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ON COMPOUND OPERATORS DEPENDING ON s PARAMETERS∗

MARIA CRĂCIUN†

Abstract. In this note we introduce a compound operator depending on s pa-
rameters using binomial sequences. We compute the values of this operator on
the test functions, we give a convergence theorem and a representation of the
remainder in the corresponding approximation formula. We also mention some
special cases of this operator.
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1. INTRODUCTION

In this note we introduce a compound operator using polynomial sequences
of binomial type. We begin by defining these sequences and their link with
delta operators.

Definition 1. A sequence of polynomials (pm (x))m≥0 is called a sequence
of binomial type if deg pm = m, ∀m ∈ N and it satisfies the relations

pm (x+ y) =
m∑
k=0

(m
k

)
pk (x) pm−k (y)

for every real numbers x and y and every positive integer m.

In the following we will consider linear operators defined on the algebra of
polynomials.

A linear operator T is a shift invariant operator if EaT = TEa, for every a,
where Ea is the shift operator defined by Eap (x) = p (x+ a) .

A linear operator Q is called a delta operator if Q is shift invariant and
Qx = const. 6= 0. Some examples of delta operators are: the derivative D, the
forward and backward difference operators ∇α = Eα − I and ∆α = I − E−α,
the Touchard operator T = ln (I +D) = D − 1

2D
2 + 1

3D
3 − 1

4D
4 + ... and the

Laguerre operator L = D
I+D = D −D2 +D3 −D4 + ....

Definition 2. We say that a sequence of polynomials (pm (x))m≥0 is the
basic sequence for the delta operator Q if:

i) p0 (x) = 1,
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ii) pm (0) = 0, ∀m ≥ 1,
iii) Qpm = mpm−1, ∀m ≥ 1.

It is known that every delta operator has a unique basic sequence (see [19]).

Proposition 3. [19]. If (pm (x))m≥0 is a basic sequence for a delta oper-
ator then it is a sequence of binomial type; if (pm (x))m≥0 is a sequence of
binomial type then there exists a delta operator for which (pm (x))m≥0 is the
basic sequence.

Definition 4. If T is a linear operator, then its Pincherle derivative T ′ is
defined by T ′ = TX−XT, where the linear operator X is defined by (Xp) (x) =
xp (x) for all x and all polynomials p.

We mention that Umbral calculus allows a unified and simple study of
sequences of binomial type. More details about these sequences can be found
in [8], [9], [10], [16], [18], [19].

The use of binomial sequences in order to construct approximation oper-
ators was proposed by T. Popoviciu in [17], where he introduced a class of
approximation operators of the form

(1)
(
TQmf

)
(x) = 1

pm(1)

m∑
k=0

(m
k

)
pk (x) pm−k (1− x) f

(
k
m

)
.

These operators and their generalizations were studied in [2], [5]–[7], [11]–[15],
[20], [29], [31]–[36].

2. COMPOUND OPERATORS DEPENDING ON S PARAMETERS

Let Q be a delta operator with the basic sequence (pk (x))k≥0 , which satisfy
pm (1) 6= 0 and p′m (0) ≥ 0 for every positive integer m. For every function
f ∈ C [0, 1] we introduce the compound operator
(2)(

LQm,r1,...,rsf
)

(x) =
m−r1...−rs∑

k=0
pQm−r1...−rs,k (x)

s∑
j=0

pj(x)ps−j(1−x)
ps(1) F r1,...,rs

m,k,j (f) ,

where pQn,k (x) =
(n
k

)pk(x)pn−k(1−x)
pn(1) ,

F r1,...,rs
m,k,j (f) = f

(k+r1+r2+...+rj
m

)
+ f

(k+r2+r3+...+rj+1
m

)
+f
(k+r1+r3+...+rj+1

m

)
+ ...+ f

(k+rs−j+1+...+rs−1+rs
m

)
and r1, ..., rs are s non-negative integer parameters, independent of the number
m and such that 0 ≤ r1 ≤ ... ≤ rs and r1 + ...+ rs < m.

