REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION Rev. Anal. Numér. Théor. Approx., vol. 33 (2004) no. 1, pp. 67-71 ictp.acad.ro/jnaat

ON THE MODIFIED BETA APPROXIMATING OPERATORS OF FIRST KIND

VASILE MIHEŞAN*

Abstract. We define a general linear operator from which we obtain as special case the modified beta first kind operator

$$(B_{p,q}f)(x) = \frac{1}{B(p,q)} \int_0^1 t^{p-1} (1-t)^{q-1} f\left(\frac{B(p,q)}{B(p+a,q)} t^a x\right) \mathrm{d}t.$$

We consider here only the cases a = 1 and a = -1.

We obtain several positive linear operators as particular cases of this modified beta first kind operator.

MSC 2000. 41A36.

Keywords. Euler's beta function, the modified beta first kind operator, positive linear operators.

1. INTRODUCTION

Many authors introduced and studied positive linear operators, using Euler's beta function of first kind: [1]–[4].

Euler's beta function of first kind is defined for p > 0, q > 0, by the following formula

(1)
$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt$$

The beta transform of the function f is defined by the following formula

$$\mathcal{B}_{p,q}f = \frac{1}{B(p,q)} \int_0^1 t^{p-1} (1-t)^{q-1} f(t) \mathrm{d}t.$$

The modified beta operator is defined for $x \ge 0$ by the following formula

$$(\mathcal{B}_{p,q}f)(x) = \frac{1}{B(p,q)} \int_0^1 t^{p-q} (1-t)^{q-1} f(tx) \mathrm{d}t.$$

We shall define a more general linear operator from which we obtain as a particular case the modified beta first kind operator.

For $a, b \in \mathbb{R}$ and $x \ge 0$, we define the (a, b)-modified beta operator

(2)
$$(\mathcal{B}_{p,q}^{(a,b)}f)(x) = \frac{1}{B(p,q)} \int_0^1 t^{p-1} (1-t)^{q-1} f(\frac{B(p,q)}{B(p+a,q+b)} t^a (1-t)^b x) \mathrm{d}t,$$

^{*}Technical University of Cluj-Napoca, Department of Mathematics, 400020, Cluj-Napoca, ROMANIA, e-mail: Vasile.Mihesan@math.utcluj.ro.

where $B(\cdot, \cdot)$ is the beta function (1) and f is any real measurable function defined on $(0,\infty)$ such that

$$(\mathcal{B}_{p,q}^{(a,b)}|f|)(x) < \infty.$$

2. THE MODIFIED BETA FIRST KIND OPERATORS

If we put in (2) b = 0 we obtain the modified beta first kind operator

(3)
$$(\mathcal{B}_{p,q}^{(a)}f)(x) = \frac{1}{B(p,q)} \int_0^1 t^{p-1} (1-t)^{q-1} f(\frac{B(p,q)}{B(p+a,q)} t^a x) \mathrm{d}t,$$

where $B(\cdot, \cdot)$ is the beta function (1) and f is any real measurable function defined on $[0, \infty)$ such that $(\mathcal{B}_{p,q}^{(a)}|f|)(x) < \infty$. One observe that $\mathcal{B}_{p,q}^{(a)}$ is a positive linear operator and

$$(\mathcal{B}_{p,q}^{(a)}e_1)(x) = x.$$

2.1. Case a = 1. If we choose in (3) a = 1 we obtain the modified beta first kind operator

(4)
$$(\mathcal{B}_{p,q}f)(x) = (\mathcal{B}_{p,q}^{(1)}f)(x) = \frac{1}{B(p,q)} \int_0^1 t^{p-1} (1-t)^{q-1} f(\frac{p+q}{p} \cdot tx) \mathrm{d}t.$$

REMARK 1. If we choose in (4) p > 0 and q > 0 such that $\frac{p}{p+q} = x$, $x \in (0,1)$, then we obtain the operator (2.5) considered by the author in [4].

