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FISHER’S INFORMATION MEASURES
AND TRUNCATED NORMAL DISTRIBUTIONS (II)

ION MIHOC∗ and CRISTINA IOANA FĂTU†

Abstract. The aim of this paper is to give some properties for the Fisher infor-
mation measure when a random variable X follows a truncated probability dis-
tribution. A truncated probability distribution can be regarded as a conditional
probability distribution, in the sense that if X has an unrestricted distribution
with the probability density function f(x), then fa↔b(x) is the probability den-
sity function which governs the behavior of X, subject to the condition that X
is known to lie in [a, b].
MSC 2000. 94A17.
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1. FISHER’S INFORMATION MEASURE

Let X be a continuous random variable on the probability space (Ω,K, P )
and having the probability density function f(x; θ) which depends on a real
parameter θ ∈ Dθ ⊆ R, Dθ being the parameter space. Then we are confronted
not with one distribution on probability, but with a family of distributions,
which will be denoted by the symbol {f(x; θ) : θ ∈ Dθ}. Any member of this
family of probability density functions will by denoted by the symbol f(x; θ),
θ ∈ Dθ.

Let Sn(X) = (X1, X2, . . . , Xn) denote a random sample of size n from a
distribution that has a probability density function which is one member (but
which member is not known) of the family {f(x; θ) : θ ∈ Dθ} of the probabil-
ity density functions. That is, our random sample arises from a distribution
that has the probability density function f(x; θ), θ ∈ Dθ. Our problem is
that of defining a statistic θ̂ = t(X1, X2, . . . , Xn) so that, if x1, x2, . . . , xn
are the observed experimental values of X1, X2, . . . , Xn, then the number
t(x1, x2, . . . , xn) will be referred to us an estimate of θ and is usually writ-
ten as θ̂0 = t(x1, x2, . . . , xn). To evaluate estimators we need some definitions.

Definition 1. An estimator θ̂ = t(X1, X2, . . . , Xn) is a function of the ran-
dom sample vector

Sn(X) = (X1, X2, . . . , Xn)
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(a statistic) that estimates θ but is not dependent on θ.

Definition 2. Any statistic whose mathematical expectation is equal to a
parameter θ is called an unbiased estimator. Otherwise, the statistic is said to
be biased.

Definition 3. Any statistic that converges stochastically to a parameter θ
is called a consistent estimator of the parameter θ, that is, if we have

lim
n→∞

P
[
|θ̂ − θ| ≤ ε

]
= 1, for all ε > 0.

Definition 4. An estimator θ̂ = t(X1, X2, . . . , Xn) of θ is said to be a min-
imum variance unbiased estimator of θ if it has the following two properties:

a) E( θ̂) = θ, that is, θ̂ is an unbiased estimator;
b) Var(θ̂) ≤ Var(θ∗), for any other estimator θ∗ = h(X1, X2, . . . , Xn)

which is also unbiased for θ, that is, E(θ∗) = θ.

In the following we suppose that the parameter θ is unknown and we esti-
mate a specified function of θ, g(θ), with the help of statistic θ̂ =
t(X1, X2, . . . , Xn) which is based on a random sample of size n, Sn(X) =
(X1, X2, . . . , Xn), where Xi are independent and identically distributed ran-
dom variable with the probability density function f(x; θ), θ ∈ Dθ. The joint
probability density function of X1, X2, . . . , Xn, regarded as a function of θ,
has the following form

L(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi; θ), θ ∈ Dθ,

where L(x1, x2, . . . , xn) is called the likelihood function of the random sample
Sn(X) = (X1, X2, . . . , Xn).

If x1, x2, . . . , xn are the observed experimental values of X1, X2, . . . , Xn, and
we can find a nontrivial function of x1, x2, . . . , xn, say t(x1, x2, . . . , xn), such
that, when θ is replaced by θ̂0 = t(x1, x2, . . . , xn), the likelihood function L
is a maximum, that is, L(x1, x2, . . . , xn; t(x1, x2, . . . , xn)) is at least great as
L(x1, x2, . . . , xn; θ), for every θ ∈ Dθ, then the statistic θ̂ = t(X1, X2, . . . , Xn)
will be called a maximum likelihood estimator of θ (the observed value of θ̂,
that is, the real number θ̂0 = t(x1, x2, . . . , xn), will be called the maximum
likelihood estimate of θ).