If p′m (0) ≥ 0 for every positive integer m then pm (x) ≥ 0, ∀x ∈ [0, 1] so
this condition assures the positivity of the operator

(
LQm,r1,...,rsf

)
(x) .
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From Definition 2 ii), it results that

pQn,k (0) =
{

1, if k = 0
0, if k 6= 0

and pQn,k (1) =
{

1, if k = n

0, if k 6= n

so the expression
(
LQm,r1,...,rsf

)
(0) contains only a nonzero term, for k = j = 0,

while the only nonzero term in
(
LQm,r1,...,rsf

)
(1) appears for k = m−r1−...−rs

and j = s. Consequently, it is easy to see that this approximation operator
interpolates the function f at both ends of the interval [0, 1] , that is(

LQm,r1,...,rsf
)

(0) = f(0),
(
LQm,r1,...,rsf

)
(1) = f (1) .

We remark that for s = 0 the operator LQm,r1,...,rs reduces to the binomial
operator of T. Popoviciu TQm .

In the following we will compute the values of this operator for the test func-
tions en (x) = xn, for n = 0, 1, 2. For this we need Manole’s results contained
in the next

Proposition 5. [13], [14]. The values of the binomial operators of T. Po-
poviciu type on the test functions are:

TQmei = ei, for i = 0, 1 and(3) (
TQme2

)
(x) = x2 + x (1− x) dQm,

where

(4) dQm = 1− m−1
m

(Q′)−2pm−2(1)
pm(1)

and Q′ is the Pincherle derivative of delta operator Q.

Lemma 6. If LQm,r1,...,rs is the approximation operator defined by (2) then
we have the following relations

LQm,r1,...,rsei = ei, for i = 0, 1 and(
LQm,r1,...,rse2

)
(x) = x2 + x (1− x)AQm,r1,...,rs ,

where

AQm,r1,...,rs = 1
m2 ·(5)

·
[

(m− r1 − ...− rs)2 dQm−r1...−rs + r2
1 + ...+ r2

s + 2
s−1 (sds − 1)

s∑
u,v=1
u6=v

rurv

]
.

Proof. First we make the convention that
(s
j

)
= 0, if s < 0 or j < 0.
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Because (pm (x)) is a basic sequence for the delta operator Q according to
Proposition 3 it is a polynomial sequence of binomial type and using Defini-
tion 2 we have

∑m
k=0 p

Q
m,k (x) = 1 so we can write

(
LQm,r1,...,rse0

)
(x) =

m−r1...−rs∑
k=0

pQm−r1...−rs,k (x)
s∑
j=0

pQs,j (x) = 1 = e0 (x) .

In the case of the next test function e1 we have(
LQm,r1,...,rse1

)
(x) =

= 1
m

m−r1...−rs∑
k=0

pQm−r1...−rs,k (x)
s∑
j=0

pj(x)ps−j(1−x)
ps(1)

[(s
j

)
k + (r1 + ...+ rs)

(s−1
j−1
)]

= 1
m

[
(m− r1 − ...− rs)

(
TQm−r1...−rse1

)
(x)
(
TQs e0

)
(x) +

+ (r1 + ...+ rs)
(
TQm−r1...−rse0

)
(x)

(
TQs e1

)
(x)

]
= (m−r1−...−rs)x+(r1+...+rs)x

m

= x.

Finally, for e2 we can write(
LQm,r1,...,rse2

)
(x) =

= 1
m2

m−r1...−rs∑
k=0

pQm−r1...−rs,k (x)
s∑
j=0

pj(x)ps−j(1−x)
ps(1) ·

·
[(s
j

)
k2 +

(
r2

1 + ...+ r2
s

) (s−1
j−1
)

+ 2k (r1 + ...+ rs)
(s−1
j−1
)

+ 2
(s−2
j−2
) s∑
u,v=1
u6=v

rurv
]
.

