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ON THE UNIQUENESS OF EXTENSION
AND UNIQUE BEST APPROXIMATION

IN THE DUAL OF AN ASYMMETRIC NORMED LINEAR SPACE

COSTICĂ MUSTĂŢA∗

Abstract. A well known result of R. R. Phelps (1960) asserts that in order that
every linear continuous functional, defined on a subspace Y of a real normed
space X, have a unique norm preserving extension it is necessary and sufficient
that its annihilator Y ⊥ be a Chebyshevian subspace of X∗. The aim of this note
is to show that this result holds also in the case of spaces with asymmetric norm.
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1. INTRODUCTION

Let X be a real linear space. A function ‖·| : X → [0,∞) is called an
asymmetric norm if it satisfies all the usual axioms of a norm, excepting the
absolute homogeneity, which is replaced by positive homogeneity, i.e.,

‖λx| = λ ‖x| , ∀x ∈ X, ∀λ ≥ 0.

The asymmetric norm is called with extended values if there exists x ∈ X such
that ‖x| = +∞. The pair (X, ‖·|) is called a space with asymmetric norm (see
[8], [2]).

In a space with asymmetric norm it is possible that ‖x| 6= ‖−x| for some x ∈
X. The asymmetric norm generates a topology having as a neighborhood base
the balls B (x, r) = {y ∈ X : ‖y − x| < r}, x ∈ X, r ≥ 0, but the topological
space

(
X, τ‖·|

)
is not a linear topological space, because the multiplication by

scalars is not a continuous operation (see [2, p. 199]).
Let X# be the algebraic dual of X, i.e. the space of all linear functional on

X. We say that f ∈ X# is bounded on X if

(1) sup
{
f (x) : x ∈ X, ‖x| ≤ 1

}
<∞.

It is immediate that if f, g ∈ X# are bounded then their sum f + g and the
product λf for λ ≥ 0 are bounded too. This shows that the set of all bounded
linear functionals on X is a cone (see [2]), or an ac-space, according to [7].
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In general, it is possible that for a bounded linear functional f on (X, ‖·|)
the linear functional −f be not bounded. Such an example is given by the
functional f (x) = x (1) defined on the space

X =
{
x : [0, 1]→ R

∣∣ x continuous and
∫ 1

0
x (t) dt = 0

}
equipped with the asymmetric norm

‖x| = max
{
x (t) : t ∈ [0, 1]

}
, x ∈ X.

Taking xn(t) = 1 − ntn−1 it follows ‖xn| = 1 and (−f) (xn) = f (−xn) =
(−xn) (1) = n− 1, implying

sup
{

(−f) (x) : ‖x| ≤ 1
}
≥ sup

{
(−f) (xn) : n ∈ N

}
= +∞.

For a bounded linear functional f put

(2) ‖f | = sup
{
f (x) : x ∈ X, ‖x| ≤ 1

}
.

It follows that the function ‖·| defined by (2) satisfies the axioms of an
asymmetric norm on the cone of all bounded linear functionals on X (see [2]).

Observe that
f (x) ≤ ‖f | · ‖x| , x ∈ X,

and, since f (−x) ≤ ‖f | · ‖−x|, one obtains the inequalities

−‖f | · ‖−x| ≤ f (x) ≤ ‖f | · ‖x| , x ∈ X.

The inequality |f (x)| ≤ ‖f | ·‖x| is not true in general, but if we consider the
symmetric norm ‖x‖ = max {‖x| , ‖−x|} on X, then |f (x)| ≤ ‖f | ‖x‖ , x ∈ X.
This shows that a bounded linear functional is always continuous with respect
to the topology generated by the symmetric norm ‖x‖ = max {‖x| , ‖−x|}
associated to an asymmetric norm ‖·| .

If both f and −f are bounded then the linear functional f is continuous
with respect to the topology generated by the asymmetric norm.

Consider on R the asymmetric norm u (x) = x ∨ 0 = max {x, 0} (see [7]).
A functional f : (X, ‖·|) → (R, u) is continuous in x0 ∈ X if for every ε > 0
there exists δ > 0 such that for every x ∈ X with ‖x− x0| < δ we have
(f (x)− f (x0)) ∨ 0 < ε.

It is clear that a linear functional f : (X, ‖·|)→ (R, u) is continuous if and
only if there exists M > 0 such that f (x) ∨ 0 < M ‖x| .

According to [7], the set

(3) X∗ =
{
f : (X, ‖·|)→ (R, u) , f linear continuous

}
is called the asymmetric dual of the space with asymmetric norm (X, ‖·|) .

If ‖x‖ = max {‖x| , ‖−x|} is the norm generated by ‖·| on X and R is
equipped with the usual absolute-value norm |·| , then the set

(4) X∗s =
{
f : (X, ‖·‖)→ (R, |·|) , f linear continuous

}
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is the (symmetric) dual of (X, ‖·|). In other words, X∗s is the usual topological
algebraic dual of the normed space (X, ‖·‖), where ‖x‖ = max {‖x| , ‖−x|} .

Observe that X∗ is a cone in the linear space X∗s.
Equip the linear space X∗s with the extended asymmetric norm

‖f |∗s = sup
{
f (x) : ‖x| ≤ 1

}
whose restriction to the asymmetric dual X∗ is

‖f |∗ = sup
{
f (x) ∨ 0 : ‖x| ≤ 1

}
.

