REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 33 (2004) no. 1, pp. 51-60 ictp.acad.ro/jnaat

ON COMPOUND OPERATORS DEPENDING ON s PARAMETERS*

MARIA CRĂCIUN[†]

Abstract. In this note we introduce a compound operator depending on s parameters using binomial sequences. We compute the values of this operator on the test functions, we give a convergence theorem and a representation of the remainder in the corresponding approximation formula. We also mention some special cases of this operator.

MSC 2000. 41A36, 41A80, 05A40.

Keywords. Compound linear and positive approximation operators, polynomial sequences of binomial type, integral representation of remainder.

1. INTRODUCTION

In this note we introduce a compound operator using polynomial sequences of binomial type. We begin by defining these sequences and their link with delta operators.

DEFINITION 1. A sequence of polynomials $(p_m(x))_{m\geq 0}$ is called a sequence of binomial type if deg $p_m = m$, $\forall m \in \mathbb{N}$ and it satisfies the relations

$$p_m(x+y) = \sum_{k=0}^{m} {m \choose k} p_k(x) p_{m-k}(y)$$

for every real numbers x and y and every positive integer m.

In the following we will consider linear operators defined on the algebra of polynomials.

A linear operator T is a *shift invariant operator* if $E^{a}T = TE^{a}$, for every a, where E^{a} is the shift operator defined by $E^{a}p(x) = p(x+a)$.

A linear operator Q is called a *delta operator* if Q is shift invariant and $Qx = \text{const.} \neq 0$. Some examples of delta operators are: the derivative D, the forward and backward difference operators $\nabla_{\alpha} = E^{\alpha} - I$ and $\Delta_{\alpha} = I - E^{-\alpha}$, the Touchard operator $T = \ln(I + D) = D - \frac{1}{2}D^2 + \frac{1}{3}D^3 - \frac{1}{4}D^4 + \dots$ and the Laguerre operator $L = \frac{D}{I+D} = D - D^2 + D^3 - D^4 + \dots$

DEFINITION 2. We say that a sequence of polynomials $(p_m(x))_{m\geq 0}$ is the basic sequence for the delta operator Q if:

i) $p_0(x) = 1$,

^{*}This work has been supported by the Romanian Academy under grant GAR 13/2004.

[†]"T. Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, Cluj-Napoca, Romania, e-mail: craciun@ictp.acad.ro.

- ii) $p_m(0) = 0, \forall m \ge 1,$
- iii) $Qp_m = mp_{m-1}, \forall m \ge 1.$

It is known that every delta operator has a unique basic sequence (see [19]).

PROPOSITION 3. [19]. If $(p_m(x))_{m\geq 0}$ is a basic sequence for a delta operator then it is a sequence of binomial type; if $(p_m(x))_{m\geq 0}$ is a sequence of binomial type then there exists a delta operator for which $(p_m(x))_{m\geq 0}$ is the basic sequence.

DEFINITION 4. If T is a linear operator, then its Pincherle derivative T' is defined by T' = TX - XT, where the linear operator X is defined by (Xp)(x) = xp(x) for all x and all polynomials p.

We mention that Umbral calculus allows a unified and simple study of sequences of binomial type. More details about these sequences can be found in [8], [9], [10], [16], [18], [19].

The use of binomial sequences in order to construct approximation operators was proposed by T. Popoviciu in [17], where he introduced a class of approximation operators of the form

(1)
$$\left(T_m^Q f\right)(x) = \frac{1}{p_m(1)} \sum_{k=0}^m {m \choose k} p_k(x) p_{m-k}(1-x) f\left(\frac{k}{m}\right).$$

These operators and their generalizations were studied in [2], [5]–[7], [11]–[15], [20], [29], [31]–[36].

