ x2

t2=0

(x2−t2)s2−2

(s2−2)! φ(i1,s2−1)(0, t2)dt2,

and

φ(s1−1,0)(t1, x2) =
s2−2∑
i2=0

φ(s1−1,i2)(t1, 0)x
i2
2
i2! +

∫ x2

t2=0

(x2−t2)s2−2

(s2−2)! φ(s1−1,s2−1)(t1, t2)dt2,

we obtain

φ(x) =
s1−2∑
i1=0

s2−2∑
i2=0

φ(i1,i2)(0, 0)x
i1
1 x

i2
2

i1! i2! +
s1−2∑
i1=0

∫ 1

t2=0

x
i1
1 (x2−t2)s2−2

+
i1!(s2−2)! φ(i1,s2−1)(0, t2)dt2

+
s2−2∑
i2=0

∫ 1

t1=0

x
i2
2 (x1−t1)s1−2

+
i2!(s1−2)! φ(s1−1,i2)(t1, 0)dt1

+
∫ 1

t1=0

∫ 1

t2=0

(x1−t1)s1−2
+ (x2−t2)s2−2

+
(s1−2)! (s2−2)! φ(s1−1,s2−1)(t1, t2)dt2dt1
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and thus, using (12),

φ(x) =Ωs−1(φ;x)

+
s1−2∑
i1=0

∫ 1

t2=0

x
i1
1 (x2−t2)s2−2

+
i1!(s2−2)!

{
φ(i1,s2−1)(0, t2)− φ(i1,s2−1)(0, 0)

}
dt2

+
s2−2∑
i2=0

∫ 1

t1=0

x
i2
2 (x1−t1)s1−2

+
i2!(s1−2)!

{
φ(s1−1,i2)(t1, 0)− φ(s1−1,i2)(0, 0)

}
dt1(18)

+
∫ 1

t1=0

∫ 1

t2=0

[ (x1−t1)s1−2
+ (x2−t2)s2−2

+
(s1−2)! (s2−2)!

{
φ(s1−1,s2−1)(t1, t2)−

− φ(s1−1,s2−1)(0, 0)
}]

dt2dt1.

Let us look at the three kinds of functions inside {. . .} in (18). Since by
hypothesis, φ(i1,s2) ≥ 0, i1 = 0, . . . , s1, each function t2 7→ φ(i1,s2−1)(0, t2) −
φ(i1,s2−1)(0, 0), i1 = 0, . . . , s1 − 2, is non-negative, non-decreasing and contin-
uous on [0, 1]. Thus, it can be approximated by a step function of the form

(19) ψ
(n)
i1,1(φ; t2) ≡ φ(i1,s2−1)(0, 1)− φ(i1,s2−1)(0, 0)

n

n−1∑
k=1

(t2 − α(i1)
k )0

+,

for some points α(i1)
1 < . . . < α

(i1)
n−1 in [0, 1]. Moreover, the constants α(i1)

k can
be chosen such that∣∣ρ(n)

i1,1(φ; t2)
∣∣ ≡ ∣∣∣φ(i1,s2−1)(0, t2)− φ(i1,s2−1)(0, 0)− ψ(n)

i1,1(φ; t2)
∣∣∣

≤ φ(i1,s2−1)(0, 1)− φ(i1,s2−1)(0, 0)
n

= 1
n

∫ 1

t2=0
φ(i1,s2)(0, t2)dt2.(20)

Similarly, one can find some points β(i2)
1 < . . . < β

(i2)
n−1, i2 = 0, . . . , s2 − 1 in

[0, 1] such that

(21) ψ
(n)
i2,2(φ; t1) ≡ φ(s1−1,i2)(1, 0)− φ(s1−1,i2)(0, 0)

n

n−1∑
k=1

(t1 − β(i2)
k )0

+,

satisfies∣∣ρ(n)
i2,2(φ; t1)

∣∣ ≡ ∣∣∣φ(s1−1,i2)(t1, 0)− φ(s1−1,i2)(0, 0)− ψ(n)
i2,2(φ; t1)

