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ON SOME ONE-STEP IMPLICIT METHODS
AS DYNAMICAL SYSTEMS

CĂLIN-IOAN GHEORGHIU∗

Abstract. The one-step implicit methods, the backward Euler being the most
known, require the solution of a nonlinear equation at each step. To avoid
this, these methods can be approximated by making use of a one step of a
Newton method. Thus the methods are transformed into some explicit ones.
We will obtain these transformed methods, find conditions under which they
generate continuous dynamical systems and show their order of convergence.
Some results on the stability of these explicit schemes, as well as on the shadowing
phenomenon are also carried out. Concluding remarks and some open problems
end the paper.
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1. INTRODUCTION

We consider the initial value autonomous problem (Cauchy problem):

(1) du
dt = f (u) , u(0) = U ∈ Rp, p ≥ 1, p ∈ N,

where u (t) ∈ Rp denotes a vector valued function of t ∈ R, and f ∈ C (Rp,Rp).
Further regularity assumptions on f will be described as required.

The aim of this paper is to solve the above problem by a method which
avoids the solution of a nonlinear equation at each step. We will work in the
spirit of dynamical systems and will use the notations from the monograph of
Stuart and Humphries [9]. In fact, we use one step of a Newton method in
order to transform a one-step implicit method into an explicit one.

We will consider the following two classes of implicit schemes:
A/ the one-stage theta method

U0 = U, Un+1 = Un+(∆t) f
(

(1− θ)Un+θUn+1
)
, n = 1, 2, 3, . . . , θ ∈ [0, 1] ,

and
B/ the two-stage theta method

U0 = U, Un+1 = Un + (∆t)
[
(1− θ) f(Un) + θf (Un+1)

]
,

n = 1, 2, 3, . . . , θ ∈ [0, 1] .
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Note that both schemes A/ and B/ reduce to the forward Euler method
when θ = 0 and to the backward Euler method when θ = 1. However, for
θ ∈ (0, 1) the methods differ. For example, if θ = 1

2 in A/ we obtain the
implicit midpoint rule while if θ = 1

2 in B/ we get the trapezoidal rule. More
important than that, whenever the schemes A/ and B/ are implicit they
require at each step of time n the solution of a nonlinear system. To avoid
this, the method is frequently approximated by applying one step of Newton
iteration, with Un as an initial guess. Consequently, we transform both, A/
and B/ into explicit schemes and find out conditions under which they are
continuous dynamical systems. This is the subject of the second section. In
the third section we analyse them with respect to the order of convergence. In
the fourth section we consider the shadowing phenomenon and the numerical
stability.

2. THE NEWTON METHOD FOR THE ONE-STAGE AND TWO-STAGE THETA

METHODS

It is quite surprising that when the classical Newton method is used in order
to solve the implicit equations involved by both A/ and B/, with Un as initial
guess, we are lead up to the same explicit scheme, namely

AB/ Un+1 = Un + hΦ (Un;h)

where h := ∆t, and the increment function is defined by

Φ (Un;h) =
(
Ip − hθdf (Un)

)−1
f(Un),

with df (·) denoting the Jacobian of f (·) .
It is a matter of evidence (see for example [2] and [7]) that for

(2) hθ ≤ q

‖df (Un) ‖ , 0 < q < 1,

the matrix Ip − hθdf (Un) , has a continuous inverse and the Neumann series(
Ip − hθdf (Un)

)−1 = Ip + hθdf (Un) + · · ·+ hmθm(
df (Un)

)m + · · ·

is convergent.
Thus under the condition (2) for hθ, AB/ defines a dynamical system on

Rp with the discrete semigroup of evolution

(3) S1
∆tU = U + h

(
Ip − hθdf (U)

)−1
f(U).

Moreover, if f (·) is continuously differentiable, the above dynamical system is
itself continuous.
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3. THE ORDER OF CONVERGENCE OF THE TRANSFORMED EXPLICIT METHOD

The truncation error for the scheme AB/, as a numerical approximation of
the problem (1), in a point U of Rp is defined by

T (U ; ∆t) := S (∆t)U − S1
∆tU,

where S (·) : Rp → Rp is the evolution semigroup associated with (1), (see for
example [9, p. 106] and [10]). Taylor expansion of S (∆t)U shows that there
exists ∆tc = ∆tc (U) > 0 and K = K (U) such that

|T (U ; ∆t) | ≤ K (∆t)2 , ∀∆t ∈ (0,∆tc)

whenever θ = 1
2 . We have to observe that K is the upper bound for the

principal error function

F (U) = 1
6

(
d2f (U) · f2 (U) + (df (U))2 · f

)
− θ2f · (df (U))2 .