2. COMPOUND OPERATORS DEPENDING ON S parameters

Let Q be a delta operator with the basic sequence $(p_k(x))_{k\geq 0}$, which satisfy $p_m(1) \neq 0$ and $p'_m(0) \geq 0$ for every positive integer m. For every function $f \in C[0, 1]$ we introduce the compound operator (2)

$$\left(L^{Q}_{m,r_{1},\dots,r_{s}}f\right)(x) = \sum_{k=0}^{m-r_{1}\dots-r_{s}} p^{Q}_{m-r_{1}\dots-r_{s},k}\left(x\right) \sum_{j=0}^{s} \frac{p_{j}(x)p_{s-j}(1-x)}{p_{s}(1)} F^{r_{1},\dots,r_{s}}_{m,k,j}\left(f\right),$$

where $p_{n,k}^{Q}(x) = \binom{n}{k} \frac{p_{k}(x)p_{n-k}(1-x)}{p_{n}(1)}$,

$$F_{m,k,j}^{r_1,\dots,r_s}(f) = f(\frac{k+r_1+r_2+\dots+r_j}{m}) + f(\frac{k+r_2+r_3+\dots+r_{j+1}}{m}) + f(\frac{k+r_1+r_3+\dots+r_{j+1}}{m}) + \dots + f(\frac{k+r_{s-j+1}+\dots+r_{s-1}+r_s}{m})$$

and $r_1, ..., r_s$ are s non-negative integer parameters, independent of the number m and such that $0 \le r_1 \le ... \le r_s$ and $r_1 + ... + r_s < m$.

If $p'_m(0) \ge 0$ for every positive integer m then $p_m(x) \ge 0$, $\forall x \in [0, 1]$ so this condition assures the positivity of the operator $(L^Q_{m,r_1,\ldots,r_s}f)(x)$.

From Definition 2 ii), it results that

$$p_{n,k}^{Q}(0) = \begin{cases} 1, \text{ if } k = 0\\ 0, \text{ if } k \neq 0 \end{cases} \text{ and } p_{n,k}^{Q}(1) = \begin{cases} 1, \text{ if } k = n\\ 0, \text{ if } k \neq n \end{cases}$$

so the expression $(L^Q_{m,r_1,\ldots,r_s}f)(0)$ contains only a nonzero term, for k = j = 0, while the only nonzero term in $(L^Q_{m,r_1,\ldots,r_s}f)(1)$ appears for $k = m - r_1 - \ldots - r_s$ and j = s. Consequently, it is easy to see that this approximation operator interpolates the function f at both ends of the interval [0, 1], that is

$$(L^Q_{m,r_1,\dots,r_s}f)(0) = f(0), \quad (L^Q_{m,r_1,\dots,r_s}f)(1) = f(1).$$

We remark that for s = 0 the operator L^Q_{m,r_1,\ldots,r_s} reduces to the binomial operator of T. Popoviciu T^Q_m .

In the following we will compute the values of this operator for the test functions $e_n(x) = x^n$, for n = 0, 1, 2. For this we need Manole's results contained in the next

PROPOSITION 5. [13], [14]. The values of the binomial operators of T. Popoviciu type on the test functions are:

(3)
$$T_m^Q e_i = e_i, \quad for \ i = 0, 1 \ and$$

 $\left(T_m^Q e_2\right)(x) = x^2 + x (1-x) d_m^Q,$

where

(4)
$$d_m^Q = 1 - \frac{m-1}{m} \frac{(Q')^{-2} p_{m-2}(1)}{p_m(1)}$$

and Q' is the Pincherle derivative of delta operator Q.

LEMMA 6. If L^Q_{m,r_1,\ldots,r_s} is the approximation operator defined by (2) then we have the following relations

$$\begin{split} L^Q_{m,r_1,...,r_s} e_i &= e_i, \ for \ i = 0,1 \ and \\ \left(L^Q_{m,r_1,...,r_s} e_2\right)(x) &= x^2 + x \left(1 - x\right) A^Q_{m,r_1,...,r_s}, \end{split}$$

where

(5)
$$A^Q_{m,r_1,...,r_s} = \frac{1}{m^2}$$

$$\cdot \left[\left(m - r_1 - \dots - r_s\right)^2 d_{m - r_1 \dots - r_s}^Q + r_1^2 + \dots + r_s^2 + \frac{2}{s - 1} \left(sd_s - 1\right) \sum_{\substack{u, v = 1 \\ u \neq v}}^s r_u r_v \right].$$

Proof. First we make the convention that $\binom{s}{j} = 0$, if s < 0 or j < 0.