∣∣∣
≤ φ(s1−1,i2)(1, 0)− φ(s1−1,i2)(0, 0)

n
=

= 1
n

∫ 1

t1=0
φ(s1,i2)(t1, 0)dt1.(22)
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Finally, given any points ε1 < . . . < εn−1 and ϑ1 < . . . < ϑn−1 in [0, 1], let us
consider the function
(23)

ψ(n)(φ; t) ≡ φ(s1−1,s2−1)(1, 1)− φ(s1−1,s2−1)(0, 0)
n2

n−1∑
`=1

n−1∑
k=1

(t1 − ε`)0
+(t2 − ϑk)0

+,

and put

(24)
∣∣ρ(n)(φ; t)

∣∣ ≡ ∣∣∣φ(s1−1,s2−1)(t1, t2)− φ(s1−1,s2−1)(0, 0)− ψ(n)(φ; t)
∣∣∣.

For t ∈ [ε`, ε`+1[×[ϑk, ϑk+1[, we get

(25) ψ(n)(φ; t) = φ(s1−1,s2−1)(1, 1)− φ(s1−1,s2−1)(0, 0)
n2 `k.

But φ(s1−1,s2−1)(t) being continuous and non-decreasing on [0, 1] by hypothe-
sis, we have that for such t,

(26) φ(s1−1,s2−1)(ε`, ϑk) ≤ φ(s1−1,s2−1)(t1, t2) ≤ φ(s1−1,s2−1)(ε`+1, ϑk+1);
furthermore, we can choose the ε`’s and ϑk’s in such a way that

φ(s1−1,s2−1)(ε`, ϑk)− φ(s1−1,s2−1)(0, 0) =(27)

= φ(s1−1,s2−1)(1, 1)− φ(s1−1,s2−1)(0, 0)
n2 `k.

Thus, combining (25), (26), (27) with (24), we obtain that, for t ∈ [ε`, ε`+1[×
[ϑk, ϑk+1[,∣∣ρ(n)(φ; t)

∣∣ ≤ φ(s1−1,s2−1)(1, 1)− φ(s1−1,s2−1)(0, 0)
n2

{
(`+ 1)(k + 1)− `k

}
,

which yields, for all t in [0, 1],∣∣ρ(n)(φ; t)
∣∣ ≤ 2

n

{
φ(s1−1,s2−1)(1, 1)− φ(s1−1,s2−1)(0, 0)

}
= 2

n

{∫ 1

t2=0
φ(s1−1,s2)(1, t2)dt2 +

∫ 1

t1=0
φ(s1,s2−1)(t1, 0)dt1

}
.(28)

Now, using the definitions of ρ(n)
i1,1(φ; t2), ρ(n)

i2,2(φ; t1) and ρ(n)(φ; t), we see that
(18) can be rewritten exactly as (13) in which

R
(n)
1 (φ;x) =

s1−2∑
i1=0

∫ 1

t2=0

x
i1
1 (x2−t2)s2−2

+
i1!(s2−2)! ρ

(n)
i1,1(φ; t2)dt2,

R
(n)
2 (φ;x) =

s2−2∑
i2=0

∫ 1

t1=0

x
i2
2 (x1−t1)s1−2

+
i2!(s1−2)! ρ

(n)
i2,2(φ; t1)dt1,

R(n)(φ;x) =
∫ 1

t1=0

∫ 1

t2=0

(x1−t1)s1−2
+ (x2−t2)s2−2

+
(s1−2)!(s2−2)! ρ(n)(φ; t)dt1dt2.
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Therefore, it remains to verify that the majorizations (14), (15) and (16) are
valid. From (20), we find that∣∣R(n)

1 (φ;x)
∣∣ ≤

≤
s1−2∑
i1=0

∫ 1

t2=0

x
i1
1 (x2−t2)s2−2

+
i1!(s2−2)!

∣∣ρ(n)
1,i1(φ; t2)

∣∣dt2
≤ 1

n sup
i1≤s1−2

{∫ 1

t2=0
φ(i1,s2)(0, t2)dt2

} s1−2∑
i1=0

x
i1
1

i1!(s2−2)!