Using the relation
(s−2
j−2
)

= j(j−1)
s(s−1)

(s
j

)
= s

s−1
(s
j

) j2

s2− 1
s−1

(s
j

) j
s in the last expression

we obtain(
LQm,r1,..,rse2

)
(x) =

= 1
m2

{
(m− r1 − ...− rs)2 (TQm−r1...−rse2

)
(x)

(
TQs e0

)
(x)

+
(
r2

1 + ...+ r2
s

) (
TQm−r1...−rse0

)
(x)

(
TQs e1

)
(x)

+ 2 (m− r1 − ...− rs) (r1 + ...+ rs)
(
TQm−r1...−rse1

)
(x)

(
TQs e1

)
(x)

+ 2
s−1

n∑
u,v=1
u6=v

rurv
[
s
(
TQs e2

)
(x)−

(
TQs e1

)
(x)
] }
.
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If we use the relations (3) we can rewrite the last expression as(
LQm,r1,..,rse2

)
(x) =

= 1
m2

{
(m− r1 − ...− rs)2 [x2 + x (1− x) dQm−r1...−rs

]
+
(
r2

1 + ...+ r2
s

)
x

+ 2 (m− r1 − ...− rs) (r1 + ...+ rs)x2

+ 2
s−1

s∑
u,v=1
u6=v

rurv
[
s
(
x2 + x (1− x) dQs

)
− x

] }
.

After some simple computations we obtain the expression from the conclusion
of lemma. �

Using the well known theorem of Bohman-Korovkin and the expressions
obtained in the above lemma for LQm,r1,...,rsei, i = 0, 1, 2, we can state the
following convergence theorem

Theorem 7. Let f ∈ C [0, 1] . Let Q be a delta operator having the basic
sequence pm (x) with pm (1) 6= 0 and p′m (0) ≥ 0 for every positive integer m.
If dQm → 0, as m→∞, then the operator LQm,r1,..,rsf converges to the function
f, uniformly on [0, 1] .

3. SPECIAL CASES

1. If r1 = ... = rs = r the compound operator defined by (2) reduces to
the operator which we have studied in [7]

(6)
(
SQm,r,sf

)
(x) =

m−sr∑
k=0

pQm−sr,k (x)
s∑
j=0

pQs,j (x) f
(k+jr

m

)
and

(
SQm,r,se2

)
(x) = x2 + x(1−x)

m2
[
(m− rs)2 dQm−rs + s2r2dQs

]
.

2. For Q = D one obtains the operator introduced and studied by D.D.
Stancu in [27](

LDm,r1,...,rsf
)

(x) =

=
m−r1...−rs∑

k=0

(m−r1−...−rs
k

)
xk (1− x)m−r1−...−rs−k

s∑
j=0

xj (1− x)s−j F r1,...,rs
m,k,j (f) .

Here we have dDm = 1
m , so it results(

LDm,r1,...,rse2
)

(x) = x2 + x(1−x)
m

[
1 + 1

m

s∑
j=1

rj (rj − 1)
]
.

2.1. For s = 1 the above operator reduces to the following operator

(7)
(
LDm,rf

)
(x) =

m−r∑
k=0

(m−r
k

)
xk (1− x)m−r−k

[
(1− x) f

(
k
m

)
+ xf

(
k+r
m

) ]
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which was constructed by D.D. Stancu in [26] using a probabilistic
approach.
The above mentioned author have found the eigenvalues for this
operator

λ0 (m, r) = λ1 (m, r) = 1

λi (m, r) =
(
1− r

m

)(
1− r+1

m

)
...
(
1− r+j−2

m

)(
1 + (j−1)(r−1)

m

)
,

for 2 ≤ j ≤ m− r + i.

We mention also that D. D. Stancu in [25] obtained a quadrature
formula using this operator∫ 1

0
f (x) dx =

= 1
(m−r+1)(m−r+2)

[ r−1∑
k=0

(m− r − k + 1) f
(
k
m

)
+ (m− 2r + 2)

m−r∑
k=r

f
(
k
m

)
+

m∑
k=m−r+1

(k − r + 1) f
(
k
m

) ]
+ ρm,r (f) ,

where, if we suppose that f ∈ C2 [0, 1] , the remainder has the
following simple form

ρm,r (f) = − 1
2m

[
1 + r(r−1)

m

]
f ′′ (ξ) , 0 < ξ < 1.