Maria	Crăciun
Maria	Oracium

Because $(p_m(x))$ is a basic sequence for the delta operator Q according to Proposition 3 it is a polynomial sequence of binomial type and using Definition 2 we have $\sum_{k=0}^{m} p_{m,k}^Q(x) = 1$ so we can write

$$\left(L^{Q}_{m,r_{1},\dots,r_{s}}e_{0}\right)(x) = \sum_{k=0}^{m-r_{1}\dots-r_{s}}p^{Q}_{m-r_{1}\dots-r_{s},k}(x)\sum_{j=0}^{s}p^{Q}_{s,j}(x) = 1 = e_{0}(x).$$

In the case of the next test function e_1 we have

$$\begin{split} & \left(L^Q_{m,r_1,\dots,r_s}e_1\right)(x) = \\ &= \frac{1}{m}\sum_{k=0}^{m-r_1\dots-r_s}p^Q_{m-r_1\dots-r_s,k}\left(x\right)\sum_{j=0}^s\frac{p_j(x)p_{s-j}(1-x)}{p_s(1)}\left[\binom{s}{j}k + (r_1+\dots+r_s)\binom{s-1}{j-1}\right] \\ &= \frac{1}{m}\left[\left(m-r_1-\dots-r_s\right)\left(T^Q_{m-r_1\dots-r_s}e_1\right)(x)(T^Q_se_0)\left(x\right) + \\ &\quad + (r_1+\dots+r_s)\left(T^Q_{m-r_1\dots-r_s}e_0\right)\left(x\right)\left(T^Q_se_1\right)(x)\right] \\ &= \frac{(m-r_1-\dots-r_s)x + (r_1+\dots+r_s)x}{m} \\ &= x. \end{split}$$

Finally, for e_2 we can write

$$\begin{split} & \left(L^Q_{m,r_1,\dots,r_s}e_2\right)(x) = \\ &= \frac{1}{m^2}\sum_{k=0}^{m-r_1\dots-r_s} p^Q_{m-r_1\dots-r_s,k}\left(x\right)\sum_{j=0}^s \frac{p_j(x)p_{s-j}(1-x)}{p_s(1)} \cdot \\ & \cdot \left[\binom{s}{j}k^2 + \binom{r_1^2 + \dots + r_s^2}{(j-1)}\binom{s-1}{j-1} + 2k\left(r_1 + \dots + r_s\right)\binom{s-1}{j-1} + 2\binom{s-2}{j-2}\sum_{\substack{u,v=1\\u\neq v}}^s r_u r_v\right]. \end{split}$$

Using the relation $\binom{s-2}{j-2} = \frac{j(j-1)}{s(s-1)} \binom{s}{j} = \frac{s}{s-1} \binom{s}{j} \frac{j^2}{s^2} - \frac{1}{s-1} \binom{s}{j} \frac{j}{s}$ in the last expression we obtain

$$\begin{split} \left(L^Q_{m,r_1,\dots,r_s} e_2 \right) (x) &= \\ &= \frac{1}{m^2} \Big\{ \left(m - r_1 - \dots - r_s \right)^2 \left(T^Q_{m-r_1\dots-r_s} e_2 \right) (x) \left(T^Q_s e_0 \right) (x) \right. \\ &\quad + \left(r_1^2 + \dots + r_s^2 \right) \left(T^Q_{m-r_1\dots-r_s} e_0 \right) (x) \left(T^Q_s e_1 \right) (x) \\ &\quad + 2 \left(m - r_1 - \dots - r_s \right) \left(r_1 + \dots + r_s \right) \left(T^Q_{m-r_1\dots-r_s} e_1 \right) (x) \left(T^Q_s e_1 \right) (x) \\ &\quad + \frac{2}{s-1} \sum_{\substack{u,v=1\\u \neq v}}^n r_u r_v \left[s \left(T^Q_s e_2 \right) (x) - \left(T^Q_s e_1 \right) (x) \right] \Big\}. \end{split}$$

If we use the relations (3) we can rewrite the last expression as

\

$$\begin{split} \left(L^Q_{m,r_1,\dots,r_s} e_2 \right) (x) &= \\ &= \frac{1}{m^2} \Big\{ \left(m - r_1 - \dots - r_s \right)^2 \left[x^2 + x \left(1 - x \right) d^Q_{m - r_1 \dots - r_s} \right] + \left(r_1^2 + \dots + r_s^2 \right) x \\ &\quad + 2 \left(m - r_1 - \dots - r_s \right) \left(r_1 + \dots + r_s \right) x^2 \\ &\quad + \frac{2}{s - 1} \sum_{\substack{u, v = 1 \\ u \neq v}}^s r_u r_v \left[s \left(x^2 + x \left(1 - x \right) d^Q_s \right) - x \right] \Big\}. \end{split}$$

After some simple computations we obtain the expression from the conclusion of lemma.