∫ 1

t2=0
(x2 − t2)s2−2

+ dt2

= 1
n sup

i1≤s1−2

{∫ 1

t2=0
φ(i1,s2)(0, t2)dt2

} s1−2∑
i1=0

x
i1
1 x

s2−1
2

i1!(s2−1)! ,

hence (14). In the same way, (15) follows from (22) and (16) follows from
(28). �

Given any continuous function φ : [0, 1]→ R, let Bm(φ, .) denote the Bern-
stein polynomial of φ of degree m ∈ N2, that is,

Bm(φ;x) =(29)

=
m1∑
k1=0

m2∑
k2=0

(m1
k1

)(m2
k2

)
φ
( k1
m1
, k2
m2

)
xk1

1 (1− x1)m1−k1xk2
2 (1− x2)m2−k2 .

In the next lemma, we show that the Bernstein polynomial of any s-increa-
sing convex function is also a (regular) s-increasing convex function. This
property is the bivariate extension of a classical result by Popoviciu [13].

Hereafter, we will have recourse to the following standard operator (see,
e.g., Agarwal [1]); given ` ∈ N2 and h1, h2 > 0, let

(30) ∆(`1,`2)
h1,h2

φ(a1, a2) = `1!`2!h`11 h
`2
2

[ a1, a1 + h1, . . . , a1 + `1h1
a2, a2 + h2, . . . , a2 + `2h2

]
φ.

Lemma 3.2. If a function φ belongs to U [0,1]
s−icx, then the polynomial Bm(φ; .),

m ≥ s, belongs to U [0,1]
s−icx.

Proof. We are going to establish that for all 0 ≤ ` ≤ m, the derivative
{Bm(φ; .)}(`1,`2) can be expressed as

{Bm(φ;x)}(`1,`2) = m1!m2!
(m1−`1)!(m2−`2)!

m1−`1∑
k1=0

m2−`2∑
k2=0

∆(`1,`2)
1

m1
, 1

m2
φ
( k1
m1
, k2
m2

)(m1−`1
k1

)
·

·
(m2−`2

k2

)
xk1

1 (1− x1)m1−`1−k1xk2
2 (1− x2)m2−`2−k2 .(31)
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By (3), this leads directly to the announced property. Obviously, (31) is true
for `1 = `2 = 0. Thus, let us proceed by induction. We then get

{Bm(φ;x)}(`1+1,`2) =
= m1!m2!

(m1−`1)!(m2−`2)! ·

·
{
m1−`1∑
k1=1

m2−`2∑
k2=0

{
∆(`1,`2)

1
m1

, 1
m2
φ
( k1
m1
, k2
m2

)(m1−`1
k1

)(m2−`2
k2

)
k1x

k1−1
1 ·

· (1− x1)m1−`1−k1xk2
2 (1− x2)m2−`2−k2

}
−

−
m1−`1−1∑
k1=0

m2−`2∑
k2=0

{
∆(`1,`2)

1
m1

, 1
m2
φ
( k1
m1
, k2
m2

)(m1−`1
k1

)(m2−`2
k2

)
xk1

1 (m1 − `1 − k1)·

· (1− x1)m1−`1−k1−1xk2
2 (1− x2)m2−`2−k2

}}
,

yielding

{Bm(φ;x)}(`1+1,`2) =

= m1! m2!
(m1−`1)! (m2−`2)!

m1−`1−1∑
k1=0

m2−`2∑
k2=0

(m1−`1
k1

)(m2−`2
k2

)
·

· (m1 − `1 − k1)xk1
1 (1− x1)m1−`1−k1−1xk2

2 (1− x2)m2−`2−k2 ·

·
{

∆(`1,`2)
1

m1
, 1

m2
φ
(k1+1
m1

, k2
m2

)
−∆(`1,`2)

1
m1

, 1
m2
φ
( k1
m1
, k2
m2

)}
.(32)

But we notice that by (30) and (5),

∆(`1,`2)
1

m1
, 1

m2
φ
(k1+1
m1

, k2
m2

)
−∆(`1,`2)