A well known means of measuring the quality of the statistic

θ̂ = t(X1, X2, . . . , Xn)

is to use the inequality of Cramér–Rao which states that, under certain regu-
larity conditions for f(x; θ) (more precisely, it requires the possibility of differ-
entiating under the integral sign) any unbiased estimator of g(θ) has variance
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which satisfies the following inequality

Var t ≥ [g′(θ)]2

n · IX(θ) = [g′(θ)]2

In(θ) ,(1)

where

IX(θ) =
∫

Ω

(∂ ln f(x;θ)
∂θ

)2
f(x; θ)dx =

∫
Ω

1
f(x;θ)

(∂f(x;θ)
∂θ

)2dx,

and

In(θ) = E
[(∂ lnL(x1,x2,...,xn;θ)

∂θ

)2]
=
∫

Ω
· · ·
∫

Ω

(∂L(x1,x2,...,xn;θ)
∂θ

)2
L(x1, x2, . . . , xn; θ)dx1 . . . dxn

= nE
[(∂ ln f(x;θ)

∂θ

)2]
= n

∫
Ω

(∂ ln f(x;θ)
∂θ

)2
f(x; θ)dx,

The quantity IX(θ) is known as Fisher’s information measure and it mea-
sures the information about g(θ) which is contained in an observation of X.
Also, the quantity In(θ) = n · IX(θ) measures the information about g(θ) con-
tained in a random sample Sn(X) = (X1, X2, . . . , Xn), when Xi, i = 1, n,
are independent and identically distributed random variables with density
f(x; θ), θ ∈ Dθ. An unbiased estimator of g(θ) that achieves this minimum
from (1) is known as an efficient estimator.

Moreover, the right-hand side of the Cramér–Rao inequality is, for each
θ ∈ Dθ, a lower bound for the variance of an unbiased estimator. The unbiased
estimator for which this bound is attained are said to be efficient.

2. THE TRUNCATED NORMAL DISTRIBUTION

Let X have a normal distribution with probability density function

(2) f(x;m,σ2) = 1√
2πσ exp

{
− 1

2(x−mσ )2}, x ∈ R,

where the parameters m and σ must satisfy the conditions m ∈ R, σ > 0.
The mean and the variance of X are

E(X) = m, D2(X) = VarX = σ2,

which shows that the parameters m and σ have their usual significance as the
mean and the standard deviation of the distribution. If the random variable
X obeys the normal probability law with mean m and standard deviation σ,
then we shall use the symbols X : N(m,σ2).

Definition 5. We say that the random variable X has a normal distribution
truncated to the left at X = a and to the right at X = b if its probability density
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function f is of the form

(3) fa↔b(x;m,σ2)=


k(a,b)√

2πσ exp
{
− 1

2(x−mσ )2}, if a ≤ x ≤ b,
0, if x < a,
0, if x > b,

where the constant k(a, b) is determined from the conditions

(4)
1◦. fa↔b(x;m,σ2) ≥ 0, if x ∈ (−∞,+∞);

2◦.
∫ +∞

−∞
fa↔b(x;m,σ2)dx = 1.

If we use (4) we obtain the following value

(5) k(a, b) = 1
Φ( b−mσ )−Φ(a−mσ ) ,

where
Φ(z) = 1√

2π

∫ z

−∞
exp

(
− t2

2
)
dt

is the standard normal distribution function corresponding to the standard
normal random variable

Z = X−m
σ .

The probability density function of the random variable Z has the form

f(z; 0, 1) = f(z) = 1√
2π exp

(
− t2

2
)
, z ∈ (−∞,+∞).