Using the well known theorem of Bohman-Korovkin and the expressions obtained in the above lemma for $L^Q_{m,r_1,\ldots,r_s}e_i$, i = 0, 1, 2, we can state the following convergence theorem

THEOREM 7. Let $f \in C[0,1]$. Let Q be a delta operator having the basic sequence $p_m(x)$ with $p_m(1) \neq 0$ and $p'_m(0) \geq 0$ for every positive integer m. If $d_m^Q \to 0$, as $m \to \infty$, then the operator $L_{m,r_1,..,r_s}^Q f$ converges to the function f, uniformly on [0, 1].

3. SPECIAL CASES

1. If $r_1 = ... = r_s = r$ the compound operator defined by (2) reduces to the operator which we have studied in [7]

(6)
$$\left(S_{m,r,s}^Q f\right)(x) = \sum_{k=0}^{m-sr} p_{m-sr,k}^Q(x) \sum_{j=0}^s p_{s,j}^Q(x) f\left(\frac{k+jr}{m}\right)$$
and $\left(S_{m,r,s}^Q e_2\right)(x) = x^2 + \frac{x(1-x)}{m^2} \left[(m-rs)^2 d_{m-rs}^Q + s^2 r^2 d_s^Q\right].$

2. For Q = D one obtains the operator introduced and studied by D.D. Stancu in [27]

$$\begin{pmatrix} L_{m,r_1,\dots,r_s}^D f \end{pmatrix} (x) = = \sum_{k=0}^{m-r_1\dots-r_s} {m-r_1-\dots-r_s \choose k} x^k (1-x)^{m-r_1-\dots-r_s-k} \sum_{j=0}^s x^j (1-x)^{s-j} F_{m,k,j}^{r_1,\dots,r_s} (f) .$$

Here we have $d_m^D = \frac{1}{m}$, so it results

$$\left(L_{m,r_1,\dots,r_s}^D e_2\right)(x) = x^2 + \frac{x(1-x)}{m} \left[1 + \frac{1}{m} \sum_{j=1}^s r_j \left(r_j - 1\right)\right].$$

2.1. For s = 1 the above operator reduces to the following operator

(7)
$$\left(L_{m,r}^{D}f\right)(x) = \sum_{k=0}^{m-r} {\binom{m-r}{k} x^{k} (1-x)^{m-r-k} \left[(1-x) f\left(\frac{k}{m}\right) + x f\left(\frac{k+r}{m}\right) \right]}$$

which was constructed by D.D. Stancu in [26] using a probabilistic approach.

The above mentioned author have found the eigenvalues for this operator

$$\lambda_0(m,r) = \lambda_1(m,r) = 1$$

$$\lambda_i(m,r) = (1 - \frac{r}{m})(1 - \frac{r+1}{m})...(1 - \frac{r+j-2}{m})(1 + \frac{(j-1)(r-1)}{m}),$$

for $2 \le j \le m - r + i.$

We mention also that D. D. Stancu in [25] obtained a quadrature formula using this operator

$$\begin{split} \int_0^1 f(x) \, \mathrm{d}x &= \\ &= \frac{1}{(m-r+1)(m-r+2)} \bigg[\sum_{k=0}^{r-1} \left(m-r-k+1\right) f\left(\frac{k}{m}\right) + \left(m-2r+2\right) \sum_{k=r}^{m-r} f\left(\frac{k}{m}\right) \\ &+ \sum_{k=m-r+1}^m \left(k-r+1\right) f\left(\frac{k}{m}\right) \bigg] + \rho_{m,r}\left(f\right), \end{split}$$

where, if we suppose that $f\,\in\,C^{2}\left[0,1\right],$ the remainder has the following simple form

$$\rho_{m,r}(f) = -\frac{1}{2m} \left[1 + \frac{r(r-1)}{m} \right] f''(\xi) \,, \ 0 < \xi < 1.$$

For $f \in C^{(s+1)}[0,1]$ O. Agratini gave an estimate for the difference

$$\left| \left(L_{m,r}^{D,\alpha} f \right)^{(s)} - f^{(s)}(x) \right|, \ s \le m - r$$

in which appears the first modulus of continuity ω_1 for the derivatives of order s and s + 1 of f (see [1]).