1
m1

, 1
m2
φ
( k1
m1
, k2
m2

)
=

= `1! `2!
( 1
m1

)`1( 1
m2

)`2 ([ k1+1
m1

, k1+2
m1

, . . . , k1+`1+1
m1

k2
m2
, k2+1

m2
, . . . , k2+`2

m2

]
φ

−
[ k1

m1
, k1+1

m1
, . . . , k1+`1

m1

k2
m2
, k2+1

m2
, . . . , k2+`2

m2

]
φ

)
=

= `1! `2!
( 1
m1

)`1( 1
m2

)`2 `1+1
m1

[ k1
m1
, k1+1

m1
, . . . , k1+`1+1

m1

k2
m2
, k2+1

m2
, . . . , k2+`2

m2

]
φ

= ∆(`1+1,`2)
1

m1
, 1

m2
φ
( k1
m1
, k2
m2

)
,

so that (32) reduces to the form (31). �

It is well-known that any continuous function φ : [0, 1] → R can be ap-
proximated uniformly by a sequence of Bernstein polynomials Bm(φ, .) as
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min(m1,m2)→∞ (see, e.g., Lorentz [7]). Now, given any function φ ∈ U [0,1]
s−icx,

s ≥ 1, we are going to build a sequence of spline functions ψ(n)
m (φ, .) that are

non-negative linear combinations of functions in U [a,b]
s−icx, and that converge

uniformly to the polynomial Bm(φ, .) as n→∞. Combining both approxima-
tions will then provide a uniform approximation of φ ∈ U [0,1]

s−icx by the functions
ψ

(n)
m (φ, .). This will show also that U [a,b]

s−icx is dense in U [a,b]
s−icx, s ≥ 1.

For clarity, the precise statement is given with respect to a general interval
[a, b] (instead of [0, 1]).

Proposition 3.3. Every function φ ∈ U [a,b]
s−icx, s ≥ 2, can be approximated

uniformly on [a, b], as n→∞, by spline functions ψ(n)
m (φ, .), m ≥ s and n ≥ 2,

which are of the form

ψ(n)
m (φ, x) =

s1−1∑
k1=0

s2−1∑
k2=0

(s1
k1

)(s2
k2

)
∆(k1,k2)

b1−a1
m1

,
b2−a2

m2

φ(a1, a2) (x1−a1)k1 (x2−a2)k2

(b1−a1)k1 (b2−a2)k2

+
s1−2∑
i1=0

Ci1,1(φ,m)
n

n−1∑
k=1

(x2 − α(i1)
k )s2−1

+ (x1 − a1)i1
(b2 − a2)s2−1(b1 − a1)i1

+
s2−2∑
i2=0

Ci2,2(φ,m)
n

n−1∑
k=1

(x1 − β(i2)
k )s1−1

+ (x2 − a2)i2
(b1 − a1)s1−1(b2 − a2)i2(33)

+C(φ;m)
n2

n−1∑
`=1

n−1∑
k=1

(x1 − ε`)s1−1
+ (x2 − ϑk)s2−1

+
(b1 − a1)s1−1(b2 − a2)s2−1 ,

for some points α(i1)
1 < . . . < α

(i1)
n−1, i1 = 0, . . . , s1 − 2, and ε1 < . . . < εn−1

in [a1, b1], and some points β(i2)
1 < . . . < β

(i2)
n−1, i2 = 0, . . . , s2 − 2, and ϑ1 <

. . . < ϑn−1 in [a2, b2], and where the constants Ci1,1(.), Ci2,2(.) and C(.) are
non-negative and given by

(34) Ci1,1(φ,m) =
(m1
i1

)( m2
s2−1

)m2−s2∑
k2=0

∆(i1,s2)
b1−a1

m1
,

b2−a2
m2

φ
(
a1, a2 + k2

b2−a2
m2

)
,

(35) Ci2,2(φ,m) =
(m2
i2

)( m1
s1−1

)m1−s1∑
k1=0

∆(s1,i2)
b1−a1

m1
,

b2−a2
m2

φ
(
a1 + k1

b1−a1
m1

, a2
)
,

C(φ,m) =
( m1
s1−1

)( m2
s2−1

){m1−s1∑
k1=0

∆(s1,s2−1)
b1−a1

m1
,

b2−a2
m2

φ
(
a1 + k1

b1−a1
m1

, a2
)