Because
M(Z) = 0, VarZ = 1,

it follows that Z has distribution N(0, 1).
Moreover, we have the following relation

F (x) = P (X < x)

= 1√
2πσ

∫ x

−∞
exp

{
−1

2
(y−m

σ

)2}dy

= 1√
2π

∫ x−m
σ

−∞
exp

(
− t2

2
)
dt

= Φ
(
x−m
σ

)
,

as the relation
P (a ≤ X ≤ b) =P

(
a−m
σ ≤ X−m

σ ≤ b−m
σ

)
=P

(
a−m
σ ≤ Z ≤ b−m

σ

)
=Φ

(
b−m
σ

)
− Φ

(
a−m
σ

)
,

for any real numbers a and b (finite or infinite, in which a < b).
Finally, the following properties of the function Φ(z):

Φ(−∞) = 0, Φ(0) = 1
2 , Φ(+∞) = 1, Φ(−z) = 1− Φ(z)
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play a vital role in our subsequent work.
From the relation of the definition (2.2), then when we have in view the

relation (5), we obtain the following truncated normal probability density
function

fa↔b(x;m,σ2) =


1

Φ( b−mσ )−Φ(a−mσ ) f(x;m,σ2), if a ≤ x ≤ b,
0, if x < a,
0, if x > b.

(6)

=


1
Af(x;m,σ2), if a ≤ x ≤ b,

0, if x < a,
0, if x > b.

(7)

where
(8) A = Φ

(
b−m
σ

)
− Φ

(
a−m
σ

)
.

Remark 1. A truncated probability distribution can be regarded as a con-
ditional probability distribution in the sense that if X has an unrestricted
distribution with probability density function f(x) then fa↔b(x), as defined
above, is the probability density function which governs the behavior of X
subject to the condition that X is known to lie in [a, b]. �

Remark 2. It is easy to see from (6) that:
lim

a→−∞
fa↔b(x;m,σ2) =f→b(x;m,σ2)

=
{ 1√

2πσ·Φ( b−mσ ) exp
[
− 1

2
(
x−m
σ

)2 ]
, if x ≤ b,

0, if x > b,

=
{ 1

Φ( b−mσ ) . f(x;m,σ2), if x ≤ b,
0, if x > b,

lim
b→+∞

fa↔b(x;m,σ2) =fa←(x;m,σ2) =

=
{ 1√

2πσ[1−Φ(a−mσ )] exp
[
− 1

2
(
x−m
σ

)2 ]
, if x ≥ a,

0, if x ≤ a,

=


1

1−Φ
(
a−m
σ

) f(x;m,σ2), if x ≥ a,

0, if x ≤ a,
and

lim
a→−∞
b→+∞

fa↔b(x;m,σ2) = f(x;m,σ2) = 1√
2πσ exp

[
−1

2
(
x−m
σ

)2]
, if x ∈ R,

where f→b(x;m,σ2) is the probability density function when X has a normal
distribution truncated to the right at X = b, fa←(x;m,σ2) is the probability
density function when X has a normal distribution truncated to the left at
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X = a, and f(x;m,σ2) is the probability density function when X has an
ordinary normal distribution. �

Theorem 6. Let Xa↔b be a random variable with a normal distribution
truncated to the left at X = a and to the right at X = b. Then

(9) E(Xa↔b) = m− σ2

A

[
f(b;m,σ2)− f(a;m,σ2)

]
,

where m = E(X), σ2 = Var(X), X is an ordinary normal random variable
and A has the form (8).

Proof. Making use of the definition of E(Xa↔b) we obtain

(10) E(Xa↔b) = 1√
2πσA

∫ b

a
x exp

{
−1

2
(
x−m
σ

)2}dx.

By making the change of variables

(11) t = x−m
σ ,

we obtain
x−m = σt, dx = σdt,

and (10) can be rewritten as follows

E(Xa↔b) = 1√
2πσA

∫ b−m
σ

a−m
σ

(m+ σt) exp
{
− t2

2
}
dt = 1

A(σI2 +mI1),

where, as is easily seen,

(12) I1 = 1√
2π

∫ b−m
σ

a−m
σ

exp
{
− t2

2
}
dt = Φ

(
b−m
σ

)
− Φ

(
a−m
σ

)
= A

and

I2 = 1√
2π

∫ b−m
σ

a−m
σ

t exp
{
− t2

2
}
dt(13)

= −
exp

{
−1

2

(
b−m
σ

)2
}
− exp

{
−1

2
(
a−m
σ

)2}
√

2π

= −σ
[
f(b;m,σ2)− f(a;m,σ2)

]
.