The bivariate analogue of the operator defined by (7), having as domain the square $[0, 1] \times [0, 1]$

$$\left(L_{m,n,r,s}^{D} f \right)(x) = \sum_{k=0}^{m-r} \sum_{j=0}^{n-s} {m-r \choose k} {n-s \choose j} x^{k} (1-x)^{m-r-k} y^{j} (1-y)^{n-s-j} \cdot \left[(1-x) (1-y) f(\frac{k}{m}, \frac{j}{n}) + x (1-y) f(\frac{k+r}{m}, \frac{j}{n}) + (1-x) y f(\frac{k}{m}, \frac{j+s}{n}) + x y f(\frac{k+r}{m}, \frac{j+s}{n}) \right]$$

was studied by D.D. Stancu in [28]. In the same paper a cubature formula (using this operator) was constructed.

2.2. The operator obtained for s = 1 and r = 2, $L_{m,2}^D$ has been studied by H. Brass [4].

3. If we consider the delta operator $Q = \frac{\nabla_{\alpha}}{\alpha} = \frac{I - E^{-\alpha}}{\alpha}$ with the basic sequence $p_m(x) = x^{[m, -\alpha]} = x(x + \alpha) \dots (x + (m - 1)\alpha)$ then we obtain the following operator

(8)
$$\left(L_{m,r_1,\dots,r_s}^{\overline{\alpha}}f\right)(x) = \sum_{k=0}^{m-r_1\dots-r_s} {m-r_1-\dots-r_s \choose k} x^{[k,-\alpha]} (1-x)^{[m-r_1-\dots-r_s-k,-\alpha]} \cdot \sum_{j=0}^s x^{[j,-\alpha]} (1-x)^{[s-j,-\alpha]} F_{m,k,j}^{r_1,\dots,r_s}(f).$$

Taking into account that $d_m^{\frac{\nabla \alpha}{\alpha}} = \frac{1+\alpha m}{(1+\alpha)m}$, we obtain the following expression for this operator on e_2 ,

$$(L_{m,r_1,\dots,r_s}^{\underline{\nabla\alpha}} e_2)(x) = x^2 + \frac{x(1-x)}{m^2} \bigg[(m-r_1-\dots-r_s)^2 \frac{1+\alpha(m-r_1-\dots-r_s)}{1+\alpha} + r_1^2 + \dots + r_s^2 + \frac{2\alpha}{1+\alpha} \sum_{\substack{u,v=1\\u\neq v}}^s r_u r_v \bigg].$$

- 3.1. If $r_1 = ... = r_s = r$ in the relation (8) then this operator reduces to the operator studied by D.D. Stancu and J.W. Drane in [33] and the expression (5) reduces to $A_{m,r,s}^{\frac{\nabla \alpha}{m}} = \frac{sr^2(1+\alpha s)+(m-sr)(1+\alpha(m-sr))}{m^2(1+\alpha)}$. 4. For Q arbitrary and s = 1 the operator defined by (2) reduces to the
- operator

$$\left(L_{m,r}^{Q}f\right)(x) = \sum_{k=0}^{m-r} p_{m-r,k}^{Q}\left[\left(1-x\right)f\left(\frac{k}{m}\right) + xf\left(\frac{k+r}{m}\right)\right]$$

and

$$\left(L_{m,r}^{Q}e_{2}\right)(x) = x^{2} + \frac{x(1-x)}{m^{2}}\left[r^{2} + (m-r)^{2}d_{m-r}^{Q}\right].$$

4. AN INTEGRAL REPRESENTATION FOR THE REMAINDER

We consider the following approximation formula

(9)
$$f(x) = \left(L^Q_{m,r_1,...,r_s}f\right)(x) + \left(R^Q_{m,r_1,...,r_s}f\right)(x).$$

From Lemma 6 it results that the degree of exactness of this formula is 1. If $f \in C^{2}[0,1]$, using the Peano's theorem, the remainder in the above formula can be represented under the form

$$\left(R^{Q}_{m,r_{1},...,r_{s}}f\right)(x) = \int_{0}^{1} G^{Q}_{m,r_{1},...,r_{s}}(t;x) f''(t) \,\mathrm{d}t,$$

where $G^{Q}_{m,r_{1},...,r_{s}}(t;x) = (R^{Q}_{m,r_{1},...,r_{s}}\varphi_{x})(t)$ and $\varphi_{x}(t) = (x-t)_{+} = \frac{x-t+|x-t|}{2}$.

