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ON SOME BIVARIATE INTERPOLATION PROCEDURES

DIMITRIE D. STANCU∗ and IOANA TAŞCU†

Abstract. In an important paper published in 1966 by the first author [10] was
introduced and investigated a very general interpolation formula for univariate
functions, which includes, as special cases, the classical interpolation formulae
of Lagrange, Newton, Taylor and Hermite.

The purpose of the present paper is to extend that formula to the two-
dimensional case. The remainders are expressed by means of partial divided
differences and derivatives.
MSC 2000. 41A05, 41A10, 41A63.
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1. INTRODUCTION

In this paper we start from a general decomposition formula of divided
differences defined for a function f ∈ C(D), D = [a, b] × [c, d], and for some
groups of nodes from the rectangle D. We deduce a general interpolation
formula for bivariate functions, corresponding to some general arrays of points.
As special cases we obtain several classical types of interpolation polynomials,
including Lagrange, Newton, Biermann, Taylor and Hermite.

2. PRELIMINARIES

We first recall some of the principal results obtained in the paper [10].
Then we shall start from an array of M + 1 = p0 + p1 + · · · + pm + m + 1
points containing m + 1 groups of nodes, denoted, by using subscripts and
superscripts, by (aki ) i = 0, . . . , pk, k = 0, . . . ,m.

Let us use the following explicit notation for this array

(2.1) A =


a0

0 a0
1 . . . a0

p0
...

...
...

am0 am1 . . . ampm

 .
We assume that a ≤ ak0 < ak1 < · · · < akpk ≤ b, k = 0, . . . ,m.
The key role in deducing a general interpolation formula corresponding to

the function f ∈ C[a, b] and the points (aki ), i = 0, . . . , pk, k = 0, . . . ,m, is the
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following decomposition formula for divided differences on the distinct nodes
aki :

[a0
0, a

0
1, . . . , a

0
p0 ; a1

0, a
1
1, . . . , a

1
p1 ; . . . ; am0 , am1 , . . . , ampm ; f ] =(2.2)

=
m∑
k=0

[
ak0, a

k
1, . . . , a

k
pk

; f(t)
uk(t)

]
,

where
uk(t) = γ0(x)γ1(x) . . . γk−1(x)γk+1(x) . . . γm(x), u0(x) = 1,

and
γs(x) = (x− as0)(x− as1) . . . (x− asps), s = 0, . . . ,m.

The above brackets represent the symbol for divided differences.
If we introduce the node polynomial

(2.3) u(x) =
m∏
s=0

(x− as0)(x− as1) . . . (x− asps),

then we can write: uk(x) = u(x)/γk(x).
By using the decomposition formula (2.2) we can obtain the Stancu general

interpolation formula
(2.4) f(x) = (SMf)(x) + (RMf)(x),
where, in terms of divided differences, we have

(SMf)(x) =
m∑
k=0

uk(x)
pk∑
i=0

(x− ak0)(x− ak1) . . . (x− aki−1)(Dk
i f),(2.5)

where
(Dk

i f) =
[
ak0, a

k
1, . . . , a

k
i ;

f(t)
uk(t)

]
.

Obviously (SMf)(x) is a polynomial of degree not exceeding M = p0 +p1 +
· · ·+ pm +m.

The remainder of formula (2.4) has the following expression
(RMf)(x) = u(x)(Dp0,p1,...,pmf)(x),

where
(Dp0,p1,...,pmf)(x) = [x, x0

0, a
0
1, . . . , a

0
p0 ; . . . ; am0 , am1 , . . . , ampm ; f(t)]

is the divided difference on all the points from the table A and x.
Now let us present three remarkable special cases of the above approxima-

tion formula.
(i) If p0 = p1 = · · · = pm = 0 then we have a single column in the array (2.1)

and the Stancu approximation formula (2.4) reduces to the Lagrange interpo-
lation formula corresponding to the function f and the nodes a0

0, a
1
0, . . . , a

m
0 .

