NEW CHEBYSHEV TYPE INEQUALITIES FOR SEQUENCES OF REAL NUMBERS

S. S. DRAGOMIR*

Abstract

Some new inequalities of Chebyshev type for sequences of real numbers are pointed out.

MSC 2000. Primary 26D15; Secondary 26D10.
Keywords. Chebyshev inequality.

1. INTRODUCTION

For $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right) n$-tuples of real numbers, consider the Chebyshev functional

$$
\begin{equation*}
T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b}):=P_{n} \sum_{i=1}^{n} p_{i} a_{i} b_{i}-\sum_{i=1}^{n} p_{i} a_{i} \cdot \sum_{i=1}^{n} p_{i} b_{i} \tag{1}
\end{equation*}
$$

where $P_{n}:=\sum_{i=1}^{n} p_{i}$.
In 1882-1883, Chebyshev [1] and [2] proved that, if \mathbf{a} and \mathbf{b} are monotonic in the same (opposite) sense and \mathbf{p} is nonnegative, then

$$
\begin{equation*}
T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b}) \geq(\leq) 0 \tag{2}
\end{equation*}
$$

The inequality (2) was mentioned by Hardy, Littlewood and Polya in their book [3] in 1934 in the more general setting of synchronous sequences, i.e., if \mathbf{a}, \mathbf{b} are synchronous (asynchronous), this means that

$$
\begin{equation*}
\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right) \geq(\leq) 0, \quad \text { for each } i, j \in\{1, \ldots, n\} \tag{3}
\end{equation*}
$$

then (2) holds true.
A relaxation of the synchronicity condition was provided by M. Biernacki in 1951, [4] who showed that for a nonnegative \mathbf{p}, if \mathbf{a}, \mathbf{b} are monotonic in mean in the same sense, i.e. for $P_{k}:=\sum_{i=1}^{k} p_{i}$,

$$
\begin{align*}
& \frac{1}{P_{k}} \sum_{i=1}^{k} p_{i} a_{i} \leq(\geq) \frac{1}{P_{k+1}} \sum_{i=1}^{k+1} p_{i} a_{i}, \quad k \in\{1, \ldots, n-1\} \text { and } \tag{4}\\
& \frac{1}{P_{k}} \sum_{i=1}^{k} p_{i} b_{i} \leq(\geq) \frac{1}{P_{k+1}} \sum_{i=1}^{k+1} p_{i} b_{i}, \quad k \in\{1, \ldots, n-1\}
\end{align*}
$$

[^0]then (2) holds true for the " \geq " sign. If they are monotonic in mean in the opposite sense, then (2) holds true for the " \leq " sign.

For general real weights \mathbf{p}, Mitrinović and Pečarić has shown in [9] that the inequality (2) holds true if

$$
\begin{equation*}
0 \leq P_{k} \leq P_{n}, \quad \text { for } k \in\{1, \ldots, n-1\}, \tag{5}
\end{equation*}
$$

and \mathbf{a}, \mathbf{b} are monotonic in the same (opposite) sense.
The following identity is well known in the literature as Sonin's identity (see [5] and [6, p. 246])

$$
\begin{equation*}
T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b})=\sum_{i=1}^{n} p_{i}\left(P_{n} a_{i}-\sum_{j=1}^{n} p_{j} a_{j}\right)\left(b_{i}-b\right), \tag{6}
\end{equation*}
$$

for any real number b.
Another well known identity in terms of double sums is the following one known in the literature as Korkine's identity (see [7] and [6, p. 242])

$$
\begin{equation*}
T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b})=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i} p_{j}\left(a_{i}-a_{j}\right)\left(b_{i}-b_{j}\right) . \tag{7}
\end{equation*}
$$

The purpose of this work is to point out other identities of interest in obtaining Chebyshev's type inequalities. Some natural applications for studying the positivity of the Chebyshev's functional are mentioned.

For other results related to Chebyshev's functional see [10]-[12].
A survey on discrete Chebyshev's type inequalities is under preparation, [8].