LEMMA 1. The moments of order k of the operator $\mathcal{B}_{p,q}$ have the following values

$$(\mathcal{B}_{p,q}e_k)(x) = \left(\frac{p+q}{p}\right)^k \frac{(p)_k}{(p+q)_k} x^k.$$

Proof.

$$(\mathcal{B}_{p,q}e_k)(x) = \frac{1}{B(p,q)} \int_0^1 t^{p-1} (1-t)^{q-1} \left(\frac{p+q}{p}\right)^k t^k x^k dt$$
$$= \left(\frac{p+q}{p}\right)^k \frac{x^k}{B(p,q)} \int_0^1 t^{p+k-1} (1-t)^{q-1} dt$$
$$= \left(\frac{p+q}{p}\right)^k \frac{B(p+k,q)}{B(p,q)} x^k$$
$$= \left(\frac{p+q}{p}\right)^k x^k \frac{\Gamma(p+k)\Gamma(q)}{\Gamma(p+q+k)} \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)}$$
$$= \left(\frac{p+q}{p}\right)^k \frac{(p)_k}{(p+q)_k} x^k.$$

$$(\mathcal{B}_{p,q}e_1)(x) = x,$$

$$(\mathcal{B}_{p,q}e_2)(x) = \left(\frac{p+q}{p}\right)^2 \frac{p(p+1)}{(p+q)(p+q+1)} x^2 = \frac{(p+q)(p+1)}{p(p+q+1)} x^2,$$

$$\mathcal{B}_{p,q}((t-x)^2; x) = \left(\frac{(p+q)(p+1)}{p(p+q+1)} - 1\right) x^2$$

$$= \frac{p^2 + p + pq + q - p^2 - pq - p}{p(p+q+1)} x^2$$

$$= \frac{q}{p(p+q+1)} x^2.$$

Consequently, we obtain

$$(\mathcal{B}_{p,q}e_1)(x) = x, (\mathcal{B}_{p,q}e_2)(x) = \frac{p+1}{p} \cdot \frac{p+q}{p+q+1}x^2, \mathcal{B}_{p,q}((t-x)^2; x) = \frac{qx^2}{p(p+q+1)}.$$

Special cases

A) If we put in (4) p = n - 1 and $q = \alpha$, $\alpha > 0$ we obtain the positive linear operator

(5)
$$(\mathcal{B}_n^{(\alpha)}f)(x) = \frac{1}{B(n,\alpha)} \int_0^1 t^{n-1} (1-t)^{\alpha-1} f\left(\frac{n+\alpha-1}{n-1}tx\right) \mathrm{d}t.$$

COROLLARY 2. The following relation holds:

$$\mathcal{B}_n^{(\alpha)}((t-x)^2;x) = \frac{\alpha x^2}{(n-1)(n+\alpha)}.$$

Proof. It is obtained from Lemma 1 for p = n - 1 and $q = \alpha$, $\alpha > 0$. \Box REMARK 2. For $\alpha = 1$ we obtain

$$\mathcal{B}_n((t-x)^2;x) = \frac{x^2}{n^2 - 1}.$$

B) Another operator it is obtained by (4) for p = nx, $n \in \mathbb{N}$, $q = \alpha$, $\alpha > 0$:

(6)
$$(\overline{\mathcal{B}}_n^{(\alpha)}f)(x) = \frac{1}{B(nx,\alpha)} \int_0^1 t^{nx-1} (1-t)^{\alpha-1} f\left(\frac{nx+\alpha}{n}t\right) \mathrm{d}t.$$

Corollary 3.

$$\overline{\mathcal{B}}_n^{(\alpha)}((t-x)^2;x) = \frac{\alpha x}{n(nx+\alpha+1)}$$

Proof. It is obtained from Lemma 1 for p = nx and $q = \alpha$, $\alpha > 0$.

2.2. Case a = -1. If we put a = -1 in (4) we obtain the modified beta first kind operator

(7)
$$(\mathbf{B}_{p,q}f)(x) = (\mathcal{B}_{p,q}^{(-1)}f)(x) = \frac{1}{B(p,q)} \int_0^1 t^{p-1} (1-t)^{q-1} f(\frac{p-1}{p+q-1} \cdot \frac{x}{t}) \mathrm{d}t.$$

REMARK 3. If we choose in (7) p > 0 and q > 0 such that $\frac{p+q-1}{p-1} = x, x > 1$ then we obtain the operator (4.5) considered by the author in [4].