(ii) In the case m = 0 then the array A reduces to the nodes from the first
row and we obtain the Newton interpolation formula corresponding to the
nodes a0

0, a
0
1, . . . , a

0
p0 and the function f .
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(iii) If we assume that the nodes from the group ak0, ak1, . . . , akpk tend to the
same value bk, k = 0, . . . ,m, then the polynomial (2.5) becomes the Hermite
osculatory interpolation polynomial under the form given in 1931 by P. Jo-
hansen [3]:

(HMf)(x) =
m∑
k=0

uk(x)
pk∑
j=0

(x−bk)j
j!

(
f(t)
uk(t)

)(j)

t=bk
,

where we use the notations

u(x) =
m∏
k=0

(x− bk)pk+1, uk(x) = u(x)
(x−bk)pk+1 .

It should be noticed that this polynomial can be written also under the
more explicit form, given in 1948, by W. Simonsen [5]:

(HMf)(x) =
m∑
k=0

pk∑
j=0

hk,j(x)f (j)(bk),

where the basic osculatory interpolation polynomials hk,j(x) satisfy the rela-
tions h(s)

k,j(bν) = 0 (ν 6= k, s = 0, . . . , pν) and h
(s)
k,j(bk) = δsj , s = 0, . . . , pk,

where δsj is the Kronecker delta.
(iv) In the case pk = k, k = 0, . . . ,m, the table A from (2.1) leads us to the

following triangular array of m(m+ 1)/2 base points

T =



a0
0
a1

0 a1
1

a2
0 a2

1 a2
2

...
...

... . . .
am0 am1 am2 . . . amm

and in the Stancu interpolation polynomial (2.5) we have to replace pk = k
and uk(x) = u(x)/γk(x), where

u(x) =(x− a0
0(x− a1

0)(x− a1
1) . . . (x− am0 )(x− am1 ) . . . (x− amm), u0(x) = 1,

γk(x) =(x− ak0)(x− ak1) . . . (x− akk).

3. SOME BIVARIATE INTERPOLATION FORMULAS

Let C(D) be the space of all real-valued functions continuous on the rec-
tangle D = [a, b]× [c, d].

Besides the M + 1 distinct points (aki ) from the interval [a, b], we consider
also the N + 1 = s0 + s1 + · · ·+ sn + n+ 1 distinct points (brj), j = 0, . . . , sr,
r = 0, . . . , n, from the interval [c, d], assuming that br0 < br1 < · · · < brsr ,
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r = 0, . . . , n. We denote by B the table of these points

(3.1) B =



b00 b01 . . . b0s0
b10 b11 . . . b1s1...

...
...

br0 br1 . . . brss...
...

...
bn0 bn1 . . . bnsn


.

We want to approximate the function f ∈ C(D) by an interpolation poly-
nomial (Tf)(x, y)(x, y) relative to the grid of nodes from D:

G = {(aki , brj), i = 0, . . . , pk, j = 0, . . . , sr, k = 0, . . . ,m, r = 0, . . . , n}.
In order to find the expression of this bivariate interpolation polynomial

using these nodes, we first apply formula presented at (2.4), with respect to
the first variable and we obtain
(3.2) f(x, y) = (Sf)(x; y) + (Rf)(x; y),
where

(Sf)(x; y) =
m∑
k=0

uk(x)
pk∑
i=0

ω0,i−1(x)(Dk
i f)(y) + (Rf)(x; y),

uk(x) =γ0(x)γ1(x) . . . γk−1(x)γk+1(x) . . . γm(x),
γk(x) =(x− ak0)(x− ak1) . . . (x− akpk)

ωk0,i−1(x) =(x− ak0)(x− ak1) . . . (x− aki−1), ωk0,−1(x) = 1,

(Dk
i f)(y) =

[
ak0, a

k
1, . . . , a

k
i ;

f(t,y)
uk(t)

]
.

The remainder has the following expression
(Rf)(x; y) = u(x)[x, x0

0, . . . , a
0
p0 ; . . . ; am0 , . . . , ampm ; f(t, y)],

where
u(x) = γ0(x)γ1(x) . . . γm(x) = uk(x)γk(x).