It is important to remark the fact that a linear functional f belongs to X∗
if and only if it is an upper semicontinuous linear functional on (X, ‖·|), and
that X∗ =

{
f ∈ X∗s : ‖f |∗s < +∞

}
(see [7]).

Let (Y, ‖·|) be a subspace of the space with asymmetric norm (X, ‖·|), and
let Y ∗ and Y ∗s be the dual cone and the (symmetric) dual of Y , respectively.

The following Hahn–Banach type theorem holds:

Theorem 1. Let (X, ‖·|) be a real space with asymmetric norm and (Y, ‖·|)
a subspace of it. Then for every f ∈ Y ∗ there exists F ∈ X∗ such that

F |Y = f and ‖F |∗ = ‖f |∗ .

Proof. For f ∈ Y ∗ let p : X → R be defined by p (x) = ‖f |∗ · ‖x|, x ∈ X.
The functional p is convex, positively homogeneous and f (y) ≤ ‖f |∗ · ‖y|,

for every y ∈ Y . By the Hahn–Banach extension theorem ([8, p. 484]) there
exists a linear functional F : X → R such that F |Y = f and F (x) ≤ ‖f |∗ ‖x|,
for every x ∈ X. It follows

‖F |∗ = sup
{
F (x) ∨ 0 : ‖x| ≤ 1

}
≤ ‖f |∗ .

On the other hand

‖F |∗ = sup
{
F (x) ∨ 0 : ‖x| ≤ 1, x ∈ X

}
≥ sup

{
F (y) ∨ 0 : ‖y| ≤ 1, y ∈ Y

}
= sup

{
f (y) ∨ 0 : ‖y| ≤ 1, y ∈ Y

}
= ‖f |∗ ,

showing that ‖F |∗ = ‖f |∗ . �

For f ∈ Y ∗ denote by

E (f) =
{
F ∈ X∗ : F |Y = f and ‖F |∗ = ‖f |∗

}
the set of all extensions that preserve the asymmetric norm.

By Theorem 1, the set E (f) is always nonempty.
The problem of finding necessary or/and sufficient conditions in order that

every f ∈ Y ∗ have a unique norm preserving extension is closely related to a
best approximation problem in the space X∗s equipped with the asymmetric
norm ‖F |∗s = sup

{
F (x) : ‖x| ≤ 1

}
.
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Concerning the following notions, in the case of usual spaces, one can consult
Singer’s book [16].

Let (Y, ‖·|) be subspace of (X, ‖·|) and let

Y ⊥ =
{
G ∈ X∗s : G|Y = 0

}
the annihilator of Y in the space (X∗s, ‖·|∗s) .

For F ∈ X∗s, an element G0 ∈ Y ⊥ is called a best approximation element
for F in Y ⊥ if

‖F −G0|∗s = inf
{
‖F − g|∗s : G ∈ Y ⊥

}
= d

(
F, Y ⊥

)
.

The set of all best approximation elements for F in Y ⊥ is denoted by
PY ⊥ (F ). If PY ⊥ (F ) 6= ∅ for every F ∈ X∗s one says that Y ⊥ is proximi-
nal, and if cardPY ⊥ (F ) = 1 for every F ∈ X∗s, then one says that Y ⊥ is
Chebyshevian.

Theorem 2. Let (X, ‖·|) be a space with asymmetric norm and (Y, ‖·|) a
subspace of it. Then

a) The annihilator Y ⊥ of Y is a proximinal subspace of X∗s and, for
every F ∈ X∗ we have

d
(
F, Y ⊥

)
= ‖F |Y |∗ .

b) An element G ∈ Y ⊥ is in PY ⊥ (F ) if and only if G = F −H for some
H ∈ E (F |Y ), i.e.,

PY ⊥ (F ) = F − E (F |Y ) .

c) The subspace Y ⊥ is Chebyshevian in X∗s if and only if every functional
f ∈ Y ∗ has a unique norm preserving extension in X∗s.

Proof. a) Let F ∈ X∗. Then F |Y ∈ Y ∗ and, by Theorem 1, E (F |Y ) 6= ∅. If
H ∈ E (F |Y ) then

F |Y = H|Y and ‖F |Y |∗ = ‖H|∗ ,

so that F −H ∈ Y ⊥. We have
‖F |Y |∗ = ‖H|∗ = ‖H|∗s = ‖F − (F −H)|∗s ≥ d

(
F, Y ⊥

)
and, for any G ∈ Y ⊥,

‖F |Y |∗ = ‖F |Y −G|Y |∗ ≤ ‖F −G|∗s .

Taking the infimum with respect to G ∈ Y ⊥ we get

‖F |Y |∗ ≤ d
(
F, Y ⊥

)
.

It follows that d
(
F, Y ⊥

)
= ‖F |Y |∗ .

b) If G ∈ PY ⊥ (F ) then
‖F −G|∗s = ‖F |Y |∗
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and
(F −G) |Y = F |Y ,

which shows that F −G ∈ E (F |Y ). The conclusion holds with H = F −G.
c) Follows from b). �

Remark. 1o Let X∗ be the usual topological algebraic dual of the normed
space (X, ‖·‖), and Y ∗ the topological algebraic dual of (Y, ‖·‖), where Y is
a subspace of X. R. R. Phelps [14] showed that Y ⊥ (the annihilator of Y in
X∗) is Chebyshevian if and only if every f ∈ Y ∗ has a unique norm-preserving
extension F ∈ X∗.

2o Some Phelps type duality results and applications can be found in [3],
and in the bibliography quoted there. �
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