2. THE IDENTITIES

The first result is embodied in the following
Theorem 1. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be n-tuples of real numbers. If we define

$$
\begin{aligned}
P_{i} & :=\sum_{k=1}^{i} p_{k}, \bar{P}_{i}:=P_{n}-P_{i}, \quad i \in\{1, \ldots, n-1\}, \\
A_{i}(\mathbf{p}) & :=\sum_{k=1}^{i} p_{k} a_{k}, \bar{A}_{i}(\mathbf{p}):=A_{n}(\mathbf{p})-A_{i}(\mathbf{p}), \quad i \in\{1, \ldots, n-1\},
\end{aligned}
$$

then we have the identity

$$
\begin{align*}
& T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b})=\sum_{i=1}^{n-1} \operatorname{det}\left(\begin{array}{cc}
P_{i} & P_{n} \\
A_{i}(\mathbf{p}) & A_{n}(\mathbf{p})
\end{array}\right) \cdot \Delta b_{i} \tag{8}\\
& =P_{n} \sum_{i=1}^{n-1} P_{i}\left(\frac{A_{n}(\mathbf{p})}{P_{n}}-\frac{A_{i}(\mathbf{p})}{P_{i}}\right) \cdot \Delta b_{i}\left(i f P_{n}, P_{i} \neq 0, \quad i \in\{1, \ldots, n-1\}\right)
\end{align*}
$$

$$
=\sum_{i=1}^{n-1} P_{i} \bar{P}_{i}\left(\frac{\bar{A}_{i}(\mathbf{p})}{P_{i}}-\frac{A_{i}(\mathbf{p})}{P_{i}}\right) \cdot \Delta b_{i}, \quad\left(\text { if } P_{i}, \bar{P}_{i} \neq 0, i \in\{1, \ldots, n-1\}\right),
$$

where $\Delta b_{i}:=b_{i+1}-b_{i}(i \in\{1, \ldots, n-1\})$ is the forward difference.
Proof. We use the following well known summation by parts formula

$$
\begin{equation*}
\sum_{l=p}^{q-1} d_{l} \Delta v_{l}=\left.d_{l} v_{l}\right|_{p} ^{q}-\sum_{l=p}^{q-1} v_{l+1} \Delta d_{l} \tag{9}
\end{equation*}
$$

where d_{l}, v_{l} are real numbers, $l=p, \ldots, q(q>p ; p, q$ are natural numbers).
If we choose in (9), $p=1, q=n, d_{i}=P_{i} A_{n}(\mathbf{p})-P_{n} A_{i}(\mathbf{p})$ and $v_{i}=$ $b_{i}(i \in\{1, \ldots, n-1\})$, then we get

$$
\begin{aligned}
& \sum_{i=1}^{n-1}\left(P_{i} A_{n}(\mathbf{p})-P_{n} A_{i}(\mathbf{p})\right) \cdot \Delta b_{i}= \\
& =\left.\left[P_{i} A_{n}(\mathbf{p})-P_{n} A_{i}(\mathbf{p})\right] \cdot b_{i}\right|_{1} ^{n}-\sum_{i=1}^{n-1} \Delta\left(P_{i} A_{n}(\mathbf{p})-P_{n} A_{i}(\mathbf{p})\right) \cdot b_{i+1} \\
& =\left[P_{n} A_{n}(\mathbf{p})-P_{n} A_{n}(\mathbf{p})\right] \cdot b_{n}-\left[P_{1} A_{n}(\mathbf{p})-P_{n} A_{1}(\mathbf{p})\right] \cdot b_{1} \\
& \quad-\sum_{i=1}^{n-1}\left[P_{i+1} A_{n}(\mathbf{p})-P_{n} A_{i+1}(\mathbf{p})-P_{i} A_{n}(\mathbf{p})+P_{n} A_{i}(\mathbf{p})\right] \cdot b_{i+1} \\
& =P_{n} p_{1} a_{1} b_{1}-p_{1} b_{1} A_{n}(\mathbf{p})-\sum_{i=1}^{n-1}\left(p_{i+1} A_{n}(\mathbf{p})-P_{n} p_{i+1} a_{i+1}\right) \cdot b_{i+1} \\
& =P_{n} p_{1} a_{1} b_{1}-p_{1} b_{1} A_{n}(\mathbf{p})-A_{n}(\mathbf{p}) \sum_{i=1}^{n-1} p_{i+1} b_{i+1}+P_{n} \sum_{i=1}^{n-1} p_{i+1} a_{i+1} b_{i+1} \\
& =P_{n} \sum_{i=1}^{n} p_{i} a_{i} b_{i}-\sum_{i=1}^{n} p_{i} a_{i} \cdot \sum_{i=1}^{n} p_{i} b_{i} \\
& =T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b}),
\end{aligned}
$$

