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Rev. Anal. Numér. Théor. Approx., vol. 33 (2004) no. 1, pp. 39–50
ictp.acad.ro/jnaat

EXTENSION OF BOUNDED LINEAR FUNCTIONALS AND BEST
APPROXIMATION IN SPACES WITH ASYMMETRIC NORM
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Abstract. The present paper is concerned with the characterization of the ele-
ments of best approximation in a subspace Y of a space with asymmetric norm,
in terms of some linear functionals vanishing on Y . The approach is based on
some extension results, proved in Section 3, for bounded linear functionals on
such spaces. Also, the well known formula for the distance to a hyperplane in a
normed space is extended to the nonsymmetric case.
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1. INTRODUCTION

Let X be a real vector space. An asymmetric seminorm on X is a positive
sublinear functional p : X → [0,∞), i.e. p satisfies the conditions:

(AN1) p(x) ≥ 0,
(AN2) p(tx) = tp(x), t ≥ 0,
(AN3) p(x+ y) ≤ p(x) + p(y),

for all x, y ∈ X. The function p̄ : X → [0,∞) defined by p̄(x) = p(−x), x ∈ X,
is another positive sublinear functional on X, called the conjugate of p, and

ps(x) = max{p(x), p(−x)}, x ∈ X,

is a seminorm on X. The inequalities

|p(x)− p(y)| ≤ ps(x− y) and |p̄(x)− p̄(y)| ≤ ps(x− y)

hold for all x, y ∈ X. If the seminorm ps is a norm on X then we say that p is
an asymmetric norm on X. This means that, beside (AN1)–(AN3), it satisfies
also the condition

(AN4) p(x) = 0 and p(−x) = 0 imply x = 0.
The pair (X, p), where X is a linear space and p is an asymmetric seminorm

on X is called a space with asymmetric seminorm, respectively a space with
asymmetric norm, if p is an asymmetric norm.
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An asymmetric seminorm p generates a topology τp on X, having as a basis
of neighborhoods of a point x ∈ X the open p-balls

B′p(x, r) = {x′ ∈ X : p(x′ − x) < r}, r > 0.

The family of closed p-balls

Bp(x, r) = {x′ ∈ X : p(x′ − x) ≤ r}, r > 0,

generates the same topology.
Denote by Bp = Bp(0, 1) the closed unit ball of (X, p) and by B′p = B′p(0, 1)

its open unit ball.
The topology τp is translation invariant, i.e. the addition + : X ×X → X

is continuous, but the multiplication by scalars · : R × X → X need not be
continuous. For instance, in the space

C0[0, 1] =
{
x ∈ C[0, 1] :

∫ 1

0
x(t)dt = 0

}
with the asymmetric seminorm p(x) = max x([0, 1]), the multiplication by
scalars is not continuous at t0 = −1 and x0 = 0. Indeed, the ball Bp(0, 1) is
a neighborhood of 0 = (−1)0, but −B(0, r) * B(0, 1) for any r > 0, because
the functions xn defined by

xn(t) =
{

(n− 1)(nt− 1), for 0 ≤ t ≤ 1
n ,

n
n−1(t− 1

n), for 1
n ≤ t ≤ 1,

is in Bp(0, 1) for all n, while p(−xn) = n− 1 > r for large n (see [2]).
The topology τp could not be Hausdorff even if p is an asymmetric norm

on X. Necessary and sufficient conditions in order that τp be Hausdorff were
given in [8].

In this paper we shall study some best approximation problems in spaces
with asymmetric seminorm. The significance of asymmetric norms for best
approximation problems was first emphasized by Krein and Nudel′man (see
[10, Ch. 9, § 5]). In the spaces C(T ) and Lr, 1 ≤ r < ∞, one consid-
ers asymmetric norms defined through a pair w = (w+, w−) of nonnega-
tive upper semicontinuous functions, called weight functions, via the formula
‖f |w = max{w+(t)f+(t)− w−(t)f−(t) : t ∈ T}, where f+, f− are the positive,
respectively negative part of f . In the case of the spaces Lr the above for-
mula is adapted to the corresponding integral norm. The approximation in
such spaces is called sign-sensitive approximation and it is studied in a lot of
papers, following the ideas from the symmetric case (see [1, 4, 5, 9, 18, 19, 20]
and the references given in these papers). There are also papers concerning
existence results, mainly generic, for best approximation in abstract spaces
with asymmetric norms, see [3, 11, 12, 17].