From these last relations we obtain just the form (9) for the expected value
of Xa↔b. �

Corollary 7. For the random variables Xa←, X→b and X we have

E(Xa←) = lim
b→+∞

E(Xa↔b) = m+ σ2

1−Φ(a−mσ )f(a;m,σ2),

E(X→b) = lim
a→−∞

E(Xa↔b) = m− σ2

Φ( b−mσ )f(b;m,σ2),
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and
E(X) = lim

a→−∞
b→+∞

E(Xa↔b) = m.

Theorem 8. Let Xa↔b be a random variable with a normal distribution
truncated to the left at X = a and to the right at X = b. Then

(14) E(X2
a↔b) = m2 + σ2 − σ2

A

[
(m+ b)f(b;m,σ2)− (m+ a)f(b;m,σ2)

]
,

where A is a real number given in (8).

Proof. Making use of the definition of E(X2
a↔b) we have

E(X2
a↔b) = 1√

2πσA

∫ b

a
x2 exp

{
− 1

2
(
x−m
σ

)2 }dx.

By making the change of variable (11) this last relation can be rewritten as
follows
(15) E(X2

a↔b) = m2

A I1 + 2mσ
A I2 + σ2

A I3,

where I1 and I2 are just the integrals (12) and (13) and for the integral I3 we
obtain

I3 = 1√
2π

∫ b−m
σ

a−m
σ

t2 exp
{
− t2

2
}
dt

= (m− b)f(b;m,σ2)− (m− a)f(a;m,σ2) +A,

if we have in view the formula for integration by parts.
From (15), when we have in view these three values of integrals I1, I2 and

I3, one obtains just the form (14) for the expected value E(X2
a↔b). �

Corollary 9. If Xa↔b is a random variable with a normal distribution
truncated to the left at X = a and to the right at X = b, then

Var(Xa↔b) = σ2 + (σ2)2

A2
[
f(b;m,σ2)− f(a;m,σ2)

]2
+ σ2

A

[
(m− b)f(b;m,σ2)− (m− a)f(a;m,σ2)

]
.

Proof. This follows immediately from the relation
Var(Xa↔b) = E(X2

a↔b)− [E(Xa↔b)]2,
if we take into account the forms (9) and (14) of the moments E(Xa↔b) and
E(X2

a↔b). �

Corollary 10. For the random variables Xa←, X→b and X we have

Var(Xa←) = lim
b→+∞

Var(Xa↔b) = σ2 + (σ2)2
f2(a;m,σ2)

[1−Φ(a−m
σ

)]2 −
σ2(m−a)f(a;m,σ2)

1−Φ(a−m
σ

) ,

Var(X→b) = lim
a→−∞

Var(Xa↔b) = σ2 + (σ2)2
f2(b;m,σ2)

Φ2( b−m
σ

) + σ2(m−b)f(b;m,σ2)
Φ( b−m

σ
) ,
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and

Var(X) = lim
a→−∞
b→+∞

Var(Xa↔b) = σ2.

3. FISHER’S INFORMATION MEASURES FOR THE TRUNCATED NORMAL

DISTRIBUTIONS

Let X be a continuous random variable which has an ordinary normal dis-
tribution with probability density function (2), that is,

f(x;m,σ2) = 1√
2πσ exp

{
− 1

2(x−mσ )2}, x ∈ R, m ∈ R, σ > 0.

Theorem 11. If the random variable Xa↔b has a normal distribution trun-
cated to the left at X = a and to the right at X = b, that is, its probability
distribution is of the form

(16) fa↔b(x;m,σ2) =


1
A f(x;m,σ2), if a ≤ x ≤ b,

0, if x < a,
0, if x > b,

then the Fisher information measure corresponding to Xa↔b has the following
form

IF (Xa↔b) = 1
σ2 − f(b;m,σ2)−f(a;m,σ2)√

2πσA2 + (m−b)f(b;m,σ2)−(m−a)f(a;m,σ2)
σ2A ,

where

f(a;m,σ2) = 1√
2πσ exp

{
− 1

2(a−mσ )2}, f(a;m,σ2) ∈ R+,

f(b;m,σ2) = 1√
2πσ exp

{
− 1

2( b−mσ )2}, f(b;m,σ2) ∈ R+.