Then we apply the above result with respect to the variable y and the points
brj from the array B given at (3.1). We obtain

(3.3) (Tf)(x, y) =
m∑
k=0

n∑
r=0

uk(x)vr(y)
pk∑
i=0

sr∑
j=0

ωk0,i−1(x)γr0,j−1(y)(Dk,r
i,j f),

where
γr0,j−1(y) =(y − br0)(y − br1) . . . (y − brj−1), γr0,−1(y) = 1,

vr(y) =δ0(y)δ1(y) . . . δr−1(y)δr+1(y) . . . δn(y), v0(y) = 1,
δt(y) =(y − bt0)(y − bt1) . . . (y − btst), k = 0, . . . , n,
v(y) =vr(y)δr(y).
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On the other hand we used the bidimensional divided difference

Dk,r
i,j f =

[
ak0, a

k
1, . . . , a

k
i

br0, b
r
1, . . . , b

r
j

; f(t, z)
uk(t)vr(z)

]
.

The remainder of the interpolation formula (3.2) has the following expres-
sion

(Rf)(x, y) =
= u(x)[x, a0

0, a
0
1, . . . , a

0
p0 ; . . . ; am0 , am1 , . . . ampm ; f(t, y)]

+ v(y)
m∑
k=0

uk(x)
pk∑
i=0

ω0,i−1(x)
[

ak0, a
k
1, . . . , a

k
i

y, b00, . . . , b
0
s0 , . . . , b

n
0 , . . . , b

n
sn

; f(t, z)
uk(t)

]
.

4. INTERPOLATION FORMULAS USING A RECTANGULAR OR A TRIANGULAR

GRID OF NODES

A) In the special cases p0 = p1 = · · · = pm = 0, s0 = s1 = · · · = sm = 0 in
the tables (2.1) and (3.1) remain only the first columns (ak0), k = 0, . . . ,m, and
(br0), r = 0, . . . , n and the nodes will be the points Mk,r(ak0, br0) which are at
the intersections of the vertical lines x = ak0, k = 0, . . . ,m, with the horizontal
lines y = br0, r = 0, . . . , n, in the plane.

In this case the interpolation polynomial (3.3) becomes

(4.1) (Lm,nf)(x, y) =
m∑
k=0

n∑
r=0

uk(x)vr(y)
uk(ak0)vr(br0)f(ak0, br0),

where
uk(x) =(x− a0

0)(x− a1
0) . . . (x− ak−1

0 )(x− ak+1
0 ) . . . (x− am0 ),

vr(y) =(y − b00)(y − b10) . . . (y − br−1
0 )(y − br+1

0 ) . . . (y − bn0 ).
At (4.1) we have the bivariate Lagrange interpolation polynomial corre-

sponding to the function f ∈ C(D) and to the nodes Mk,r from the rectangle
D = [a, b]× [c, d].

The corresponding remainder of the interpolation formula
(4.2) f(x, y) = (Lm,nf)(x, y) + (Rm,nf)(x, y)
can be expressed by means of the nodal polynomials

(4.3) um(x) =
m∏
k=0

(x− ak0), vn(y) =
n∏
r=0

(y − br0)

and the partial divided differences, namely
(Rm,nf)(x, y) =um(x)[x, a0

0, a
1
0, . . . , a

m
0 ; f(t, y)]

+ vn(y)[y, b00, b10, . . . , bn0 ; f(x, z)]

− um(x)vn(y)
[
x, a0

0, a
1
0, . . . , a

m
0

y, b00, b
1
0, . . . , b

n
0

; f(t, z)
]
.
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If we now assume that the function f has continuous partial derivatives
f (p,q)(x, y) on the rectangle D then this remainder can be expressed in the
following form

(Rm,nf)(x, y) = um(x)
(m+1)!f

(m+1,0)(ξ, y) + vn(y)
(n+1)!f

(0,n+1)(x, η)(4.4)

− um(x)vn(y)
(m+1)!(n+1)!f

(m+1,n+1)(ξ, η),

where ξ ∈ (a, b) and η ∈ (c, d) are the same in both terms in which they occur.
B) If we assume that m = n = 0 then in the tables (2.1) and (3.1) remain

only the first rows: a0
0, a

0
1, . . . , a

0
p0 and b00, b01, . . . , b0s0 and the formula (3.3) leads

us to the Newton bivariate interpolation formula

(4.5) f(x, y) = (Np0,s0f)(x, y) + (Rp0,s0f)(x, y),

where we have

(Np0,s0f)(x, y) =(4.6)