In [14, 16], there were studied the relations between the existence of best
approximation and uniqueness of the extension of bounded linear functionals
on spaces with asymmetric norm. In [13, 15] similar problems were considered



3 Spaces with asymmetric norm 41

within the framework of spaces of semi-Lipschitz functions on an asymmetric
metric space (called quasi-metric space).

The present paper is concerned with the characterization of the elements of
best approximation in a subspace Y of a space with asymmetric norm in terms
of some linear functionals vanishing on Y . The approach is based on some ex-
tension results, proved in Section 3, for bounded linear functionals on such
spaces. Also, the well known formula for the distance to a hyperplane in a
normed space is extended to the nonsymmetric case. For the case of normed
spaces see [21].

2. BOUNDED LINEAR MAPPINGS AND THE DUAL OF A SPACE WITH

ASYMMETRIC SEMINORM

Let (X, p) and (Y, q) be spaces with asymmetric seminorms and A : X → Y
a linear mapping. The mapping A is called bounded (or semi-Lipschitz) if
there exists L ≥ 0 such that

(2.1) q(Ax) ≤ Lp(x), for all x ∈ X.

It was shown in [6] (see also [7]) that the boundedness of the linear mapping
A is equivalent to its continuity with respect to the topologies τp and τq.
Denoting by Lb(X,Y ) the set of all bounded linear mapping from (X, p) to
(Y, q), it turns out that Lb(X,Y ) is not necessarily a linear space but rather
a convex cone in the vector space La(X,Y ) of all linear mappings from X to
Y , i.e.

λ ≥ 0 and A,B ∈ Lb(X,Y ) ⇒ A+B ∈ Lb(X,Y ) and λA ∈ Lb(X,Y ).

For instance, in the space X = C0[0, 1] considered in the previous section,
the linear functional ϕ(x) = x(1), x ∈ C0[0, 1], is bounded because ϕ(x) ≤
p(x), x ∈ X, but the functional −ϕ is not bounded. Taking xn(t) = 1−ntn−1

we have p(xn) = 1 for all n, but −ϕ(xn) = n− 1→∞ for n→∞ (see [2]).
As in the case of bounded linear mapping between normed linear spaces,

one can define an asymmetric seminorm on Lb(X,Y ) by the formula

(2.2) ‖A| = sup{q(Ax) : x ∈ X, p(x) ≤ 1}.

It is not difficult to see that ‖ · | is an asymmetric seminorm on the cone
Lb(X,Y ) which has properties similar to those of the usual norm:

Proposition 2.1. Let (X, p) and (Y, q) be spaces with asymmetric semi-
norms and A ∈ Lb(X,Y ). Then

1) ∀x ∈ X q(Ax) ≤ ‖A| · p(x),
and ‖A| is the smallest number L ≥ 0 for which the inequality (2.1)
holds.

2) ‖A| = sup
{ q(Ax)

p(x) : x ∈ X, p(x) > 0
}
.
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Proof. 1) If p(x) = 0 then, by the boundedness of A, q(Ax) = 0 = ‖A|p(x).
If p(x) > 0 then p((1/p(x))x) = 1 and

q(A( 1
p(x)x)) ≤ ‖A| ⇐⇒ q(Ax) ≤ ‖A| · p(x).

If q(Ax) ≤ Lp(x), ∀x ∈ X, for some L ≥ 0, then q(Ax) ≤ L for all x ∈ X
with p(x) ≤ 1, implying ‖A| ≤ L.