which produce the first identity in (8).
The second and the third identity are obvious and we omit the details.
Before we prove the second result, we need the following lemma providing an identity that is interesting in itself as well.

LEMMA 2. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be n-tuples of real numbers. Then we have the equality

$$
\operatorname{det}\left(\begin{array}{cc}
P_{i} & P_{n} \tag{10}\\
A_{i}(\mathbf{p}) & A_{n}(\mathbf{p})
\end{array}\right)=\sum_{j=1}^{n-1} P_{\min \{i, j\}} \bar{P}_{\max \{i, j\}} \cdot \Delta a_{j}
$$

for each $i \in\{1, \ldots, n-1\}$.

Proof. Define, for $i \in\{1, \ldots, n-1\}$,

$$
K(i):=\sum_{j=1}^{n-1} P_{\min \{i, j\}} \bar{P}_{\max \{i, j\}} \cdot \Delta a_{j} .
$$

We have

$$
\begin{align*}
K(i) & =\sum_{j=1}^{i} P_{\min \{i, j\}} \bar{P}_{\max \{i, j\}} \cdot \Delta a_{j}+\sum_{j=i+1}^{n-1} P_{\min \{i, j\}} \bar{P}_{\max \{i, j\}} \cdot \Delta a_{j} \tag{11}\\
& =\sum_{j=1}^{i} P_{j} \bar{P}_{i} \cdot \Delta a_{j}+\sum_{j=i+1}^{n-1} P_{i} \bar{P}_{j} \cdot \Delta a_{j} \\
& =\bar{P}_{i} \sum_{j=1}^{i} P_{j} \cdot \Delta a_{j}+P_{i} \sum_{j=i+1}^{n-1} \bar{P}_{j} \cdot \Delta a_{j} .
\end{align*}
$$

Using the summation by parts formula, we have

$$
\begin{align*}
\sum_{j=1}^{i} P_{j} \cdot \Delta a_{j} & =\left.P_{j} \cdot a_{j}\right|_{1} ^{i+1}-\sum_{j=1}^{i}\left(P_{j+1}-P_{j}\right) \cdot a_{j+1} \tag{12}\\
& =P_{i+1} a_{i+1}-p_{1} a_{1}-\sum_{j=1}^{i} p_{j+1} \cdot a_{j+1} \\
& =P_{i+1} a_{i+1}-\sum_{j=1}^{i+1} p_{j} \cdot a_{j}
\end{align*}
$$

and
(13) $\sum_{j=i+1}^{n-1} \bar{P}_{j} \cdot \Delta a_{j}=\left.\bar{P}_{j} \cdot a_{j}\right|_{i+1} ^{n}-\sum_{j=i+1}^{n-1}\left(\bar{P}_{j+1}-\bar{P}_{j}\right) \cdot a_{j+1}$

$$
\begin{aligned}
& =\bar{P}_{n} a_{n}-\bar{P}_{i+1} a_{i+1}-\sum_{j=i+1}^{n-1}\left(P_{n}-P_{j+1}-P_{n}+P_{j}\right) \cdot a_{j+1} \\
& =-\bar{P}_{i+1} a_{i+1}+\sum_{j=i+1}^{n-1} p_{j+1} \cdot a_{j+1} .
\end{aligned}
$$