Because for a fixed value of x, $G^{Q}_{m,r_1,\ldots,r_s}(t;x)$ is negative we can apply the mean value theorem and we obtain that it exists $\xi \in [0, 1]$ such that

$$\left(R^{Q}_{m,r_{1},...,r_{s}}f\right)(x) = f''(\xi) \int_{0}^{1} G^{Q}_{m,r_{1},...,r_{s}}(t;x) \,\mathrm{d}t$$

Because the Peano kernel $G^{Q}_{m,r_{1},...,r_{s}}\left(t;x\right)$ is independent of the function fwe can take $f(x) = x^2$ in the previous relation and we obtain

$$\int_{0}^{1} G_{m,r_{1},...,r_{s}}^{Q}(t;x) dt = \frac{1}{2} \left(R_{m,r_{1},...,r_{s}}^{Q}e_{2} \right)(x)$$
$$= -\frac{1}{2}x \left(1-x \right) A_{m,r_{1},...,r_{s}}^{Q}$$

where $A^Q_{m,r_1,...,r_s}$ is defined by (5). So, for every function $f \in C^2[0,1]$, we obtain a Cauchy-type form for the remainder in the approximation formula (9)

$$\left(R^{Q}_{m,r_{1},...,r_{s}}f\right)(x) = \frac{x(x-1)}{2}A^{Q}_{m,r_{1},...,r_{s}}f''(\xi),$$

where $\xi \in [0,1]$.

REFERENCES

- [1] AGRATINI, O., On simultaneous approximation by Stancu-Bernstein operators, Approximation and Optimization, ICAOR Cluj-Napoca, vol. II, pp. 157–162, 1996.
- [2]AGRATINI, O., Binomial polynomials and their applications in approximation theory, Conf. Semin. Mat. Univ. Bari, 281, pp. 1–22, 2001.
- [3] ALTOMARE, F. and CAMPITI, M., Korovkin-type approximation theory and its applications. Appendix A by Michael Pannenberg and Appendix B by Ferdinand Beckhoff. de Gruyter Studies in Mathematics, 17. Walter de Gruyter & Co., Berlin, 1994.
- [4] BRASS, H., Eine Verallgemeinerung der Bernsteinschen Operatoren, Abhandl. Math. Sem. Univ. Hamburg, 36, pp. 111-122, 1971.
- CRĂCIUN, M., Approximation operators constructed by means of Sheffer sequences, $\left|5\right|$ Rev. Anal. Numér. Théor. Approx., **30**, no. 2, pp. 135–150, 2001.
- [6]CRĂCIUN, M., On an approximating operator and its Lipschitz constant, Rev. Anal. Numér. Théor. Approx., **31**, no. 1, pp. 55–60, 2002.
- [7]CRĂCIUN, M., On compound operators constructed with binomial and Sheffer sequences, Rev. Anal. Numér. Théor. Approx., **32**, no. 2, pp. 135–144, 2003.
- 8 DI BUCCHIANICO, A., Polynomials of convolution type, PhD thesis, University of Groningen, The Netherlands, 1991.
- DI BUCCHIANICO, A., Probabilistic and Analytical Aspects of the Umbral Calculus, CWI [9] Tract 119, 1997.
- [10] DI BUCCHIANICO, A. and LOEB, D.E., A selected survey of umbral calculus. Electron. J. Combin., 2, Dynamic Survey 3, 1995.
- [11] LUPAŞ, L. and LUPAŞ, A. Polynomials of binomial type and approximation operators, Studia Univ. Babeş-Bolyai, Mathematica, **32**, 4, pp. 61–69, 1987.
- [12] LUPAS, A., Approximation operators of binomial type, Proc. IDoMAT 98, International Series of Numerical Mathematics, ISNM vol. 132, Birkhäuser Verlag, Basel, pp. 175-198, 1999.
- [13] MANOLE, C., Expansions in series of generalized Appell polynomials with applications to the approximation of functions, PhD Thesis, "Babeş-Bolyai" University, Cluj-Napoca, 1984 (in Romanian).