2) Follows from the facts that q(Ax) = 0 if p(x) = 0 and
1

p(x)q(Ax) = q(A( 1
p(x)))

if p(x) > 0. �

Bounded linear functionals on a space with asymmetric norm

As in the case of normed spaces, the cone of bounded linear functional on
a space with asymmetric seminorm will play a key role in various problems
concerning these spaces.

On the space R of real numbers, consider the asymmetric seminorm u(α) =
max{α, 0} and denote by Ru the space R equipped with the topology τu

generated by u. It is the topology generated by the intervals of the form
(−∞, a), a ∈ R. A neighborhood basis of a point a ∈ Ru is formed by the
intervals (−∞, a+ ε), ε > 0. The seminorm conjugate to u is ū(α) = u(−α) =
max{−α, 0}, and us(α) = max{u(α), u(−α)} = |α|. The continuity of a linear
functional ϕ : (X, p)→ (R, u) with respect to the topologies τp and τu will be
called (p, u)-continuity. It is easily seen that the (p, u)-continuity of a linear
functional ϕ : (X, τp) → (R, u) is equivalent to its upper semi-continuity as a
functional from (X, τp) to (R, | |). This is equivalent to the fact that for every
α ∈ R the set {x ∈ X : ϕ(x) ≥ α} is closed in (X, τp) and has consequence
the fact that, for every τp-compact subset Y of X, the functional ϕ is upper
bounded on Y and there exists y0 ∈ Y such that ϕ(y0) = supϕ(Y ). Also, the
linear functional ϕ is (p, u)-continuous if and only if it is p-bounded, i.e. there
exists L ≥ 0 such that
(2.3) ∀x ∈ X ϕ(x) ≤ Lp(x).

Denote by X[
p (X[ when it is no danger of confusion) the cone of all bounded

linear functionals on the space with asymmetric seminorm (X, p) and call it
the asymmetric dual of (X, p). It follows that the functional

‖ϕ| = ‖ϕ|p = sup{ϕ(x) : x ∈ X, p(x) ≤ 1}

is an asymmetric seminorm on X[.
We shall need the following simple properties of this seminorm.

Proposition 2.2. If ϕ is a bounded linear functional on a space with asym-
metric seminorm (X, p), with p 6= 0, then:

1) ‖ϕ| is the smallest of the numbers L ≥ 0 for which the inequality (2.3)
holds;
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2) We have:
‖ϕ| = sup{ϕ(x)/p(x) : x ∈ X, p(x) > 0}

= sup{ϕ(x) : x ∈ X, p(x) < 1}
= sup{ϕ(x) : x ∈ X, p(x) = 1};

3) If ϕ 6= 0 then ‖ϕ| > 0.
Also, if ϕ 6= 0 and ϕ(x0) = ‖ϕ| for some x0 ∈ Bp, then p(x0) = 1.

Proof. We shall prove the assertions 2) and 3), the first one being a partic-
ular case of the corresponding result for linear mappings.

Supposing c := sup{ϕ(x) : p(x) < 1} < ‖ϕ|, let x0 ∈ X, p(x0) = 1, be
such that c < ϕ(x0) ≤ ‖ϕ|. Then there is a number α, 0 < α < 1, such that
ϕ(αx0) = αϕ(x0) > c, in contradiction to the definition of c.

Let’s show now that ‖ϕ| = sup{ϕ(x) : p(x) = 1}. Suppose again that
β := sup{ϕ(x) : p(x) = 1} < ‖ϕ|, and choose x0 ∈ X such that p(x0) < 1 and
ϕ(x0) > β. Putting x1 = (1/p(x0))x0, it follows p(x1) = 1 and

ϕ(x1) = 1
p(x0)ϕ(x0) > ϕ(x0) > β,

a contradiction.
3) Because ϕ(x) ≤ ‖ϕ|p(x), the equality ‖ϕ| = 0 implies ϕ(x) ≤ 0 and

−ϕ(x) = ϕ(−x) ≤ 0, i.e. ϕ(x) = 0 for all x ∈ X.
Suppose now that that for ϕ 6= 0 there exists x0 ∈ X, with 0 < p(x0) < 1,

such that ϕ(x0) = ‖ϕ|. Then α := 1/p(x0) > 1, x1 = αx0 ∈ Bp and
‖ϕ| ≥ ϕ(x1) = αϕ(x0) = α‖ϕ|,

a contradiction, because ‖ϕ| > 0. �

An immediate consequence of the preceding result is the following one. We
agree to call a linear functional (p, p̄)-bounded if it is both p- and p̄-bounded.