Using (12) and (13) we have

$$
\begin{aligned}
K(i) & =\bar{P}_{i}\left(P_{i+1} a_{i+1}-\sum_{j=1}^{i+1} p_{j} \cdot a_{j}\right)+P_{i}\left(\sum_{j=i+1}^{n-1} p_{j+1} \cdot a_{j+1}-\bar{P}_{i+1} a_{i+1}\right) \\
& =\bar{P}_{i} P_{i+1} a_{i+1}-P_{i} \bar{P}_{i+1} a_{i+1}-\bar{P}_{i} \sum_{j=1}^{i+1} p_{j} \cdot a_{j}+P_{i} \sum_{j=i+1}^{n-1} p_{j+1} \cdot a_{j+1}
\end{aligned}
$$

$$
\begin{aligned}
= & a_{i+1}\left(\left(P_{n}-P_{i}\right) P_{i+1}-P_{i}\left(P_{n}-P_{i+1}\right)\right) \\
& +P_{i} \sum_{j=i+1}^{n-1} p_{j+1} \cdot a_{j+1}-\bar{P}_{i} \sum_{j=1}^{i+1} p_{j} \cdot a_{j} \\
= & P_{n} p_{i+1} a_{i+1}+P_{i} \sum_{j=i+1}^{n-1} p_{j+1} \cdot a_{j+1}-\bar{P}_{i} \sum_{j=1}^{i+1} p_{j} \cdot a_{j} \\
= & \left(P_{i}+\bar{P}_{i}\right) p_{i+1} a_{i+1}+P_{i} \sum_{j=i+1}^{n-1} p_{j+1} \cdot a_{j+1}-\bar{P}_{i} \sum_{j=1}^{i+1} p_{j} \cdot a_{j} \\
= & P_{i} \sum_{j=i+1}^{n-1} p_{j} \cdot a_{j}-\bar{P}_{i} \sum_{j=1}^{i} p_{j} \cdot a_{j} \\
= & P_{i} \bar{A}_{i}(\mathbf{p})-\bar{P}_{i} A_{i}(\mathbf{p}) \\
= & \operatorname{det}\left(\begin{array}{cc}
P_{i} & P_{n} \\
A_{i}(\mathbf{p}) & A_{n}(\mathbf{p})
\end{array}\right)
\end{aligned}
$$

and the identity is proved.
We are able now to state and prove the second identity for the Chebyshev functional

Theorem 3. With the assumptions of Theorem 11 we have the equality

$$
\begin{equation*}
T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b})=\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} P_{\min \{i, j\}} \bar{P}_{\max \{i, j\}} \cdot \Delta a_{j} \cdot \Delta b_{j} . \tag{14}
\end{equation*}
$$

The proof is obvious by Theorem 1 and Lemma 2 .
Remark 1. The identity (14) was stated without a proof in paper [9]. It also may be found in [6, p. 281], again without a proof.

3. SOME NEW INEQUALITIES

We may point out the following result concerning the positivity of the Chebyshev functional

Theorem 4. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be n-tuples of real numbers. If \mathbf{b} is monotonic nondecreasing and either
(i) $\operatorname{det}\left(\begin{array}{cc}P_{i} & P_{n} \\ A_{i}(\mathbf{p}) & A_{n}(\mathbf{p})\end{array}\right) \geq 0$ for each $i \in\{1, \ldots, n-1\}$;
or
(ii) $P_{i}>0$ for any $i \in\{1, \ldots, n\}$ and

$$
\frac{A_{n}(\mathbf{p})}{P_{n}} \geq \frac{A_{i}(\mathbf{p})}{P_{i}} \text { for each } i \in\{1, \ldots, n-1\} ;
$$

or
(iii) $0<P_{i}<P_{n}$ for every $i \in\{1, \ldots, n-1\}$ and

$$
\frac{\bar{A}_{i}(\mathbf{p})}{P_{i}} \geq \frac{A_{i}(\mathbf{p})}{P_{i}} \text { for each } i \in\{1, \ldots, n-1\}
$$

then

$$
\begin{equation*}
T_{n}(\mathbf{p} ; \mathbf{a}, \mathbf{b}) \geq 0 \tag{15}
\end{equation*}
$$

If \mathbf{b} is monotonic nonincreasing and either (i) or (ii) or (iii) from above holds, then the reverse inequality in (15) holds true.