=
p0∑
i=0

s0∑
j=0

(x− a0
0)(x− a0

n) . . . (x− a0
i−1)(y − b00)(y − b01) . . . (y − b0j−1)(D0

i,jf)(t, z)

and
(D0

i,jf)(x, y) =
[
a0

0, a
0
1, . . . , a

0
i

b00, b
0
1, . . . , b

0
j

; f(t, z)
]

is the bidimensional divided difference of the function f on the indicated nodes.
The remainder of the interpolation formula (4.5) has the following expres-

sion, in terms of partial divided differences,

(Rp0,s0f)(x, y) =up0(x)[x, a0
0, a

0
1, . . . , a

0
p0 ; f(t, y)]

+ vs0(y)[y, b00, b01, . . . , b0s0 ; f(x, z)]

− up0(x)vs0(y)
[
x, a0

0, a
0
1, . . . , a

0
p0

y, b00, b
0
1, . . . , b

0
s0

; f(t, z)
]
.

If f ∈ Cp0,s0(D) then we can obtain the following estimation for this re-
mainder

(Rp0,s0f)(x, y) = up0 (x)
(p0+1)!f

(p0+1,0)(ξ, y) + vs0 (y)
(s0+1)!f

(0,s0+1)(x, η)(4.7)

− up0 (x)vs0 (y)
(p0+1)!(s0+1)!f

(p0+1,s0+1)(ξ, η),

where ξ ∈ (a, b) and η ∈ (c, d).
C) If we use the notations p0 = p, a0

i = xi, b0j = yj and assume that
s0 = p − i, i = 0, . . . ,m; j = 0, . . . , n, then we arrive from (4.6) at the
Biermann interpolation polynomial [1], [9]:

(4.8) (Bpf)(x, y) =
p∑
i=0

p−i∑
j=0

(x−x0) . . . (x−xi−1)(y− y0) . . . (y− yj−1)Di,j(f),
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where

Di,j(f) =
[
x0, x1, . . . , xi
y0, y1, . . . , yj

; f(t, z)
]
.

The Biermann polynomial is of total (global) degree p in x and y and uses
a triangular array of base nodes (xi, yi), i = 0, . . . , p, j = 0, . . . , (p− i).

D) When the elements of the rows from the array (2.1) tend respectively
to the same values, that is aki → ck, i = 0, . . . , pk, k = 0, . . . ,m, where
c0, c1, . . . , cm are distinct numbers, while the elements of the rows from the
array (3.1) tend also to distinct values, that is brj → dr, j = 0, . . . , sr, r =
0, . . . , n, then we can write the nodal polynomials

u(x) =
m∏
i=0

(x− ci)ri+1, v(y) =
n∏
j=0

(y − dj)sj+1

and

uk(x) = u(x)/(x− ck)pk+1, vr(y) = v(y)/(y − dr)sr+1.

Because we have

ωk0,i−1(x) = (x− xk)i, γrj−1(y) = (y − dr)j ,

[
ak0, a

k
1, . . . , a

k
i

br0, b
r
1, . . . , b

r
j

; f(t, z)
uk(t)vr(z)

]
=
[
ck, ck, . . . , ck
dr, dr, . . . , dr

; f(t, z)
uk(t)vr(z)

]

= 1
i!j!

(
f(t, z)

uk(t)vr(z)

)(i,j)

ck,dr

,

it follows that the polynomial (3.3) may be expressed in the following form
(4.9)

(HM,Nf)(x, y) =
m∑
k=0

n∑
r=0

uk(x)vr(y)
pk∑
i=0

sr∑
j=0

(x−ck)i(y−dr)j
i!j!

(
f(t,z)

uk(t)vr(z)

)(i,j)

ck,dr
,

which is the Hermite osculatory bivariate interpolation polynomial of degree
(M,N), where M = p0 + p1 + · · · + pm + m and N = s0 + s1 + · · · + sn + n,
which enjoys the following properties:

(H(ν,µ)
M,N )(ck, dr) = f (ν,µ)(ck, dr),

where ν = 0, . . . , pk, µ = 0, . . . , sr, k = 0, . . . ,m and r = 0, . . . , n.
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The remainder of the approximation formula of the function f by this in-
terpolation polynomial has the following expression