+
m2−s2∑
k2=0

∆(s1−1,s2)
b1−a1

m1
,

b2−a2
m2

φ
(
a1 + (m1 − s1 + 1) b1−a1

m1
, a2 + k2

b2−a2
m2

)}
.(36)
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Proof. Let us take [a, b] ≡ [0, 1]. By Lemma 3.2, we know that, since φ
is a s-increasing convex function on [0, 1], the polynomial Bm(φ; .),m ≥ s, is
regular s-increasing convex on [0, 1]. Thus, we may apply Lemma 3.1, and
Bm(φ; .) can be expressed as

Bm(φ;x) = Ωs−1[Bm(φ; .);x] +
s1−2∑
i1=0

Ci1,1(φ,m)
n

n−1∑
k=1

xi11 (x2 − α(i1)
k )s2−1

+

+
s2−2∑
i2=0

Ci2,2(φ,m)
n

n−1∑
k=1

xi22 (x1 − β(i2)
k )s1−1

+(37)

+C(φ,m)
n2

n−1∑
`=1

n−1∑
k=1

(x1 − ε`)s1−1
+ (x2 − ϑk)s2−1

+

+R(n)
1 [Bm(φ; .);x] +R

(n)
2 [Bm(φ; .);x] +R(n)[Bm(φ; .);x],

for some points α(i1)
k , β

(i2)
k , ε`, ϑk in [0, 1], and with coefficients

Ci1,1(φ,m) = 1
i1! (s2−1)!

∫ 1

t2=0
{Bm[φ; (0, t2)]}(i1,s2)dt2,

Ci2,2(φ,m) = 1
i2! (s1−1)!

∫ 1

t1=0
{Bm[φ; (t1, 0)]}(s1,i2)dt1,(38)

C(φ,m) = 1
(s1−1)!(s2−1)!

{∫ 1

t2=0
{Bm[φ; (1, t2)]}(s1−1,s2)dt2

+
∫ 1

t1=0
{Bm[φ; (t1, 0)]}(s1,s2−1)dt1

}
,

for i1 = 0, . . . , s1 − 2 and i2 = 0, . . . , s2 − 2. Note that these coefficients are
all non-negative. Moreover, from (14), (15) and (16), the remainders in (37)
are bounded by

∣∣R(n)
1 [Bm(φ; .);x]

∣∣ ≤ e
n sup
i1≤s1−2

[i1!Ci1,1(φ,m)] ≡ C1(φ,m)
n

,

∣∣R(n)
2 [Bm(φ; .);x]

∣∣ ≤ e
n sup
i2≤s2−2

[i2!Ci2,2(φ,m)] ≡ C2(φ,m)
n

,(39)

∣∣R(n)[Bm(φ; .);x]
∣∣ ≤ 2C(φ,m)

n
≡ C̃(φ;m)

n
.

Now, let us introduce the function ψ(n)
m (φ, .) defined as the the right-hand side

member of (37) without the remainders, i.e.
(40)
ψ(n)
m (φ;x) ≡ Bm(φ;x)−

{
R

(n)
1 [Bm(φ; .);x]+R(n)

2 [Bm(φ; .);x]+R(n)[Bm(φ; .);x]
}
.
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From (39) and (40), we have∣∣Bm(φ;x)− ψ(n)
m (φ;x)

∣∣ ≤ 1
n

{
C1(φ,m) + C2(φ,m) + C̃(φ,m)

}
.