Proposition 2.3. Let ϕ 6= 0 be a linear functional on a space with asym-
metric seminorm (X, p).

1) If ϕ is (p, p̄)-bounded then
ϕ(rB′p) = (−r‖ϕ|p̄, r‖ϕ|p) and ϕ(rB′p̄) = (−r‖ϕ|p, r‖ϕ|p̄)

where B′p = {x ∈ X : p(x) < 1}, B′p̄ = {x ∈ X : p̄(x) < 1} and r > 0.
2) If ϕ is p-bounded but not p̄-bounded then

ϕ(rB′p) = (−∞, r‖ϕ|p).

Proof. Obviously that it is sufficient to give the proof only for r = 1.
Suppose that ϕ is (p, p̄)-bounded. Then, by Proposition 2.2,

supϕ(B′p) = ‖ϕ|p
and
inf ϕ(B′p) = − sup{ϕ(−x) : p(x) < 1} = − sup{ϕ(x′) : p(−x′) < 1} = −‖ϕ|p̄.
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Also, by the assertion 3) of Proposition 2.2, ϕ(x) < ‖ϕ|p and ϕ(x) > −‖ϕ|p̄
for any x ∈ B′p.

Because B′p is convex, ϕ(B′p) will be a convex subset of R, that is an interval,
and the above considerations show that

ϕ(B′p) = (inf ϕ(B′p), supϕ(B′p)) = (−‖ϕ|p̄, ‖ϕ|p).

If ϕ is p-bounded and

sup{ϕ(x); p̄(x) < 1} =∞.

then
inf{ϕ(x′) : p(x′) < 1} = − sup{ϕ(x) : p(−x) < 1} = −∞.

Reasoning like above, one obtains

ϕ(B′p) = (−∞, ‖ϕ|p). �

3. EXTENSION RESULTS FOR BOUNDED LINEAR FUNCTIONALS

In this section we shall prove the analogs of some well known extension re-
sults for linear functional in normed spaces. The main tool is the Hahn-Banach
extension theorem for linear functionals dominated by sublinear functionals.

Throughout this section (X, p) will be a space with asymmetric seminorm.

Proposition 3.1. Let Y be a subspace of X and ϕ0 : Y → R a bounded
linear functional. Then there exists a bounded linear functional ϕ : X → R
such that

ϕ|Y = ϕ0 and ‖ϕ| = ‖ϕ0|.

Proof. The functional q(x) = ‖ϕ0|p(x), x ∈ X, is sublinear and ϕ0(y) ≤
q(y), y ∈ Y. By the Hahn-Banach extension theorem there exists a linear
functional ϕ : X → R such that

ϕ|Y = ϕ0 and ∀x ∈ X ϕ(x) ≤ ‖ϕ0|p(x).

The second of the above relations implies that ϕ is bounded and ‖ϕ| ≤ ‖ϕ0|.
Since

‖ϕ| = sup{ϕ(x) : x ∈ X, p(x) ≤ 1} ≥ sup{ϕ(y) : y ∈ Y, p(y) ≤ 1} = ‖ϕ0|,

it follows ‖ϕ| = ‖ϕ0|. �

We agree to call a functional ϕ satisfying the conclusions of Proposition 3.1
a norm preserving extension of ϕ0.