LEMMA 4. The moments of order k $(1 \le k < p)$ of the operator $B_{p,q}$ have the following values

$$(\mathbf{B}_{p,q}e_k)(x) = \frac{(p+q-1)\dots(p+q-k)}{(p-1)\dots(p-k)} \left(\frac{p-1}{p+q-1}\right)^k x^k, \quad 1 \le k < p.$$

Proof.

$$\begin{aligned} (\mathbf{B}_{p,q}e_k)(x) &= \frac{1}{B(p,q)} \int_0^1 t^{p-q} (1-t)^{q-1} \left(\frac{p-1}{p+q-1}\right)^k \frac{x^k}{t^k} \mathrm{d}t \\ &= \left(\frac{p-1}{p+q-1}\right)^k \frac{x^k}{B(p,q)} \int_0^1 t^{p-k-1} (1-t)^{q-1} \mathrm{d}t \\ &= \left(\frac{p-1}{p+q-1}\right)^k \frac{B(p-k,q)}{B(p,q)} x^k \\ &= \left(\frac{p-1}{p+q-1}\right)^k \frac{\Gamma(p-k)\Gamma(q)}{\Gamma(p+q-k)} \cdot \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} x^k \\ &= \left(\frac{p-1}{p+q-1}\right)^k \frac{(p+q-1)\dots(p+q-k)}{(p-1)\dots(p-k)} x^k. \end{aligned}$$

Consequently, we obtain:

$$\begin{aligned} (\mathbf{B}_{p,q}e_1)(x) =& x, \\ (\mathbf{B}_{p,q}e_2)(x) =& \frac{p-1}{p-2} \cdot \frac{p+q-2}{p+q-1}x^2, \quad p>2, \\ \mathbf{B}_{p,q}((t-x)^2;x) =& \frac{q}{(p-2)(p+q-1)}x^2, \quad p>2. \end{aligned}$$

Special cases

A) If we put in (7) p = n + 1, $q = \alpha$, $\alpha > 0$ we obtain the positive linear operator

$$(\mathbf{B}_n^{(\alpha)}f)(x) = \frac{1}{B(n+1,\alpha)} \int_0^1 t^n (1-t)^{\alpha-1} f\left(\frac{n}{n+\alpha} \cdot \frac{x}{t}\right) \mathrm{d}t.$$

COROLLARY 5.

$$B_n^{(\alpha)}((t-x)^2;x) = \frac{\alpha x^2}{(n-1)(n+\alpha)}$$

Proof. It is obtained from Lemma 4 for p = n + 1, $q = \alpha$.

Remark 4. For $\alpha = 1$ we obtain

$$\mathbf{B}_n((t-x)^2;x) = \frac{x^2}{n^2-1}.$$

B) Another operator it is obtained by (7) for p = nx + 2, $n \in \mathbb{N}$, $q = \alpha$, $\alpha > 0$.

$$(\overline{\mathbf{B}}_{n}^{(\alpha)}f)(x) = \frac{1}{B(nx+2,\alpha)} \int_{0}^{1} t^{nx+1} (1-t)^{\alpha-1} f\left(\frac{nx+1}{nx+\alpha+1} \cdot \frac{x}{t}\right) \mathrm{d}t.$$

COROLLARY 6. One has

$$\overline{\mathbf{B}}_n^{(\alpha)}((t-x)^2;x) = \frac{\alpha x^2}{nx(nx+\alpha+1)}.$$

Proof. It is obtained from Lemma 4 for p = nx + 2, $q = \alpha$.

REFERENCES

- ADELL, J. A., BADIA, F. G., DE LA CAL, J. and PLO, L., On the property of monotonic convergence for Beta operators, J. Approx. Theory, 84, pp. 61–73, 1996.
- [2] LUPAŞ, A., *Die folge der Beta operatoren*, Dissertation, Univ. Stuttgart, Stuttgart, 1972.
- [3] MIHEŞAN, V., The beta approximating operators of the first kind, Studia Univ. Babeş-Bolyai, Mathematica (to appear).
- [4] MIHEŞAN, V., Approximation of continuous functions by means of linear positive operators, PhD Thesis, "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Cluj-Napoca, 1997.

Received by the editors: February 18, 2004.