We also note that, due to the terms d2f(·), f2 in d3u, no choice of the
parameter θ would imply a method of the third order of accuracy.

For θ 6= 1
2 in AB/ the truncation error satisfies an inferior condition, namely

|T (U ; ∆t) | ≤ K1(∆t), ∀∆t ∈ (0,∆tc)

where K1 = K1 (U) is an upper bound for the principal error function

F1(U) =
(

1
2df (U) · f (U)− θdf (U) · f (U)

)
.

Consequently, the implicit midpoint rule and the trapezoidal rule are of order
of accuracy 2, while any other methods are of order 1.

4. ON THE SHADOWING PHENOMENON AND THE NUMERICAL STABILITY OF

THE EXPLICIT SCHEME

The idea of approximating a solution of (1) by a numerical scheme with
different initial data is sometimes referred to as shadowing.

Thus, for hθ satisfying (2), let use AB/ in order to solve (1) with two
different initial data U and V, U 6= V. We have respectively

Un+1 = Un + hf (Un) + h2θ2f (Un) df (Un) +O
(
h3

)
,(4)

Vn+1 = Vn + hf (Vn) + h2θ2f (Vn) df (Vn) +O(h3), n = 0, 1, 2, . . . .(5)

Subtracting these two equations, we get

Un+1 − Vn+1 = Un − Vn + h (f (Un)− f (Vn)) +O
(
h2

)
Whenever f (·) satisfies a Lipschitz condition with the Lipschitz constant de-
noted by Lf , the last equation implies successively
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‖Un+1 − Vn+1‖ ≤ ‖Un − Vn‖ (1 + hLf ) ,
‖Un+1 − Vn+1‖ ≤ ‖U1 − V1‖ (1 + hLf )n .(6)

Consequently, assuming that f (·) is Lipschitz and (1) generates a dynamical
system on Rp, the inequality (6) ensure the existence of the local phase portrait
of (1) near a critical point (see [9, Ch. 6: Convergence of Invariant Sets]).

A quite exhaustive analysis of the linear stability in the numerical solution
of initial value problems is available in [3]. When the dynamical system is
nonlinear the analysis becomes much more complicated.

With respect to the stability of the scheme AB/ we have obtained the
following estimation

(7) ‖Un+1 − Un‖ ≤ hN‖f (Un) ‖, n = 0, 1, 2, · · ·

where N is the sum of the Neumann series

N = ‖I + hθdf (Un) + · · ·+ hkθk (df (Un))k + · · · ‖

whenever hθ satisfies (2). The estimation (7) could be quite useful for vector
fields f (·) with some boundedness properties.

5. CONCLUDING REMARKS AND OPEN PROBLEMS

As it is apparent from the above analysis the most important results ob-
tained—the existence of the dynamical system, the stability and the shadowing
results—depend essentially on the inequality (2). Thus, whenever the Jaco-
bian df (Un) , n = 1, 2, 3, . . ., is a normal matrix, its eigenvalues can be used
in order to verify (2). Unfortunately, in the most interesting, and at the same
time most important applications, df (·) is not a normal operator (matrix).
In this situation, the spectrum of this operator could be misleading (see for
example [1], [4], [11] or [12]). The pseudospectrum and some scalar measure
of non-normality of square matrices, such the Henrici number [5], could have
some relevance. However, the two parameters h and θ involved in the inequal-
ity (2) can be adjusted, in principle, such that this inequality is satisfied at
each and every step.

A final remark about the terminology used in this paper. Finite difference
schemes for initial value problems (1) are considered in the classical language
in the well known monographs of Henrici [6], Richtmyer and Morton [8] or in
the textbook of Süli and Meyers [10]. In contrast with this language is that
of dynamical systems based essentially on semigroups of evolution. We have
chosen the latter due to a multitude of advantages.

At the end of this paper we have to mention an important open prob-
lem. This refers to the specialization of the scheme AB/, and the subsequent
results, for some specific vector fields f(·) such as gradient, dissipative and
contractive vector fields.
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