Proposition 3.2. If x0 is a point in X such that p(x0) > 0 then there
exists a bounded linear functional ϕ : X → R such that

‖ϕ| = 1 and ϕ(x0) = p(x0).
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Proof. Let Y := Rx0 and let ϕ0 : Y → R be defined by ϕ0(tx0) = tp(x0),
t ∈ R. It follows that ϕ0 is linear and

ϕ0(tx0) = tp(x0) = p(tx0)

for t > 0 and
ϕ0(tx0) = tp(x0) ≤ 0 ≤ p(tx0)

for t ≤ 0. Again, the Hahn-Banach extension theorem yields a linear functional
ϕ : X → R, such that

ϕ|Y = ϕ0 and ∀x ∈ X ϕ(x) ≤ p(x).

It follows ‖ϕ| ≤ 1, ϕ(x0) = p(x0), and, since p((1/p(x0))x0) = 1,

‖ϕ| ≥ ϕ( 1
p(x0)x0) = 1,

i.e. ‖ϕ| = 1. �

This last proposition has as consequence the following useful result.

Corollary 3.3. If p(x0) > 0, then

p(x0) = sup{ϕ(x0) : ϕ ∈ X[, ‖ϕ| ≤ 1}.

Proof. Denote by s the supremum in the right hand side of the above
formula. Since ϕ(x0) ≤ ‖ϕ| p(x0) ≤ p(x0) for every ϕ ∈ X[, ‖ϕ| ≤ 1,
it follows s ≤ p(x0). Choosing ϕ ∈ X[

p as in Proposition 3.2, it follows
p(x0) = ϕ(x0) ≤ s. �

The next extension result involves the distance from a point to a set in an
asymmetric seminormed space. Let Y be a nonempty subset of an asymmetric
seminormed space (X, p). Due to the asymmetry of the seminorm p we have
to consider two distances from a point x ∈ X to Y , namely

(3.1) dp(x, Y ) = inf{p(y − x) : y ∈ Y }

and

(3.2) dp(Y, x) = inf{p(x− y) : y ∈ Y }.

Observe that dp(Y, x) = dp̄(x, Y ), where p̄ is the seminorm conjugate to p.

Proposition 3.4. Let Y be a subspace of a space with asymmetric semi-
norm (X, p) and x0 ∈ X. Denote by d̄ the distance dp̄(x0, Y ) and suppose
d̄ > 0.

Then there exists a p-bounded linear functional ϕ : X → R such that

(i) ϕ|Y = 0, (ii) ‖ϕ| = 1, and (iii) ϕ(x0) = d̄.

If d = dp(x0, Y ) > 0 then there exists ψ ∈ X[
p such that

(j) ψ|Y = 0, (jj) ‖ψ| = 1, (jjj) ψ(−x0) = d.
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Proof. Suppose that d̄ = dp̄(x0, Y ) > 0, so that x0 /∈ Y . Let Z := Y u Rx0
(u stands for the direct sum) and let ψ0 : Z → R be defined by

ψ0(y + tx0) = t, y ∈ Y, t ∈ R.
Then ψ0 is linear, ψ0(y) = 0, ∀y ∈ Y, and ψ0(x0) = 1. For t > 0 we have

p(y + tx0) = tp(x0 + t−1y) ≥ td̄ = d̄ · ψ0(y + tx0),
so that

ψ0(y + tx0) = t ≤ 1
d̄
p(y + tx0).

Since this inequality obviously holds for t ≤ 0 , it follows ‖ψ0| ≤ 1/d̄. Let
(yn) be a sequence in Y such that p(x0−yn)→ d̄ for n→∞ and p(x0−yn) > 0
for all n ∈ N. Then

‖ψ0| ≥ ψ0
( x0−yn

p(x0−yn)
)

= 1
p(x0−yn) →

1
d̄
,

implying ‖ψ0| ≥ 1/d̄. Therefore ‖ψ0| = 1/d̄.
If ψ̄ : X → R is a linear functional such that

ψ̄|Z = ψ0 and ‖ψ̄| = ‖ψ0|
then the linear functional ϕ = d̄ · ψ̄ fulfills all the requirements of the propo-
sition.