- [14] MANOLE, C., Approximation operators of binomial type, Univ. of Cluj-Napoca, Research Seminars, Seminar on numerical and statistical calculus, Preprint nr. 9, pp. 93–98, 1987.
- [15] MIHESAN, V., Lipschitz constants for operators of binomial type of a Lipschitz continuous function. RoGer 2000—Braşov, pp. 81–87, Schr.reihe Fachbereichs Math. Gerhard Mercator Univ., 485, Gerhard-Mercator-Univ., Duisburg, 2000.
- [16] MULLIN, R. and ROTA, G.-C., On the foundations of combinatorial theory III, Theory of binomial enumeration, Graph Theory and its Applications, Academic Press, New York, 1970, pp. 167–213.
- [17] POPOVICIU, T., Remarques sur les poynômes binomiaux, Bul. Soc. Ştiinte Cluj, 6, pp. 146-148, 1931.
- [18] ROMAN, S., The umbral calculus, Pure and Applied Mathematics, 111, Academic Press, Inc., New York, 1984, X+193 pp.
- [19] ROTA, G.C., KAHANER, D. and ODLYZKO, A., Finite Operator Calculus, J. Math. Anal. Appl., 42, pp. 685–760, 1973.
- [20] SABLONNIÈRE, P., Positive Bernstein-Sheffer Operators, J. Approx. Theory, 83, pp. 330–341, 1995.
- [21] STANCU, D. D., Approximation of functions by a new class of linear positive operators, Rev. Roum. Math. Pures et Appl., 13, pp. 1173–1194, 1968.
- [22] STANCU, D. D., Use of probabilistic methods in the theory of uniform approximation of continuous functions, Rev. Roumaine Math. Pures Appl., 14, pp. 673–691, 1969.
- [23] STANCU, D. D., Approximation properties of a class of linear positive operators, Studia Univ. Babeş-Bolyai, Cluj, 15, pp. 31–38, 1970.
- [24] STANCU, D. D., Approximation of functions by means of some new classes of positive linear operators, Numerische Methoden der Approximationstheorie, Proc. Conf. Oberwolfach 1971 ISNM vol. 16, Birkhäuser-Verlag, Basel, pp. 187–203, 1972.
- [25] STANCU, D. D., Quadrature formulas constructed by using certain linear positive operators, Numerical Integration, Proc. Conf. Oberwolfach, 1981 ISNM vol. 57, Birkhäuser-Verlag, Basel, pp. 241–251, 1982.
- [26] STANCU, D. D., Approximation of functions by means of a new generalized Bernstein operator, Calcolo, 20, no. 2, pp. 211–229, 1983.
- [27] STANCU, D. D., A note on a multiparameter Bernstein-type approximating operator, Mathematica (Cluj) 26(49), no. 2, pp. 153–157, 1984.
- [28] STANCU, D. D., Bivariate approximation by some Bernstein-type operators, Proc. Colloq. Approx. Optim., Cluj-Napoca, pp. 25–34, 1984.
- [29] STANCU, D. D., Representation of remainders in approximation formulae by some discrete type linear positive operators, Rendiconti del Circolo Matematico di Palermo, Suppl., 52, pp. 781–791, 1998.
- [30] STANCU, D. D., A note on the remainder in a polynomial approximation formula. Studia Univ. Babeş-Bolyai Math., 41, no. 2, pp. 95–101, 1996.
- [31] STANCU, D. D., On the approximation of functions by means of the operators of binomial type of Tiberiu Popoviciu, Rev. Anal. Numér. Théor. Approx., 30, no. 1, pp. 95–105, 2001.
- [32] STANCU, D. D., On approximation of functions by means of compound poweroid operators, Mathematical Analysis and Approximation Theory, Proceedings of ROGER 2002-Sibiu, pp. 259–272, 2002.
- [33] STANCU, D. D., and DRANE, J. W., Approximation of functions by means of the poweroid operators S^m_{m,r,s}, Trends in approximation theory (Nashville, TN, 2000), pp. 401–405, Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2001.
- [34] STANCU, D. D. and OCCORSIO, M. R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Numér. Théor. Approx., 27, no. 1, pp. 167–181, 1998. ^[2]

9

- [35] STANCU, D. D. and SIMONCELLI, A. C., Compound poweroid operators of approximation, Rendiconti del Circolo Matematico di Palermo, Suppl. 68, pp. 845–854, 2002.
- [36] STANCU, D. D. and VERNESCU, A., Approximation of bivariate functions by means of a class of operators of Tiberiu Popoviciu type, Mathematical Reports, Bucureşti, (1) 51, no. 3, pp. 411–419, 1999.

Received by the editors: January 14, 2004.

60