For f ∈ C(s+1) [0, 1] O. Agratini gave an estimate for the difference∣∣∣∣(LD,αm,r f
)(s)
− f (s) (x)

∣∣∣∣ , s ≤ m− r

in which appears the first modulus of continuity ω1 for the deriva-
tives of order s and s+ 1 of f (see [1]).
The bivariate analogue of the operator defined by (7), having as
domain the square [0, 1]× [0, 1](

LDm,n,r,sf
)

(x) =
m−r∑
k=0

n−s∑
j=0

(m−r
k

)(n−s
j

)
xk (1− x)m−r−k yj (1− y)n−s−j

·
[

(1− x) (1− y) f
(
k
m ,

j
n

)
+ x (1− y) f

(
k+r
m , jn

)
+

+ (1− x) yf
(
k
m ,

j+s
n

)
+ xyf

(
k+r
m , j+sn

)]
was studied by D.D. Stancu in [28]. In the same paper a cubature
formula (using this operator) was constructed.

2.2. The operator obtained for s = 1 and r = 2, LDm,2 has been studied
by H. Brass [4].
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3. If we consider the delta operator Q = Oα
α = I−E−α

α with the basic se-
quence pm (x) = x[m,−α] = x (x+ α) ... (x+ (m− 1)α) then we obtain
the following operator

(
L

Oα
α
m,r1,...,rsf

)
(x) =

m−r1...−rs∑
k=0

(m−r1−...−rs
k

)
x[k,−α] (1− x)[m−r1−...−rs−k,−α](8)

·
s∑
j=0

x[j,−α] (1− x)[s−j,−α] F r1,...,rs
m,k,j (f) .

Taking into account that d
Oα
α
m = 1+αm

(1+α)m , we obtain the following
expression for this operator on e2,(

L
Oα
α
m,r1,...,rse2

)
(x) = x2 + x(1−x)

m2

[
(m− r1 − ...− rs)2 1+α(m−r1−...−rs)

1+α

+ r2
1 + ...+ r2

s + 2α
1+α

s∑
u,v=1
u6=v

rurv

]
.

3.1. If r1 = ... = rs = r in the relation (8) then this operator reduces to
the operator studied by D.D. Stancu and J.W. Drane in [33] and
the expression (5) reduces to A

Oα
α
m,r,s = sr2(1+αs)+(m−sr)(1+α(m−sr))

m2(1+α) .

4. For Q arbitrary and s = 1 the operator defined by (2) reduces to the
operator(

LQm,rf
)

(x) =
m−r∑
k=0

pQm−r,k

[
(1− x) f

(
k
m

)
+ xf

(
k+r
m

)]
and (

LQm,re2
)

(x) = x2 + x(1−x)
m2

[
r2 + (m− r)2 dQm−r

]
.

4. AN INTEGRAL REPRESENTATION FOR THE REMAINDER

We consider the following approximation formula

(9) f (x) =
(
LQm,r1,...,rsf

)
(x) +

(
RQm,r1,...,rsf

)
(x) .

From Lemma 6 it results that the degree of exactness of this formula is 1.
If f ∈ C2 [0, 1] , using the Peano’s theorem, the remainder in the above

formula can be represented under the form(
RQm,r1,...,rsf

)
(x) =

∫ 1

0
GQm,r1,...,rs (t;x) f ′′ (t) dt,

where GQm,r1,...,rs (t;x) =
(
RQm,r1,...,rsϕx

)
(t) and ϕx (t) = (x− t)+ = x−t+|x−t|

2 .
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Because for a fixed value of x, GQm,r1,...,rs (t;x) is negative we can apply the
mean value theorem and we obtain that it exists ξ ∈ [0, 1] such that(

RQm,r1,...,rsf
)

(x) = f ′′ (ξ)
∫ 1

0
GQm,r1,...,rs (t;x) dt.

Because the Peano kernel GQm,r1,...,rs (t;x) is independent of the function f

we can take f (x) = x2 in the previous relation and we obtain∫ 1

0
GQm,r1,...,rs (t;x) dt = 1

2

(
RQm,r1,...,rse2

)
(x)

= −1
2x (1− x)AQm,r1,...,rs ,

where AQm,r1,...,rs is defined by (5).
So, for every function f ∈ C2 [0, 1] , we obtain a Cauchy-type form for the

remainder in the approximation formula (9)(
RQm,r1,...,rsf

)
(x) = x(x−1)

2 AQm,r1,...,rsf
′′ (ξ) ,

where ξ ∈ [0, 1] .
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[12] Lupaş, A., Approximation operators of binomial type, Proc. IDoMAT 98, Interna-
tional Series of Numerical Mathematics, ISNM vol. 132, Birkhäuser Verlag, Basel, pp.
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