Suppose now d = dp(x0, Y ) > 0, and let Z := Y u Rx0. Define ψ0 : Z → R
by

ψ0(y + tx0) = −t ⇐⇒ ψ0(y − tx0) = t for y ∈ Y and t ∈ R.
Then ψ0 is linear and, for t > 0, we have

p(y − tx0) = tp(1
t y − x0) ≥ td = d · ψ0(y − tx0),

so that
ψ0(y − tx0) ≤ 1

dp(y − tx0),
for t > 0. Since this inequality is obviously true if ψ0(y − tx0) = t ≤ 0, it
follows that ψ0 is bounded and ‖ψ0| ≤ 1/d. Choosing a sequence (y′n) in Y
such that p(y′n−x0)→ d and p(y′n−x0) > 0 for all n, and reasoning like above
one obtains the inequality ‖ψ0| ≥ 1/d, so that ‖ψ0| = 1/d. Extending ψ0 to a
functional ψ1 ∈ X[

p of the same norm, and letting ψ = d · ψ1, one obtains the
wanted functional ψ. �

4. APPLICATIONS TO BEST APPROXIMATION

Let (X, p) be a space with asymmetric seminorm and Y a nonempty subset
of X. By the asymmetry of the seminorm p we have to distinct two “distances”
from a point x ∈ X to the subset Y , as given by (3.1) and (3.2).

Since dp(Y, x) = dp̄(x, Y ), we shall use the notation dp̄(x, Y ) for the distance
(3.2).

An element y0 ∈ Y such that p(x − y0) = p̄(y0 − x) = dp̄(x, Y ) is called a
p̄-nearest point to x in Y , and an element y1 ∈ Y such that p(y1−x) = dp(x, Y )
will be called a p-nearest point to x in Y .
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By Proposition 3.4, we obtain the following characterization of p̄-nearest
points.

Proposition 4.1. Let (X, p) be a space with asymmetric seminorm, Y a
subspace of X and x0 a point in X such that d̄ = dp̄(x0, Y ) > 0.

An element y0 ∈ Y is a p̄-nearest point to x0 in Y if and only if there exists
a bounded linear functional ϕ : X → R such that

(i) ϕ|Y = 0, (ii) ‖ϕ| = 1, (iii) ϕ(x0) = p(x0 − y0).

Proof. Suppose that y0 ∈ Y is such that p(x0 − y0) = d = dp̄(x0, Y ) > 0.
By Proposition 3.4, there exists ϕ ∈ X[

p, ‖ϕ| = 1, such that ϕ|Y = 0 and
ϕ(x0) = d = p(x0 − y0).

Conversely, if for y0 ∈ Y there exists ϕ ∈ X[
p satisfying the conditions

(i)–(iii), then for every y ∈ Y ,
p(x0 − y) ≥ ϕ(x0 − y) = ϕ(x0 − y0) = p(x0 − y0),

implying p(x0 − y0) = dp̄(x0, Y ). �

Another consequence of Proposition 3.4 is the following duality formula for
best approximation:

Proposition 4.2. Let Y be a subspace of a space with asymmetric semi-
norm (X, p). If dp(Y, x0) > 0 then the following duality formula holds:

dp(Y, x0) = sup{ψ(x0) : ψ ∈ Y ⊥, ‖ψ| ≤ 1},
where Y ⊥ = {ϕ ∈ X[

p : ϕ|Y = 0}.

Proof. For any ψ ∈ Y ⊥, ‖ψ| ≤ 1 and any y ∈ Y , we have:
ψ(x0) = ψ(x0 − y) ≤ p(x0 − y),

implying sup{ψ(x0) : ψ ∈ Y ⊥, ‖ψ| ≤ 1} ≤ dp(Y, x0). If we choose ψ to be the
functional ϕ given by Proposition 3.4, then we obtain the reverse inequality:
dp(Y, x0) = ϕ(x0) ≤ sup{ψ(x0) : ψ ∈ Y ⊥, ‖ψ| ≤ 1}. �

The distance to a hyperplane

The well known formula for the distance to a closed hyperplane in a normed
space has an analog in spaces with asymmetric seminorm. Remark that in this
case we have to work with both of the distances dp and dp̄ given by (3.1) and
(3.2).