The proof of the theorem follows from the identities incorporated in Theorem 1 and we omit the details.

Using the second theorem, we may state the following result as well
ThEOREM 5. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be n-tuples of real numbers. If \mathbf{a} and \mathbf{b} are monotonic in the same sense and

$$
\begin{equation*}
P_{\min \{i, j\}} \bar{P}_{\max \{i, j\}} \geq 0 \text { for each } i, j \in\{1, \ldots, n-1\} \tag{16}
\end{equation*}
$$

then (15) holds true. If \mathbf{a} and \mathbf{b} are monotonic in the opposite sense and the condition (16) is valid, then the reverse inequality in (15) holds true.

REFERENCES

[1] Chebyshev, P. L. (1882), O približennyh vyraženijah odnih integralov čerez drugie, Soobšćenija i protokoly zasedaniĭ Matemmatičeskogo občestva pri Imperatorskom Har'kovskom Universitete, No. 2, pp. 93-98; Polnoe sobranie sočinenǐ P. L. Chebysheva. Moskva-Leningrad, 1948a, pp. 128-131.
[2] Chebyshev, P. L. (1883), Ob odnom rjade, dostavljajušćem predel'nye veličiny integralov pri razloženii podintegral'nǒ̆ funkcii na množeteli, Priloženi k 57 tomu Zapisok Imp. Akad. Nauk, No. 4; Polnoe sobranie sočinenǐ P. L. Chebysheva. MoskvaLeningrad, 1948b, pp. 157-169.
[3] Hardy, G. H., Littlewood, J.E. and Pólya, G., Inequalities, 1st Ed. and 2nd Ed., Cambridge University Press, Cambridge, England, 1934, 1952.
[4] Biernacki, M., Sur une inégalité entre les intégrales due à Tchebyscheff, Ann. Univ. Mariae Curie-Sklodowska, A5, pp. 23-29, 1951.
[5] Sonin, N. JA., O nekotoryh neravenstvah, ostnosjaščihsja k opredelennym integralam, Zap. Imp. Akad. Nauk po Fiziko-Matem. Otd., 6, pp. 1-54, 1898.
[6] Mitrinović D. S., Pečarić J. E and Fink A. M., Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.
[7] Korkine, A. N., Sur une théorème de M. Tchebychef, C. R. Acad. Sci. Paris, 96, pp. 326-327, 1883.
[8] Dragomir S. S., A survey on Chebyshev and Grüss type discrete inequalities, in preparation.
[9] Mitrinović D. S. and Pečarić, J. E., On an identity of D.Z. Djoković, Prilozi Mak. Akad. Nauk. Umj. (Skopje), 12(1), pp. 21-22, 1991.
[10] Dragomir, S. S. and Pečarić, J. E., Refinements of some inequalities for isotonic linear functionals, Rev. Anal. Numér. Théor. Approx., 18 (1), pp. 61-65, 1989. [^
[11] Dragomir, S. S., On some improvements of Chebyshev's inequality for sequences and integrals, Studia Univ. Babeş-Bolyai, Mathematica, XXXV (4), pp. 35-40, 1990.
[12] Pečarić, J. E. and Dragomir, S. S., Some remarks on Chebyshev's inequality, Rev. Anal. Numér. Théor. Approx., 19 (1), pp. 58-65, 1990. 즈

Received by the editors: October 22, 2003.

[^0]: *School of Computer Science \& Mathematics Victoria University, Melbourne, Australia, e-mail: sever@matilda.vu.edu.au, url: http://rgmia.vu.edu.au/SSDragomirWeb.html.