Proof. Let Xa↔b be a continuous random variable and its probability den-
sity function of the form (16), where m ∈ Dm = R is an unknown real para-
meter and σ2 ∈ R+ is a known parameter.

For a such continuous random variableXa↔b the Fisher information measure
has the form

IF (Xa↔b) = IXa↔b(m)

=
∫ b

a

(
∂ ln f

a↔b (x;m,σ2)
∂m

)2
f
a↔b(x;m,σ2)dx.(17)
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Using (17) and (16), we obtain

ln f
a↔b(x;m,σ2) =− ln(

√
2πσ)− ln

[
Φ
(
b−m
σ

)
− Φ

(
a−m
σ

)]
− 1

2
(
x−m
σ

)2
,

∂ ln f
a↔b (x;m,σ2)
∂m = exp{− 1

2 (a−m
σ

)2}−exp{− 1
2 ( b−m

σ
)2}√

2πσA + x−m
σ ,

IXa↔b(m) =
∫ b

a

(
∂ ln f

a↔b (x;m,σ2)
∂m

)2
f
a↔b(x;m,σ2)dx(18)

=

[
exp

{
− 1

2( b−mσ )2}− exp
{
− 1

2(a−mσ )2}]2
2πσ3A3 Î1

+ 2
exp

{
− 1

2( b−mσ )2}− exp
{
− 1

2(a−mσ )2}
√

2πσ4A2 Î2 + 1
σ5A Î3,

where

Î1 = 1√
2π

∫ b

a
exp

{
− 1

2
(
x−m
σ

)2 }dx,

Î2 = 1√
2π

∫ b

a
(x−m) exp

{
− 1

2
(
x−m
σ

)2}dx,

Î3 = 1√
2π

∫ b

a
(x−m)2 exp

{
− 1

2
(
x−m
σ

)2 }dx.

Because these three integrals have the values

Î1 =σI1 = σA,

Î2 =− σ2
√

2π

[
exp

{
− 1

2

(
b−m
σ

)2 }
− exp

{
− 1

2

(
b−m
σ

)2 }]
=σ2I2

=− σ3[f(b;m,σ2)− f(b;m,σ2)],

Î3 =σ3
[
− b−m√

2πσ exp
{
− 1

2

(
b−m
σ

)2 }
+ a−m√

2πσ exp
{
− 1

2
(
a−m
σ

)2 }]+ σ3A

=σ3I3

=σ3A+ σ3
[
(m− b)f(b;m,σ2)− (m− a)f(a;m,σ2)

]
,

it is easy to see from (18) that for the quantity IXa↔b(m) we have the following
form

IXa↔b(m) = 1
σ2 − f(b;m,σ2)−f(a;m,σ2)√

2πσA2 + (b−m)f(b;m,σ2)−(a−m)f(a;m,σ2)
σ2A .

This completes the proof of the theorem. �
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Corollary 12. For the random variables Xa←, X→b and X we have

IXa←(m) = lim
b→+∞

IXa↔b(m) = 1
σ2 − (m−a)f(a;m,σ2)

σ2
[

1−Φ
(
a−m
σ

)] − f2(a;m,σ2)[
1−Φ

(
a−m
σ

)]2 ,

IX→b(m) = lim
a→−∞

IXa↔b(m) = 1
σ2 + (m−b)f(b;m,σ2)

σ2Φ
(
b−m
σ

) − f2(b;m,σ2)

Φ2
(
a−m
σ

) ,
IX(m) = lim

a→−∞
b→+∞

IXa↔b(m) = 1
σ2 .
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[2] Mihoc, I. and Fătu, C. I., Fisher’s Information Measures for the Truncated Normal

Distribution (I), Analysis, Functional Equations, Approximation and Convexity, Pro-
ceedings of the Conference Held in Honour Professor E. Popoviciu on the Occasion of
her 75-th Birthday, Cluj-Napoca, October 15–16, 1999, Editura Carpatica, pp. 171–182,
1999.

[3] Rao, C. R., Liniar Statistical Inference and Its Applications, John Wiley and Sons, Inc.,
New York, 1965.
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