Proposition 4.3. Let (X, p) be a space with asymmetric seminorm, ϕ ∈
X[

p, ϕ 6= 0, c ∈ R,
H = {x ∈ X : ϕ(x) = c}

the hyperplane corresponding to ϕ and c, and
H< = {x ∈ X : ϕ(x) < c} and H> = {x ∈ X : ϕ(x) > c},
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the open half-spaces determined by H.
1) We have

(4.1) dp̄(x0, H) = ϕ(x0)−c
‖ϕ|

for every x0 ∈ H>, and

(4.2) dp(x0, H) = c−ϕ(x0)
‖ϕ|

for every x0 ∈ H<.
2) If there exists an element z0 ∈ X with p(z0) = 1 such that ϕ(z0) =
‖ϕ|, then every element in H> has a p̄-nearest point in H and every
element in H< has a p-nearest point in H.

If there is an element x0 ∈ H> having a p̄-nearest point in H, or there is an
element x′0 ∈ H< having a p-nearest point in H, then there exists an element
z0 ∈ X, p(z0) = 1, such that ϕ(z0) = ‖ϕ|. It follows that, in this case, every
element in H> has a p̄-nearest point in H, and every element in H< has a
p-nearest point in H.

Proof. Let x0 ∈ H>. Then, for every h ∈ H, ϕ(h) = c, so that
ϕ(x0)− c = ϕ(x0 − h) ≤ ‖ϕ|p(x0 − h),

implying
dp̄(x0, H) ≥ ϕ(x0)−c

‖ϕ| .

By the assertion 2) of Proposition 2.2, there exists a sequence (zn) in X with
p(zn) = 1, such that ϕ(zn)→ ‖ϕ| and ϕ(zn) > 0 for all n ∈ N. Then

hn := x0 − ϕ(x0)−c
ϕ(zn) zn

belongs to H and

dp̄(x0, H) ≤ p(x0 − hn) = ϕ(x0)−c
ϕ(zn) →

ϕ(x0)−c
‖ϕ| .

It follows dp̄(x0, H) ≥ (ϕ(x0)− c)/‖ϕ|, so that formula (4.1) holds.
To prove (4.2), observe that for h ∈ H,

c− ϕ(x′0) = ϕ(h− x′0) ≤ ‖ϕ|p(h− x′0),
implying

dp(x′0, H) ≥ c−ϕ(x′0)
‖ϕ| .

If the sequence (zn) is as above then

h′n := c−ϕ(x′0)
ϕ(zn) zn + x′0

belongs to H and

dp(x′0, H) ≤ p(h′n − x′0) = c−ϕ(x′0)
ϕ(zn) →

c−ϕ(x′0)
‖ϕ| ,

so that dp(x′0, H) ≥ (c− ϕ(x′0))/‖ϕ|, and formula (4.2) holds too.
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2) Let z0 ∈ X be such that p(z0) = 1 and ϕ(z0) = ‖ϕ|. Then, for x0 ∈ H>

and x′0 ∈ H<, the elements

h0 := x0 − ϕ(x0)−c
ϕ(z0) z0 and h′0 := c−ϕ(x′0)

ϕ(z0) z0 + x′0

belong to H,

p(x0 − h0) = ϕ(x0)−c
‖ϕ| = dp̄(x0, H) and p(h′n − x′0) = c−ϕ(x′0)

‖ϕ| = dp(x′0, H).

If an element x0 ∈ H> has a p̄-nearest point h0 ∈ H, then

p(x0 − h0) = dp̄(x0, H) = ϕ(x0)−c
‖ϕ| = ϕ(x0−h0)

‖ϕ| .

It follows that z0 = (x0−h0)/p(x0−h0) satisfies the conditions p(z0) = 1 and
ϕ(z0) = ‖ϕ|.

If an element x′0 ∈ H< has a p-nearest point h′0 in H, then z′0 = (h′0 −
x′0)/p(h′0 − x′0) satisfies p(z′0) = 1 and ϕ(z′0) = ‖ϕ|. �
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