(RM,Nf)(x, y) =

= u(x)
[
x
1 ,

c0
p0 + 1 ,

c1
p1 + 1 , . . . ,

cm
pm + 1 ; f(t, y)

]
+ v(y)

[
y
1 ,

d0
s0 + 1 ,

d1
s1 + 1 , . . . ,

dn
sn + 1 ; f(x, z)

]
− u(x)v(y)·

·
[
x
1 ,

c0
p0 + 1 ,

c1
p1 + 1 , . . . ,

cm
pm + 1 ; d0

s0 + 1 ,
d1

s1 + 1 , . . . ,
dn

sn + 1 ; f(t, z)
]

In the brackets, in the first row, there are the coordinates of the nodes and
in the second are indicated their corresponding orders of multiplicities.

Using the partial derivatives of the function f , this remainder can be esti-
mated by the following formula

(RM,Nf)(x, y) = u(x)
(M+1)!f

(M+1,0)(ξ, y) + v(y)
(N+1)!f

(0,N+1)(x, η)

− u(x)v(y)
(M+1)!(N+1)!f

(M+1,N+1)(ξ, η),

where ξ ∈ (a, b), η ∈ (c, d).
Let us now mention that the Hermite interpolation polynomial (4.9) can be

also expressed in a more explicit form

(HM,Nf)(x, y) =
m∑
k=0

n∑
r=0

pk∑
i=0

sr∑
j=0

gk,i(x)hr,j(y)f (i,j)(ck, dr),

where

gk,i(x) = (x−ck)i
i!

[ pk−i∑
ν=0

(x−ck)ν
ν!

( 1
uk(t)

)(ν)
ck

]
uk(x)

and

hr,j(y) = (y−dr)j
j!

[ sr−j∑
r=0

(y−dr)µ
µ!

( 1
vr(z)

)(µ)
dr

]
vr(y).

In the particular case m = n = 0, p0 = p, s0 = s we obtain the Taylor-type
bivariate formula

(4.10) f(x, y) =
p∑

k=0

s∑
r=0

(x−c0)k(y−d0)r
k!r! f (k,r)(c0, d0) + (Rf)(x, y),

where
(Rf)(x, y) = (x−c0)p+1

(p+1)! f (p+1,0)(ξ, y) + (y−d0)s+1

(s+1)! f (0,s+1)(x, η)

− (x−c0)p+1(y−d0)s+1

(p+1)!(s+1)! f (p+1,s+1)(ξ, η),

ξ and η being the same in the terms in which they occur.
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By using the integration by parts, the first author has obtained in [8] the
following integral representation for the remainder of the Taylor-type for-
mula (4.10)

(Rf)(x, y) =
∫ x

c0

(x−t)p
p! f (p+1,0)(t, y)dt+

∫ y

d0

(y−z)s
s! f (0,s+1)(x, z)dz

−
∫ x

c0

∫ y

d0

(x−t)p(y−z)s
p!s! f (p+1,s+1)(t, z)dtdz.

It should be further noted that employing the Biermann interpolation poly-
nomial given at (4.8) we can obtain as a limit case the Taylor bivariate poly-
nomial of total degree m:

(4.11) (Tpf)(x, y) =
p∑
i=0

p−i∑
j=0

(x−c)i(y−d)j
i!j! f (i,j)(c, d).

If we assume that f belongs to the class Cp+1 of functions having contin-
uous all the partial derivatives of orders (p + 1 − i, i), (i = 0, 1, . . . , p + 1) in
a neighborhood Ec,d of the point (c, d), then the remainder Rpf of the ap-
proximation formula of f by the bivariate Taylor polynomial (4.11) can be
represented under the following form

(Rpf)(x, y) =

= 1
p!

∫ 1

0
(1− u)n

[
(x− c) ∂

∂x + (y − d) ∂∂y
](p+1)

f
(
c+ (x− c)u, d+ (y − d)u

)
du,

whenever the point (x, y) belongs to Ec,d. This formula was deduced in the
paper [8] of the first author.
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[1] Biermann, O., Über näherungsweise Kubaturen, Monatsh. Math. Phys., 14,
pp. 211–225, 1903.

[2] Hermite, C., Sur la formule d’interpolation de Lagrange, J. Reine Angew. Math., 84,
pp. 70–79, 1878.
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