Therefore, we get that, for any x ∈ [0, 1],∣∣φ(x)− ψ(n)
m (φ;x)

∣∣ ≤
≤
∣∣φ(x)−Bm(φ;x)

∣∣+ ∣∣Bm(φ;x)− ψ(n)
m (φ;x)

∣∣
≤ sup

x∈[0,1]

∣∣φ(x)−Bm(φ;x)
∣∣+ 1

n

{
C1(φ,m) + C2(φ,m) + C̃(φ,m)

}
.(41)

We know that for m large enough, the term sup | . . . | in (41) is small. Now, let
us choose n so large that the other term (1/n){. . .} in (41) is small. We then
see that any function φ ∈ U [0,1]

s−icx can be approximated uniformly on [0, 1] by
the spline functions ψ(n)

m (φ; .). To end with, it suffices to check that ψ(n)
m (φ; .)

given by (40) with (37), (38) is equivalent to (33) with (34), (35), (36). This
is easily shown using the formula (31) for {Bm(φ;x)}(`1+1,`2). For instance,
from (38), we then get

Ci1,1(φ,m) = 1
i1! (s2−1)!

m1!
(m1−i1)!

m2!
(m2−s2)! ·

·
m2−s2∑
k2=0

∆(i1,s2)
1

m1
, 1

m2
φ
(
0, k2

m2

)(m2−s2
k2

) 1∫
t2=0

tk2
2 (1− t2)m2−s2−k2dt2,

and since the latter integral is equal to 1/
{(m2−s2

k2

)
(m2 − s2 + 1)

}
,

(42) Ci1,1(φ,m) =
(m1
i1

)( m2
s2−1

)m2−s2∑
k2=0

∆(i1,s2)
1

m1
, 1

m2
φ
(
0, k2

m2

)
,

such as indicated in (34). �

Remark 3.4. The result of Proposition 3.3 holds for every function φ ∈
U [a,b]
s−icx with s ≥ 1, that is also if s1 or s2 = 1. In fact, when s = 1, a direct

argument yields that φ can be approximated uniformly by functions φ(n) of
the form

φ(n)(x) = φ(a1, a2) + φ(b1, b2)− φ(a1, a2)
n2

n−1∑
`=1

n−1∑
k=1

(x1 − ε`)0
+(x2 − ϑk)0

+,

and φ(n) corresponds precisely to ψ(n)
m (φ; .) given in (33), independently of m

(with the convention that an empty sum is equal to 0). When s1 = 1 and
s2 = 2, or inversely, it can be shown, by combining a direct argument and the
method of proof above, that (33) provides again a uniform approximation for
φ. �
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Let us return to the original problem of the extremal generators for the
bivariate stochastic orderings of increasing convex type. The main result is
Corollary 3.6 below which deals with the maximal generator F .

Corollary 3.5. Let X and Y be two bivariate random variables valued in
[0, 1]. Then, for s ≥ 1, X�[a,b]

s−icxY if and only if (1) holds with F = U [a,b]
s−icx.

Proof. The sufficiency part follows directly by writing Taylor’s expansion
of φ(.) of degree s1 − 1, s2 − 1 (instead of s1 − 2, s2 − 2 as with (17)), and
then taking the expectations. For the necessity part, it suffices to apply the
property that any function φ ∈ U [0,1]

s−icx is the uniform limit of some sequence of
functions φ(n) ∈ U [0,1]

s−icx (see, e.g., Denuit et al. [6], proof of Theorem 3.5). �

Corollary 3.6. Let X and Y be two bivariate random variables valued in
[0, 1]. Then, for s ≥ 1, X�[a,b]

s−icxY if and only if (1) holds with F = U [a,b]
s−icx.

Proof. The sufficiency part is immediate from (9). For the necessity part,
let φ ∈ U [a,b]

s−icx. By Proposition 3.3, φ is the uniform limit of some sequence
of functions φ(n), implying that Eφ(n)(X)→ Eφ(X) and Eφ(n)(Y )→ Eφ(Y )
as n → +∞. Moreover, these φ(n)’s are non-negative linear combinations of
functions in U [a,b]

s−icx, so that by Corollary 3.5, Eφ(n)(X) ≤ Eφ(n)(Y ) for all n.
Therefore, we deduce that Eφ(X) ≤ Eφ(Y ). �
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